
Simulink® 7
Reference

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Reference

© COPYRIGHT 2002–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
July 2002 Online only Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)

Contents

Block Reference

1
Commonly Used . 1-2

Continuous . 1-3

Discontinuities . 1-3

Discrete . 1-4

Logic and Bit Operations . 1-5

Lookup Tables . 1-7

Math Operations . 1-7

Model Verification . 1-9

Model-Wide Utilities . 1-10

Ports & Subsystems . 1-10

Signal Attributes . 1-12

Signal Routing . 1-13

Sinks . 1-14

Sources . 1-15

User-Defined Functions . 1-16

v

Additional Math & Discrete . 1-17
Additional Discrete . 1-17
Additional Math: Increment — Decrement 1-18

Blocks — Alphabetical List

2

Function Reference

3
Model Construction . 3-2

Simulation . 3-6

Linearization and Trimming . 3-7

Data Type . 3-8

Functions — Alphabetical List

4

Mask Icon Drawing Commands

5
Command Summary . 5-2

Mask Icon Drawing Commands — Alphabetical List . . 5-3

vi Contents

Simulink® Debugger Commands

6
Command Summary . 6-2

Simulink® Debugger Commands — Alphabetical
List . 6-5

Data Object Classes

7
Class Summary . 7-2

Classes — Alphabetical List . 7-4

Model and Block Parameters

8
Model Parameters . 8-2

About Model Parameters . 8-2
Examples of Setting Model Parameters 8-65

Common Block Parameters . 8-66
About Common Block Parameters . 8-66
Examples of Setting Block Parameters 8-78

Block-Specific Parameters . 8-79

Mask Parameters . 8-185
About Mask Parameters . 8-185
Setting Mask Parameters . 8-190
How Masked Parameters are Stored 8-190

vii

Model File Format

9
Model File Contents . 9-2

About Model File Formats . 9-2
Model Section . 9-4
Simulink.ConfigSet Section . 9-5
BlockDefaults Section . 9-5
BlockParameterDefaults Section . 9-6
AnnotationDefaults Section . 9-7
LineDefaults Section . 9-7
System Section . 9-7

Model Advisor Checks

10
Simulink® Checks . 10-2

Simulink® Check Overview . 10-3
Check model, local libraries, and referenced models for

known upgrade issues . 10-3
Identify unconnected lines, input ports, and output

ports . 10-5
Check root model Inport block specifications 10-6
Check optimization settings . 10-7
Check for parameter tunability information ignored for

referenced models . 10-8
Check for implicit signal resolution 10-9
Check for optimal bus virtuality . 10-10
Check for Discrete-Time Integrator blocks with initial

condition uncertainty . 10-11
Identify disabled library links . 10-12
Identify parameterized library links 10-13
Identify unresolved library links . 10-14
Check for proper bus usage . 10-15
Check for potentially delayed function-call subsystem

return values . 10-16
Identify block output signals with continuous sample time

and non-floating point data type 10-17
Check for proper Merge block usage 10-18

viii Contents

Index

ix

x Contents

1

Block Reference

Commonly Used (p. 1-2) Commonly used blocks

Continuous (p. 1-3) Define continuous states

Discontinuities (p. 1-3) Define discontinuous states

Discrete (p. 1-4) Define discrete states

Logic and Bit Operations (p. 1-5) Perform logic and bit operations

Lookup Tables (p. 1-7) Support lookup tables

Math Operations (p. 1-7) Perform math operations

Model Verification (p. 1-9) Perform model verification

Model-Wide Utilities (p. 1-10) Support model-wide operations

Ports & Subsystems (p. 1-10) Support ports and subsystems

Signal Attributes (p. 1-12) Support signal attributes

Signal Routing (p. 1-13) Support signal routing

Sinks (p. 1-14) Receive output from other blocks

Sources (p. 1-15) Input to other blocks

User-Defined Functions (p. 1-16) Support custom functions

Additional Math & Discrete (p. 1-17) Provide additional math and discrete
support

1 Block Reference

Commonly Used

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus

Constant Generate constant value

Data Type Conversion Convert input signal to specified
data type

Demux Extract and output elements of bus
or vector signal

Discrete-Time Integrator Perform discrete-time integration or
accumulation of signal

Gain Multiply input by constant

Ground Ground unconnected input port

Inport Create input port for subsystem or
external input

Integrator Integrate signal

Logical Operator Perform specified logical operation
on input

Mux Combine several input signals into
vector

Outport Create output port for subsystem or
external output

Product Multiply or divide inputs

Relational Operator Perform specified relational
operation on inputs

Saturation Limit range of signal

Scope and Floating Scope Display signals generated during
simulation

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Represent system within another
system

1-2

Continuous

Sum, Add, Subtract, Sum of
Elements

Add or subtract inputs

Switch Switch output between first input
and third input based on value of
second input

Terminator Terminate unconnected output port

Unit Delay Delay signal one sample period

Continuous
Derivative Output time derivative of input

Integrator Integrate signal

State-Space Implement linear state-space system

Transfer Fcn Model linear system by transfer
function

Transport Delay Delay input by given amount of time

Variable Time Delay, Variable
Transport Delay

Delay input by variable amount of
time

Zero-Pole Model system by zero-pole-gain
transfer function

Discontinuities

Backlash Model behavior of system with play

Coulomb and Viscous Friction Model discontinuity at zero, with
linear gain elsewhere

Dead Zone Provide region of zero output

Dead Zone Dynamic Set inputs within bounds to zero

1-3

1 Block Reference

Hit Crossing Detect crossing point

Quantizer Discretize input at specified interval

Rate Limiter Limit rate of change of signal

Rate Limiter Dynamic Limit rising and falling rates of
signal

Relay Switch output between two constants

Saturation Limit range of signal

Saturation Dynamic Bound range of input

Wrap To Zero Set output to zero if input is above
threshold

Discrete

Difference Calculate change in signal over one
time step

Discrete Derivative Compute discrete time derivative

Discrete Filter Model IIR and FIR filters

Discrete FIR Filter Model FIR filters

Discrete State-Space Implement discrete state-space
system

Discrete Transfer Fcn Implement discrete transfer function

Discrete Zero-Pole Model system defined by zeros and
poles of discrete transfer function

Discrete-Time Integrator Perform discrete-time integration or
accumulation of signal

First-Order Hold Implement first-order
sample-and-hold

Integer Delay Delay signal N sample periods

1-4

Logic and Bit Operations

Memory Output input from previous time
step

Tapped Delay Delay scalar signal multiple sample
periods and output all delayed
versions

Transfer Fcn First Order Implement discrete-time first order
transfer function

Transfer Fcn Lead or Lag Implement discrete-time lead or lag
compensator

Transfer Fcn Real Zero Implement discrete-time transfer
function that has real zero and no
pole

Unit Delay Delay signal one sample period

Weighted Moving Average (Obsolete) Implement weighted moving average

Zero-Order Hold Implement zero-order hold of one
sample period

Logic and Bit Operations

Bit Clear Set specified bit of stored integer to
zero

Bit Set Set specified bit of stored integer to
one

Bitwise Operator Perform specified bitwise operation
on inputs

Combinatorial Logic Implement truth table

Compare To Constant Determine how signal compares to
specified constant

Compare To Zero Determine how signal compares to
zero

Detect Change Detect change in signal’s value

1-5

1 Block Reference

Detect Decrease Detect decrease in signal’s value

Detect Fall Negative Detect falling edge when signal’s
value decreases to strictly negative
value, and its previous value was
nonnegative

Detect Fall Nonpositive Detect falling edge when signal’s
value decreases to nonpositive value,
and its previous value was strictly
positive

Detect Increase Detect increase in signal’s value

Detect Rise Nonnegative Detect rising edge when signal’s
value increases to nonnegative
value, and its previous value was
strictly negative

Detect Rise Positive Detect rising edge when signal’s
value increases to strictly positive
value, and its previous value was
nonpositive

Extract Bits Output selection of contiguous bits
from input signal

Interval Test Determine if signal is in specified
interval

Interval Test Dynamic Determine if signal is in specified
interval

Logical Operator Perform specified logical operation
on input

Relational Operator Perform specified relational
operation on inputs

Shift Arithmetic Shift bits and/or binary point of
signal

1-6

Lookup Tables

Lookup Tables

Direct Lookup Table (n-D) Index into N-dimensional table to
retrieve element, column, or 2-D
matrix

Interpolation Using Prelookup Use output of Prelookup block
to accelerate approximation of
N-dimensional function

Lookup Table Approximate one-dimensional
function

Lookup Table (2-D) Approximate two-dimensional
function

Lookup Table (n-D) Approximate N-dimensional function

Lookup Table Dynamic Approximate one-dimensional
function using dynamically specified
table

Prelookup Compute index and fraction for
Interpolation Using Prelookup block

Sine, Cosine Implement sine and/or cosine wave
in fixed point using lookup table
approach that exploits quarter wave
symmetry

Math Operations

Abs Output absolute value of input

Algebraic Constraint Constrain input signal to zero

Assignment Assign values to specified elements
of signal

Bias Add bias to input

1-7

1 Block Reference

Complex to Magnitude-Angle Compute magnitude and/or phase
angle of complex signal

Complex to Real-Imag Output real and imaginary parts of
complex input signal

Divide Multiply or divide inputs

Dot Product Generate dot product of two vectors

Gain Multiply input by constant

Magnitude-Angle to Complex Convert magnitude and/or a phase
angle signal to complex signal

Math Function Perform mathematical function

Matrix Concatenate, Vector
Concatenate

Concatenate input signals of same
data type to create contiguous output
signal

MinMax Output minimum or maximum input
value

MinMax Running Resettable Determine minimum or maximum of
signal over time

Permute Dimensions Rearrange dimensions of
multidimensional array dimensions

Polynomial Perform evaluation of polynomial
coefficients on input values

Product Multiply or divide inputs

Product of Elements Multiply or divide inputs

Real-Imag to Complex Convert real and/or imaginary
inputs to complex signal

Reshape Change dimensionality of signal

Rounding Function Apply rounding function to signal

Sign Indicate sign of input

Sine Wave Function Generate sine wave, using external
signal as time source

Slider Gain Vary scalar gain using slider

1-8

Model Verification

Squeeze Remove singleton dimensions from
multidimensional signal

Sum, Add, Subtract, Sum of
Elements

Add or subtract inputs

Trigonometric Function Perform trigonometric function

Unary Minus Negate input

Weighted Sample Time Math Support calculations involving
sample time

Model Verification

Assertion Check whether signal is nonzero

Check Discrete Gradient Check that absolute value of
difference between successive
samples of discrete signal is less
than upper bound

Check Dynamic Gap Check that gap of possibly varying
width occurs in range of signal’s
amplitudes

Check Dynamic Lower Bound Check that one signal is always less
than another signal

Check Dynamic Range Check that signal falls inside range
of amplitudes that varies from time
step to time step

Check Dynamic Upper Bound Check that one signal is always
greater than another signal

Check Input Resolution Check that input signal has specified
resolution

Check Static Gap Check that gap exists in signal’s
range of amplitudes

1-9

1 Block Reference

Check Static Lower Bound Check that signal is greater than
(or optionally equal to) static lower
bound

Check Static Range Check that signal falls inside fixed
range of amplitudes

Check Static Upper Bound Check that signal is less than (or
optionally equal to) static upper
bound

Model-Wide Utilities

Block Support Table View data type support for Simulink®

blocks

DocBlock Create text that documents model
and save text with model

Model Info Display revision control information
in model

Time-Based Linearization Generate linear models in base
workspace at specific times

Trigger-Based Linearization Generate linear models in base
workspace when triggered

Ports & Subsystems

Action Port Implement Action subsystems used
by if and switch control flow
statements in Simulink® software.

Configurable Subsystem Represent any block selected from
user-specified library of blocks

Enable Add enabling port to subsystem

1-10

Ports & Subsystems

Enabled and Triggered Subsystem Represent subsystem whose
execution is enabled and triggered
by external input

Enabled Subsystem Represent subsystem whose
execution is enabled by external
input

For Iterator Subsystem Represent subsystem that executes
repeatedly during simulation time
step

Function-Call Generator Execute function-call subsystem
specified number of times at specified
rate

Function-Call Subsystem Represent subsystem that can be
invoked as function by another block

If Model if-else control flow

If Action Subsystem Represent subsystem whose
execution is triggered by If block

Inport Create input port for subsystem or
external input

Model Include model as block in another
model

Outport Create output port for subsystem or
external output

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Represent system within another
system

Switch Case Implement C-like switch control
flow statement

Switch Case Action Subsystem Represent subsystem whose
execution is triggered by Switch
Case block

Trigger Add trigger port to subsystem or
function-call model

1-11

1 Block Reference

Triggered Subsystem Represent subsystem whose
execution is triggered by external
input

While Iterator Subsystem Represent subsystem that executes
repeatedly while condition is
satisfied during simulation time step

Signal Attributes
Bus to Vector Convert virtual bus to vector

Data Type Conversion Convert input signal to specified
data type

Data Type Conversion Inherited Convert from one data type to
another using inherited data type
and scaling

Data Type Duplicate Force all inputs to same data type

Data Type Propagation Set data type and scaling of
propagated signal based on
information from reference signals

Data Type Scaling Strip Remove scaling and map to built in
integer

IC Set initial value of signal

Probe Output signal’s attributes, including
width, dimensionality, sample time,
and/or complex signal flag

Rate Transition Handle transfer of data between
blocks operating at different rates

Signal Conversion Convert signal to new type without
altering signal values

1-12

Signal Routing

Signal Specification Specify desired dimensions, sample
time, data type, numeric type, and
other attributes of signal

Weighted Sample Time Support calculations involving
sample time

Width Output width of input vector

Signal Routing

Bus Assignment Replace specified bus elements

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus

Data Store Memory Define data store

Data Store Read Read data from data store

Data Store Write Write data to data store

Demux Extract and output elements of bus
or vector signal

Environment Controller Create branches of block diagram
that apply only to simulation or only
to code generation

From Accept input from Goto block

Goto Pass block input to From blocks

Goto Tag Visibility Define scope of Goto block tag

Index Vector Switch output between different
inputs based on value of first input

Manual Switch Switch between two inputs

Merge Combine multiple signals into single
signal

1-13

1 Block Reference

Multiport Switch Choose between multiple block
inputs

Mux Combine several input signals into
vector

Selector Select input elements from vector,
matrix, or multidimensional signal

Switch Switch output between first input
and third input based on value of
second input

Sinks

Display Show value of input

Outport Create output port for subsystem or
external output

Scope and Floating Scope Display signals generated during
simulation

Stop Simulation Stop simulation when input is
nonzero

Terminator Terminate unconnected output port

To File Write data to file

To Workspace Write data to MATLAB® workspace

XY Graph Display X-Y plot of signals using
MATLAB figure window

1-14

Sources

Sources

Band-Limited White Noise Introduce white noise into
continuous system

Chirp Signal Generate sine wave with increasing
frequency

Clock Display and provide simulation time

Constant Generate constant value

Counter Free-Running Count up and overflow back to zero
after maximum value possible is
reached for specified number of bits

Counter Limited Count up and wrap back to zero after
outputting specified upper limit

Digital Clock Output simulation time at specified
sampling interval

From File Read data from MAT-file

From Workspace Read data from workspace

Ground Ground unconnected input port

Inport Create input port for subsystem or
external input

Pulse Generator Generate square wave pulses at
regular intervals

Ramp Generate constantly increasing or
decreasing signal

Random Number Generate normally distributed
random numbers

Repeating Sequence Generate arbitrarily shaped periodic
signal

Repeating Sequence Interpolated Output discrete-time sequence and
repeat, interpolating between data
points

1-15

1 Block Reference

Repeating Sequence Stair Output and repeat discrete time
sequence

Signal Builder Create and generate interchangeable
groups of signals whose waveforms
are piecewise linear

Signal Generator Generate various waveforms

Sine Wave Generate sine wave

Step Generate step function

Uniform Random Number Generate uniformly distributed
random numbers

User-Defined Functions

Embedded MATLAB Function Include MATLAB® code in models
that generate embeddable C code

Fcn Apply specified expression to input

Level-2 M-File S-Function Use Level-2 M-file S-function in
model

MATLAB Fcn Apply MATLAB function or
expression to input

S-Function Include S-function in model

S-Function Builder Create S-function from C code that
you provide

1-16

Additional Math & Discrete

Additional Math & Discrete

Additional Discrete (p. 1-17) Provide additional discrete math
support

Additional Math: Increment —
Decrement (p. 1-18)

Increment or decrement value of
signal by one

Additional Discrete

Fixed-Point State-Space Implement discrete-time state space

Transfer Fcn Direct Form II Implement Direct Form II realization
of transfer function

Transfer Fcn Direct Form II Time
Varying

Implement time varying Direct Form
II realization of transfer function

Unit Delay Enabled Delay signal one sample period, if
external enable signal is on

Unit Delay Enabled External IC Delay signal one sample period, if
external enable signal is on, with
external initial condition

Unit Delay Enabled Resettable Delay signal one sample period, if
external enable signal is on, with
external Boolean reset

Unit Delay Enabled Resettable
External IC

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset and initial
condition

Unit Delay External IC Delay signal one sample period, with
external initial condition

Unit Delay Resettable Delay signal one sample period, with
external Boolean reset

Unit Delay Resettable External IC Delay signal one sample period, with
external Boolean reset and initial
condition

1-17

1 Block Reference

Unit Delay With Preview Enabled Output signal and signal delayed by
one sample period, if external enable
signal is on

Unit Delay With Preview Enabled
Resettable

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external Boolean
reset

Unit Delay With Preview Enabled
Resettable External RV

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external RV reset

Unit Delay With Preview Resettable Output signal and signal delayed
by one sample period, with external
Boolean reset

Unit Delay With Preview Resettable
External RV

Output signal and signal delayed by
one sample period, with external RV
reset

Additional Math: Increment — Decrement

1-18

2

Blocks — Alphabetical List

Abs

Purpose Output absolute value of input

Library Math Operations

Description The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case,
the behavior of the block is controlled by the Saturate on integer
overflow check box. If checked, the absolute value of the data type
saturates to the most positive representable value. If not checked, the
absolute value of the most negative value represented by the data type
has no effect.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the absolute value
of -128 is not representable. If you select the Saturate on integer
overflow check box, then the absolute value of -128 is 127. If it is not
selected, then the absolute value of -128 remains at -128.

Data Type
Support

The Abs block accepts real signals of any data type supported by
Simulink® software, except Boolean. The Abs block supports real
fixed-point data types. The block also accepts complex single and
double inputs.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-2

Abs

Parameters
and
Dialog
Box

The Main pane of the Abs block dialog appears as follows:

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

The Signal Attributes pane of the Abs block dialog appears as follows:

2-3

Abs

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

2-4

Abs

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate. If selected, the block maps
signed integer input elements corresponding to the most negative
value of that data type to the most positive value of that data type:

• For 8-bit integers, -128 maps to 127.

• For 16-bit integers, -32768 maps to 32767.

• For 32-bit integers, -2147483648 maps to 2147483647.

Otherwise, the block does not act on signed integer input elements
corresponding to the most negative value of that data type:

• For 8-bit integers, -128 remains -128.

• For 16-bit integers, -32768 remains -32768.

• For 32-bit integers, -2147483648 remains -2147483648.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

2-5

Abs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing Yes, if enabled

2-6

Action Port

Purpose Implement Action subsystems used by if and switch control flow
statements in Simulink® software.

Library Ports & Subsystems

Description Action Port blocks implement Action subsystems used in if and switch
control flow statements. The Action Port block is available in the If
Action Subsystem and the Switch Case Action Subsystem. See the
references for the If and Switch Case blocks for examples using Action
Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case
block.

You can use an ordinary subsystem or an atomic subsystem. In either
case, the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is
now an Action subsystem.

Action subsystems execute their programming in response to the
conditional outputs of an If or Switch Case block. Use Action subsystems
as follows:

1 Create an Action subsystem for each output port configured for an
If or Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case
or default ports for the Switch Case block) to the Action port on an
Action subsystem.

When the connection is made, the icon for the subsystem and the
Action Port block it contains are changed to the name of the output

2-7

Action Port

port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ },
case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to
execute in response to the condition this subsystem covers.

The Action Port block has only the States when execution is
resumed parameter in its parameters dialog. If you set this field to
held (the default value) for an Action Port block, the states of its Action
subsystem are retained between calls even if other member Action
subsystems of an if-else or switch control flow statement are called.
If you set the States when execution is resumed field to reset, the
states of a member Action subsystem are reset to initial values when
it is reenabled.

Note All blocks in an Action subsystem driven by an If or Switch Case
block must run at the same rate as the driving block.

Data Type
Support

There are no data inputs or outputs for Action Port blocks.

Parameters
and
Dialog
Box

2-8

Action Port

States when execution is resumed
Specifies how to handle internal states when the subsystem of
this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the
Action subsystem states retain their previous values when the
subsystem is reenabled. Otherwise, set this field to reset if you
want the states of the Action subsystem to be reinitialized when
the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the
condition of the call is true after having been previously false.
In the following example, the Action Port blocks for both Action
subsystems A and B have the States when execution is
resumed parameter set to reset.

If case[1] is true, Action subsystem A is called. This implies
that the default condition is false. When B is later called for the
default condition, its states are reset. In the same way, Action
subsystem A’s states are reset when it is called right after Action
subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states.
If A is called again right after a previous call to A, this does not

2-9

Action Port

reset A’s states because its condition, case[1], was not previously
false. The same applies to B.

Characteristics Sample Time Inherited from driving If or Switch Case
block

2-10

Algebraic Constraint

Purpose Constrain input signal to zero

Library Math Operations

Description The Algebraic Constraint block constrains the input signal f(z) to zero
and outputs an algebraic state z. The block outputs the value necessary
to produce a zero at the input. The output must affect the input through
some direct feedback path, i.e., the feedback path solely contains blocks
with direct feedthrough. This enables you to specify algebraic equations
for index 1 differential/algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the
efficiency of the algebraic loop solver by providing an Initial guess for
the algebraic state z that is close to the solution value.

For example, the following model solves these equations.

z2 + z1 = 1
z2 - z1 = 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

2-11

Algebraic Constraint

Data Type
Support

The Algebraic Constraint block accepts and outputs real values of type
double.

Parameters
and
Dialog
Box

Initial guess
An initial guess for the solution value. The default is 0.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero-Crossing No

2-12

Assertion

Purpose Check whether signal is nonzero

Library Model Verification

Description The Assertion block checks whether any of the elements of the signal at
its input is nonzero. If all elements are nonzero, the block does nothing.
If any element is zero, the block halts the simulation, by default, and
displays an error message. The block’s parameter dialog box allows
you to

• Specify that the block should display an error message when the
assertion fails but allow the simulation to continue.

• Specify an M-expression to be evaluated when the assertion fails.

• Enable or disable the assertion.

You can also use the Model Verification block enabling setting on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do
not exceed specified limits during simulation. When you are satisfied
that a model is correct, you can turn error checking off by disabling the
verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break
the model.

Data Type
Support

The Assertion block accepts input signals of any dimensions and any
data type supported by Simulink® software, including fixed-point data
types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-13

Assertion

Parameters
and
Dialog
Box

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the
simulation when the block’s input is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-14

Assertion

Dimensionalized Yes

Zero Crossing No

2-15

Assignment

Purpose Assign values to specified elements of signal

Library Math Operations

Description The Assignment block assigns values to specified elements of the signal.
You can specify the indices of the elements to be assigned values either
by entering the indices in the block’s dialog box or by connecting an
external indices source or sources to the block. The signal at the block’s
data port, labeled U, specifies values to be assigned to Y. The block
replaces the specified elements of Y with elements from the data signal,
leaving unassigned elements unchanged from their initial values. If the
parameter Initialize output has a value of Initialize using input
port <Y0>, the signal at the input port Y0 initializes the output. If this
parameter is set to Specify size for each dimension in table, the
Output Size parameter requires you to specify the size of the block’s
output signal. The parameter dialog box and the block’s appearance
change to reflect the number of dimensions of the output. The Initialize
output parameter appears only if you select Index vector (port) or
Starting index (port) for the Index Option parameter.

Based on the value you enter for the Number of output dimensions
parameter, a table of index options is displayed. Each row of the table
corresponds to one of the output dimensions in Number of output
dimensions. For each dimension, you can define the elements of the
signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Assignment block for
multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The
table in the Assignment block dialog changes to include one row for each
dimension. If you define each dimension with the following entries:

• 1

Index Option, select Assign all

• 2

Index Option, select Index vector (dialog)

2-16

Assignment

Index, enter [1 3 5]

• 3

Index Option, select Starting index (dialog)

Index, enter 4

• 4

Index Option, select Starting index (port)

• 5

Index Option, select Index vector (port)

The assigned values will be Y(1:end,[1 3
5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4
and Idx5 are the input ports for dimensions 4 and 5.

The Assignment block’s data port is labeled U. The rest of this section
refers to the data port as U to simplify the explanation of the block’s
usage.

You can use the block to assign values to vector, matrix, or
multidimensional signals.

Iterated Assignment

You can use the Assignment block to assign values computed in a
For or While Iterator loop to successive elements of a vector, matrix,
or multidimensional signal in a single time step. For example, the
following model uses a For Iterator block to create a vector signal each
of whose elements equals 3*i where i is the index of the element.

2-17

Assignment

Iterated assignment uses an iterator (For or While) block to generate
the indices required by the Assignment block. On the first iteration of
an iterated assignment, the Assignment block copies the first input
(Y0) to the output (Y) and assigns the second input (U) to the output
Y(E1). On successive iterations, the Assignment block simply assigns
the current value of U to Y(Ei), i.e., without first copying Y0 to Y. All of
this occurs in a single time step.

Data Type
Support

The data and initialization ports of the Assignment block accept signals
of any data type supported by Simulink® software, including fixed-point
data types. The external indices port accepts any built-in data type,
except Boolean data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-18

Assignment

Parameters
and
Dialog
Box

Number of output dimensions
Enter the number of dimensions of the output signal.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first element of
the input vector, 2, the second element, and so on. If Zero-based
is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be
indexed. From the list, choose:

• Assign all

2-19

Assignment

This is the default. No further configuration is required. All
elements are assigned.

• Index vector (dialog)

Enables the Index column. Enter the index of the element.

• Index vector (port)

No columns are enabled. If the Initialize output (Y)
parameter is set to Initialize using input port <Y0>, the
block initializes the output port Y with the input port Y0.

If the Initialize output (Y) parameter is set to Specify size
for each dimension in table, enter the width of the block’s
output signal in the Output Size column.

• Starting index (dialog)

Enables the Index column. Enter the starting index of the
range of elements to be assigned values.

• Starting index (port)

No columns are enabled. If the Initialize output (Y)
parameter is set to Initialize using input port <Y0>,
initializes the output port Y with the input port Y0.

If the Initialize output (Y) parameter is set to Specify size
for each dimension in table, enter the width of the block’s
output signal in the Output Size column.

The Index and Output Size columns are displayed as relevant.

Index
If the Index Option is Index vector (dialog), enter the index
of each element you are interested in.

If the Index Option is Starting index (dialog), enter the
starting index of the range of elements to be selected. The number
of elements from the starting point is determined by the size of
this dimension at U.

2-20

Assignment

Output Size
Enter the width of the block output signal. If you select Specify
size for each dimension in table for the Initialize output
(Y) parameter, this column is enabled.

Initialize output (Y)
Specify how to initialize the output signal.

• Initialize using input port <Y0>

The signal at the input port Y0 initializes the output.

• Specify size for each dimension in table

The block requires you to specify the width of the block’s output
signal in the Output Size parameter.

Action if any output element is not assigned
Specifies whether to produce a warning or error message if you
have not assigned all output element. Options include:

• Error

• Warning

• None

Characteristics Direct Feedthrough Yes

Sample Time Specified by Sample time parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-21

Backlash

Purpose Model behavior of system with play

Library Discontinuities

Description The Backlash block implements a system in which a change in input
causes an equal change in output. However, when the input changes
direction, an initial change in input has no effect on the output. The
amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output. This figure shows the
block’s initial state, with the default deadband width of 1 and initial
output of 0.

A system with play can be in one of three modes:

• Disengaged - In this mode, the input does not drive the output and
the output remains constant.

• Engaged in a positive direction - In this mode, the input is increasing
(has a positive slope) and the output is equal to the input minus half
the deadband width.

• Engaged in a negative direction - In this mode, the input is decreasing
(has a negative slope) and the output is equal to the input plus half
the deadband width.

If the initial input is outside the deadband, the Initial output
parameter value determines whether the block is engaged in a positive
or negative direction, and the output at the start of the simulation is
the input plus or minus half the deadband width.

For example, the Backlash block can be used to model the meshing of
two gears. The input and output are both shafts with a gear on one
end, and the output shaft is driven by the input shaft. Extra space

2-22

Backlash

between the gear teeth introduces play. The width of this spacing is the
Deadband width parameter. If the system is disengaged initially,
the output (the position of the driven gear) is defined by the Initial
output parameter.

The following figures illustrate the block’s operation when the initial
input is within the deadband. The first figure shows the relationship
between the input and the output while the system is in disengaged
mode (and the default parameter values are not changed).

The next figure shows the state of the block when the input has reached
the end of the deadband and engaged the output. The output remains
at its previous value.

The final figure shows how a change in input affects the output while
they are engaged.

If the input reverses its direction, it disengages from the output. The
output remains constant until the input either reaches the opposite end
of the deadband or reverses its direction again and engages at the same
end of the deadband. Now, as before, movement in the input causes
equal movement in the output.

2-23

Backlash

For example, if the deadband width is 2 and the initial output is 5, the
output, y, at the start of the simulation is as follows:

• 5 if the input, u, is between 4 and 6

• u + 1 if u < 4

• u - 1 if u > 6

This sample model and the plot that follows it show the effect of a sine
wave passing through a Backlash block.

The Backlash block parameters are unchanged from their default
values (the deadband width is 1 and the initial output is 0). Notice in
the plotted output following that the Backlash block output is zero until
the input reaches the end of the deadband (at 0.5). Now the input and
output are engaged and the output moves as the input does until the
input changes direction (at 1.0). When the input reaches 0, it again
engages the output at the opposite end of the deadband.

2-24

Backlash

Data Type
Support

The Backlash block accepts and outputs real values of single, double,
and built-in integer data types.

2-25

Backlash

Parameters
and
Dialog
Box

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This
parameter is tunable. Simulink® software does not allow the
initial output of this block to be inf or NaN.

Enable zero-crossing detection
Select to enable use of zero-crossing detection to detect
engagement with lower and upper thresholds. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample

2-26

Backlash

Time” in the “How Simulink Works” chapter of the Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if you select Enable zero crossing
detection

2-27

Bad Link

Purpose Indicate unresolved reference to library block

Description This block indicates an unresolved reference to a library block (see
“Creating a Reference Block”). You can use this block’s parameter dialog
box to fix the reference to point to the actual location of the library block.

Parameters
and
Dialog
Box

Source block
Path of the library block that this link represents. To fix a bad
link, edit this field to reflect the actual path of the library block.
Then select Apply or OK to apply the fix and close the dialog box.

Source type
Type of library block that this link represents.

2-28

Band-Limited White Noise

Purpose Introduce white noise into continuous system

Library Sources

Description The Band-Limited White Noise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

The primary difference between this block and the Random Number
block is that the Band-Limited White Noise block produces output at a
specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat
power spectral density (PSD), and a covariance of infinity. In practice,
physical systems are never disturbed by white noise, although white
noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink® software, you can simulate the effect of white noise by
using a random sequence with a correlation time much smaller than the
shortest time constant of the system. The Band-Limited White Noise
block produces such a sequence. The correlation time of the noise is the
sample rate of the block. For accurate simulations, use a correlation
time much smaller than the fastest dynamics of the system. You can get
good results by specifying

where fmax is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation

To produce the correct intensity of this noise, the covariance of the noise
is scaled to reflect the implicit conversion from a continuous PSD to a
discrete noise covariance. The appropriate scale factor is 1/tc, where
tc is the correlation time of the noise. This scaling ensures that the
response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because

2-29

Band-Limited White Noise

of this scaling, the covariance of the signal from the Band-Limited
White Noise block is not the same as the Noise power (intensity)
dialog box parameter. This parameter is actually the height of the
PSD of the white noise. While the covariance of true white noise is
infinite, the approximation used in this block has the property that the
covariance of the block output is the Noise Power divided by tc.

Data Type
Support

The Band-Limited White Noise block outputs real values of type double.

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink documentation.

2-30

Band-Limited White Noise

Noise power
The height of the PSD of the white noise. The default value is 0.1.

Sample time
The correlation time of the noise. The default value is 0.1. See
“Specifying Sample Time” in the “How Simulink Works” chapter
of the Simulink documentation.

Seed
The starting seed for the random number generator. The default
value is 23341.

Interpret vector parameters as 1-D
Output a 1-D array if the block’s parameters are vectors.
Otherwise, output a 2-D array one of whose dimensions is 1. See
“Determining the Output Dimensions of Source Blocks” in the
“Working with Signals” chapter of the Simulink documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of Noise power and Seed
parameters and output

Dimensionalized Yes

Zero Crossing No

2-31

Bias

Purpose Add bias to input

Library Math Operations

Description The Bias block adds a bias, or offset, to the input signal according to

where U is the block input and Y is the output.

Data Type
Support

The Bias block accepts and outputs real or complex values of any data
type supported by Simulink® software, except Boolean. The Bias block
supports fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters
and
Dialog
Box

Bias
Specify the value of the offset to add to the input signal.

2-32

Bias

Saturate on integer overflow
If the input (and hence the output) is an integer data type (for
example, int8) and the data type cannot accommodate the
output signal, selecting this option causes the block to output the
maximum value allowed by the data type. Otherwise, in this case,
the block outputs the result of using twos-complement arithmetic
to add the input to the output, i.e., the value is the result of
adding the bias to the input modulo the maximum representable
value of the data type.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion Yes

States 0

Dimensionalized Yes

Zero Crossing No

2-33

Bit Clear

Purpose Set specified bit of stored integer to zero

Library Logic and Bit Operations

Description The Bit Clear block sets the specified bit, given by its index, of the
stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter,
where bit zero is the least significant bit.

Data Type
Support

The Bit Clear block supports Simulink® integer, fixed-point, and
Boolean data types. True floating-point data types are not supported.

Parameters
and
Dialog
Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of
constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010
00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

2-34

Bit Clear

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Bit Set

2-35

Bit Set

Purpose Set specified bit of stored integer to one

Library Logic and Bit Operations

Description The Bit Set block sets the specified bit of the stored integer to one.
Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter,
where bit zero is the least significant bit.

Data Type
Support

The Bit Set block supports Simulink® integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

Parameters
and
Dialog
Box

Index of bit
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of
constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110
00100 01100 10100], which is represented in decimal as [5 6 4 12 20].

2-36

Bit Set

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Bit Clear

2-37

Bitwise Operator

Purpose Perform specified bitwise operation on inputs

Library Logic and Bit Operations

Description The Bitwise Operator block performs the specified bitwise operation
on its operands.

Unlike the logic operations performed by the Logical Operator block,
bitwise operations treat the operands as a vector of bits rather than
a single number. You select the bitwise Boolean operation from the
Operator parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is
TRUE

NAND TRUE if at least one of the corresponding bits is
FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are
TRUE

NOT TRUE if the input is FALSE (available only for
single input)

The Bitwise Operator block does not support shift operations. For shift
operations, see the Shift Arithmetic block.

The size of the output of the Bitwise Operator block depends on the
number of inputs, their vector size, and the selected operator:

• The NOT operator accepts only one input, which can be a scalar or
a vector. If the input is a vector, the output is a vector of the same
size containing the bitwise logical complements of the input vector
elements.

2-38

Bitwise Operator

• For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. If a bit mask is not
specified, then the output is a scalar. If a bit mask is specified, then
the output is a vector.

• For two or more inputs, the block performs the operation between all
of the inputs. If the inputs are vectors, the operation is performed
between corresponding elements of the vectors to produce a vector
output.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE® Standard
for Logic Elements.

If you do not select the Use bit mask check box, then the block can
accept multiple inputs. You select the number of input ports from the
Number of input ports parameter. The input data types must be
identical.

If you select the Use bit mask check box, then a single input is
associated with the bit mask you specify from the Bit Mask parameter.
You specify the bit mask using any valid MATLAB® expression. For
example, you can specify the bit mask 00100101 as 2^5+2^2+2^0.
Alternatively, you can use strings to specify a hexadecimal bit mask
such as {'FE73','12AC'}. If the bit mask is larger than the input
signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block,
should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated.
The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in the “Scaling” section
of the Simulink® Fixed Point™ documentation, Real World Value

2-39

Bitwise Operator

treats the mask as V = SQ + B where S is the slope and B is the bias.
Stored Integer treats the mask as a stored integer, Q.

You can use the bit mask to perform a bit set or a bit clear on the input.
To perform a bit set, set the Operator parameter list to OR and create
a bit mask with a 1 for each corresponding input bit that you want to
set to 1. To perform a bit clear, set the Operator parameter list to
AND and create a bit mask with a 0 for each corresponding input bit
that you want to set to 0.

For example, suppose you want to perform a bit set on the fourth
bit of an 8-bit input vector. The bit mask would be 00010000, which
you can specify as 2^4 in the Bit mask parameter. To perform a
bit clear, the bit mask would be 11101111, which you can specify as
2^7+2^6+2^5+2^3+2^2+2^1+2^0 in the Bit mask parameter.

Data Type
Support

The Bitwise Operator block supports Simulink® integer, fixed-point,
and Boolean data types. The block does not support true floating-point
data types.

2-40

Bitwise Operator

Parameters
and
Dialog
Box

Operator
The bitwise logical operator associated with the specified
operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

2-41

Bitwise Operator

Bit Mask
The bit mask to associate with a single input. The Bit Mask
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Treat mask as
Treat the mask as a real-world value or as a stored integer.

Examples To help you understand the Bitwise Operator block logic operations,
consider the fixed-point model shown below.

The Constant blocks are configured to output an 8-bit unsigned integer
(uint(8)). The results for all logic operations are shown below.

Operation Binary Value Decimal Value

AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

2-42

Bitwise Operator

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of inputs

Multidimensionalized Yes

2-43

Block Support Table

Purpose View data type support for Simulink® blocks

Library Model-Wide Utilities

Description The Block Support Table block enables you to access a table that
summarizes the data types supported by the blocks in the Simulink
libraries. Double-click the block to view the table.

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

Characteristics Not applicable.

2-44

Bus Assignment

Purpose Replace specified bus elements

Library Signal Routing

Description The Bus Assignment block assigns signals connected to its Assignment
input ports (:=) to specified elements of the bus connected to its Bus
input port, replacing the signals previously assigned to those elements.
The change does not affect the signals themselves, it affects only the
composition of the bus. Signals not replaced are unaffected by the
replacement of other signals.

Connect the bus to be changed to the first input port. Use the block’s
dialog box to specify the bus elements to be replaced. The block displays
an assignment input port for each such element. The signal connected
to the assignment port must have the same structure, data type, and
numeric type as the bus element to which it corresponds.

You cannot use the Bus Assignment block to replace a bus that is nested
within another bus. Thus no element selected in the dialog box for
replacement can be a bus, and no signal connected to an Assignment
port can be a bus.

Note All signals in a nonvirtual bus must have the same sample time,
even if the elements of the associated bus object specify inherited
sample times. Any bus operation that would result in a nonvirtual bus
that violates this requirement generates an error.

All buses and signals input to a Bus Assignment block that modifies a
nonvirtual bus must therefore have the same sample time. You can use
a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus, to allow the signal or bus to be included
in a nonvirtual bus.

2-45

Bus Assignment

Data Type
Support

The bus input port of the Bus Assignment block accepts and outputs
real or complex values of any data type supported by Simulink®

software, including fixed-point data types. The assignment input ports
accept the same data and numeric types as the bus elements to which
they correspond.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters
and
Dialog
Box

Signals in the bus
Displays the names of the signals contained by the bus at the
block’s Bus input port. Click any item in the list to select it. To
find the source of the selected signal, click the adjacent Find
button. Simulink software opens the subsystem containing the
signal source, if necessary, and highlights the source’s icon. Use
the Select>> button to move the currently selected signal into
the adjacent list of signals to be assigned values (see Signals
that are being assigned below). To refresh the display (e.g., to

2-46

Bus Assignment

reflect modifications to the bus connected to the block), click the
adjacent Refresh button.

Signals that are being assigned
Lists the names of bus elements to be assigned values. This block
displays an assignment input port for each bus element in this
list. The label of the corresponding input port contains the name
of the element. You can order the signals by using the Up, Down,
and Remove buttons. Port connectivity is maintained when the
signal order is changed.

Three question marks (???) before the name of a bus element
indicate that the input bus no longer contains an element of
that name, for example, because the bus has changed since the
last time you refreshed the Bus Assignment block’s input and
bus element assignment lists. You can fix the problem either by
modifying the bus to include a signal of the specified name or by
removing the name from the list of bus elements to be assigned
values.

Characteristics Multidimensionalized Yes

2-47

Bus Creator

Purpose Create signal bus

Library Signal Routing

Description The Bus Creator block combines a set of signals into a bus, i.e., a group
of signals represented by a single line in a block diagram. The Bus
Creator block, when used in conjunction with the Bus Selector block,
allows you to reduce the number of lines required to route signals from
one part of a diagram to another. This makes your diagram easier to
understand.

To bundle a group of signals with a Bus Creator block, set the block’s
Number of inputs parameter to the number of signals in the group.
The block displays the number of ports that you specify. Connect the
signals to be grouped to the resulting input ports. The signals in the
bus will be order from the top input port to the bottom input port. See
“Changing the Orientation of a Block” in the Simulink® documentation
for a description of the port order for various block orientations.

You can connect any type of signal to the inputs, including other bus
signals. To ungroup the signals, connect the block’s output port to
a Bus Selector port.

Note Simulink software hides the name of a Bus Creator block when
you copy it from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that
it creates. This allows you to refer to signals by name when searching
for their sources (see “Browsing Bus Signals” on page 2-50) or selecting
signals for connection to other blocks. The block offers two bus signal
naming options. You can specify that each signal on the bus inherits the
name of the signal connected to the bus (the default) or that each input
signal must have a specific name.

2-48

Bus Creator

To specify that bus signals inherit their names from input ports, select
Inherit bus signal names from input ports from the list box on
the block’s parameter dialog box. The names of the inherited bus
signals appear in the Signals in bus list box.

The Bus Creator block generates names for bus signals whose
corresponding inputs do not have names. The names are of the form
signaln, where n is the number of the port to which the input signal is
connected.

You can change the name of any signal by editing its name on the block
diagram or in the Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must
close and reopen the dialog box or click the Refresh button next to the
Signals in bus list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require
input signal names to match signals below from the list box in
the block’s parameter dialog box. The block’s parameter dialog box
displays the names of the signals currently connected to its inputs, or
a generated name (for example, signal2) for an anonymous input. You
can now use the parameter dialog box to change the required names
of the block’s inputs.

To change the required signal name, select the signal in the Signals in
bus list. The selected signal’s name appears in the Rename selected
signal field. Edit the name in the field and click Apply or OK.

2-49

Bus Creator

Browsing Bus Signals

The Signals in bus list on a Bus Creator block’s parameter dialog box
displays a list of the signals entering the block. A plus sign (+) next to
a signal indicates that the signal is itself a bus. You can display its
contents by clicking the plus sign. If the expanded input includes bus
signals, plus signs appear next to the names of those bus signals. You
can expand them as well. In this way, you can view all signals entering
the block, including those entering via buses. To find the source of
any signal entering the block, select the signal in the Signals in bus
list and click the adjacent Find button. Simulink software opens the
subsystem containing the signal source, if necessary, and highlights
the source’s icon.

Data Type
Support

The Bus Creator block accepts and outputs real or complex values of
any data type supported by Simulink software, including fixed-point
data types.

For a discussion on the data types supported by Simulink software,
refer to “Data Types Supported by Simulink” in the “Working with
Data” chapter of the Simulink documentation.

2-50

Bus Creator

Parameters
and
Dialog
Box

Signal naming options
Select Inherit bus signal names from input ports to assign
input signal names to the corresponding bus signals. Select
Require input signal names to match signals below to
specify that inputs must have the names listed in the Signals in
bus list. Selecting this option enables the Rename selected
signal field.

Number of inputs
Specifies the number of input ports on this block.

Signals in bus
The Signals in bus list box shows the signals in the output bus.
A plus sign (+) next to a signal name indicates that the signal
is itself a bus. Click the plus sign to display the subsidiary bus

2-51

Bus Creator

signals. Click the Refresh button to update the list after editing
the name of an input signal. Click the Find button to highlight
the source of the currently selected signal.

Rename selected signal
Lists the name of the signal currently selected in the Signals in
bus list when you select the Require input signal names to
match signals below option. Edit this field to change the name
of the currently selected signal.

Specify properties via bus object
Select this option to use a bus object to define the structure of the
bus created by this block (see “Working with Data Objects” in
the “Working with Data” chapter of the Simulink documentation
and the Simulink.Bus class in the online Simulink reference to
learn how to create bus objects).

Bus object
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of bus object used
to define the structure of the bus created by this block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink software checks whether the signals connected
to this Bus Creator block have the specified structure. If not,
Simulink software displays an error message.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block outputs
a nonvirtual bus; otherwise, it outputs a virtual bus (see “Virtual
and Nonvirtual Buses” in the “Working with Signals” chapter
of the Simulink documentation). Select this option if you want
code generated from this model to use a C structure to define the
structure of the bus signal output by this block.

2-52

Bus Creator

Note All signals in a nonvirtual bus must have the same sample
time, even if the elements of the associated bus object specify
inherited sample times. Any bus operation that would result in a
nonvirtual bus that violates this requirement generates an error.

If you select this option, all of the signals entering the Bus Creator
block must therefore have the same sample time. You can use a
Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus, to allow the signal or bus to be
included in a nonvirtual bus.

Characteristics Multidimensionalized Yes

2-53

Bus Selector

Purpose Select signals from incoming bus

Library Signal Routing

Description The Bus Selector block outputs a specified subset of the elements of
the bus at its input. The block can output the selected elements as
multiple standalone signals or as elements of a new bus. When selecting
elements from the bus, each element is output from a separate port
from top to bottom on the block. (See “Changing the Orientation of
a Block”in the Simulink® documentation for a description of the port
order for various block orientations.)

Note Simulink software hides the name of a Bus Selector block when
you copy it from the Simulink library to a model.

Data Type
Support

A Bus Selector block accepts and outputs real or complex values of any
data type supported by Simulink software, including fixed-point data
types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-54

Bus Selector

Parameters
and
Dialog
Box

Signals in the bus
The Signals in the bus list shows the signals in the input bus.
Use the Select>> button to select output signals. To find the
source of any signal entering the block, select the signal in the
Signals in the bus list and click the adjacent Find button.
Simulink software opens the subsystem containing the signal
source, if necessary, and highlights the source’s icon. To refresh
the display (e.g., to reflect modifications to the bus connected to
the block), click the adjacent Refresh button.

Selected signals
The Selected signals list box shows the output signals. You can
order the signals by using the Up, Down, and Remove buttons.
Port connectivity is maintained when the signal order is changed.

2-55

Bus Selector

If an output signal listed in the Selected signals list box is not
an input to the Bus Selector block, the signal name is preceded
by three question marks (???).

Output as bus
If selected, this option causes the block to output the selected
elements as a bus. Otherwise, the block outputs the elements as
standalone signals, each from its own output port and labeled
with the corresponding element’s name.

Characteristics Multidimensionalized Yes

2-56

Bus to Vector

Purpose Convert virtual bus to vector

Library Signal Attributes

Description The Bus to Vector block converts a virtual bus signal to a vector signal.
The input bus signal must consist of scalar, 1-D, or either row or column
vectors having the same data type, signal type, and sampling mode. If
the input bus contains row or column vectors, this block outputs a row
or column vector, respectively; otherwise, it outputs a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector
conversion with an equivalent explicit conversion. See “Bus signal
treated as vector” and “Correcting Buses Used as Muxes” for more
information.

Note Simulink® software hides the name of a Bus to Vector block when
you copy it from the Simulink library to a model.

Data Type
Support

The Bus to Vector block accepts and outputs real or complex values of
any data type supported by Simulink software, including fixed-point
data types.

For a discussion of the data types supported by Simulink software, refer
to “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-57

Bus to Vector

Parameters
and
Dialog
Box

This block has no user-accessible parameters.

Characteristics Multidimensionalized Yes

2-58

Check Discrete Gradient

Purpose Check that absolute value of difference between successive samples of
discrete signal is less than upper bound

Library Model Verification

Description The Check Discrete Gradient block checks each signal element at its
input to determine whether the absolute value of the difference between
successive samples of the element is less than an upper bound. The
block’s parameter dialog box allows you to specify the value of the upper
bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and
displays an error message in the Simulation Diagnostics Viewer.

The Model Verification block enabling setting under Debugging on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box lets you enable or disable all model verification blocks,
including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Discrete Gradient block accepts single, double, int8,
int16, and int32 input signals of any dimensions.

2-59

Check Discrete Gradient

Parameters
and
Dialog
Box

Maximum gradient
Upper bound on the gradient of the discrete input signal.

Enable assertion
Unchecking this option disables the Check Discrete Gradient
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-60

Check Discrete Gradient

Stop simulation when assertion fails
If checked, this option causes the Check Discrete Gradient block
to halt the simulation when the block’s output is zero and display
an error message in the Simulink® Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Discrete Gradient block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on
the Simulation and code generation optimization pane of
Simulink Configuration Parameters dialog box. Otherwise the
data type of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-61

Check Dynamic Gap

Purpose Check that gap of possibly varying width occurs in range of signal’s
amplitudes

Library Model Verification

Description The Check Dynamic Gap block checks that a gap of possibly varying
width occurs in the range of a signal’s amplitudes. The test signal
is the signal connected to the input labeled sig. The inputs labeled
min and max specify the lower and upper bounds of the dynamic gap,
respectively. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Dynamic Gap block accepts input signals of any dimensions
and of any data type supported by Simulink® software. All three input
signals must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-62

Check Dynamic Gap

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Gap block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Gap block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics

2-63

Check Dynamic Gap

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Gap block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-64

Check Dynamic Lower Bound

Purpose Check that one signal is always less than another signal

Library Model Verification

Description The Check Dynamic Lower Bound block checks that the amplitude of a
reference signal is less than the amplitude of a test signal at the current
time step. The test signal is the signal connected to the input labeled sig.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Lower Bound block accepts input signals of any
data type supported by Simulink® software. The test and the reference
signals must have the same dimensions and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-65

Check Dynamic Lower Bound

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Lower Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Lower Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics

2-66

Check Dynamic Lower Bound

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Lower Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-67

Check Dynamic Range

Purpose Check that signal falls inside range of amplitudes that varies from time
step to time step

Library Model Verification

Description The Check Dynamic Range block checks that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary
from time step to time step. The input labeled sig is the test signal. The
inputs labeled min and max are the lower and upper bounds of the valid
range at the current time step. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Dynamic Range block accepts input signals of any
dimensions and of any data type supported by Simulink® software. All
three input signals must have the same dimension and data type. If the
inputs are nonscalar, the block checks each element of the input test
signal to the corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-68

Check Dynamic Range

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Range
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Range block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics

2-69

Check Dynamic Range

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-70

Check Dynamic Upper Bound

Purpose Check that one signal is always greater than another signal

Library Model Verification

Description The Check Dynamic Upper Bound block checks that the amplitude of
a reference signal is greater than the amplitude of a test signal at the
current time step. The test signal is the signal connected to the input
labeled sig. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error-checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Dynamic Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software. The
test and the reference signals must have the same dimensions and data
type. If the inputs are nonscalar, the block compares each element of the
input test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-71

Check Dynamic Upper Bound

Parameters
and
Dialog
Box

Enable assertion
Unchecking this option disables the Check Dynamic Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Upper Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Upper Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics

2-72

Check Dynamic Upper Bound

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Upper Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-73

Check Input Resolution

Purpose Check that input signal has specified resolution

Library Model Verification

Description The Check Input Resolution block checks whether the input signal has
a specified scalar or vector resolution (see Resolution). If the resolution
is a scalar, the input signal must be a multiple of the resolution within
a 10e-3 tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is
true, the block does nothing. If not, the block halts the simulation, by
default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Input Resolution block accepts input signals of data type
double and of any dimension. If the input signal is nonscalar, the block
checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink® software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-74

Check Input Resolution

Parameters
and
Dialog
Box

Resolution
Resolution that the input signal must have.

Enable assertion
Unchecking this option disables the Check Input Resolution
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Input Resolution blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-75

Check Input Resolution

Stop simulation when assertion fails
If checked, this option causes the Check Input Resolution block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Input Resolution block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-76

Check Static Gap

Purpose Check that gap exists in signal’s range of amplitudes

Library Model Verification

Description The Check Static Gap block checks that each element of the input signal
is less than (or optionally equal to) a static lower bound or greater than
(or optionally equal to) a static upper bound at the current time step.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Static Gap block accepts input signals of any dimensions and
of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-77

Check Static Gap

Parameters
and
Dialog
Box

Upper bound
Upper bound of the gap in the input signal’s range of amplitudes.

Inclusive upper bound
If checked, this option specifies that the gap includes the upper
bound.

Lower bound
Lower bound of the gap in the input signal’s range of amplitudes.

2-78

Check Static Gap

Inclusive lower bound
If checked, this option specifies that the gap includes the lower
bound.

Enable assertion
Unchecking this option disables the Check Static Gap block, that
is, causes the model to behave as if the block did not exist. The
Model Verification block enabling setting under Debugging
on the Data Validity diagnostics pane of the Configuration
Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Gap block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Gap block to output
a Boolean signal that is true (1) at each time step if the assertion
succeeds and false (0) if the assertion fails. The data type of the
output signal is Boolean if you have selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-79

Check Static Gap

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-80

Check Static Lower Bound

Purpose Check that signal is greater than (or optionally equal to) static lower
bound

Library Model Verification

Description The Check Static Lower Bound block checks that each element of the
input signal is greater than (or optionally equal to) a specified lower
bound at the current time step. The block’s parameter dialog box allows
you to specify the value of the lower bound and whether the lower
bound is inclusive. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays
an error message.

The Check Static Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Lower Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-81

Check Static Lower Bound

Parameters
and
Dialog
Box

Lower bound
Lower bound on the range of amplitudes that the input signal
can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes
include the lower bound.

Enable assertion
Unchecking this option disables the Check Static Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-82

Check Static Lower Bound

disable all model verification blocks in a model, including Check
Static Lower Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Lower Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Lower Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-83

Check Static Lower Bound

Dimensionalized Yes

Zero Crossing No

2-84

Check Static Range

Purpose Check that signal falls inside fixed range of amplitudes

Library Model Verification

Description The Check Static Range block checks that each element of the input
signal falls inside the same range of amplitudes at each time step. The
block’s parameter dialog box allows you to specify the upper and lower
bounds of the valid amplitude range and whether the range includes
the bounds. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Static Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Data Type
Support

The Check Static Range block accepts input signals of any dimensions
and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-85

Check Static Range

Parameters
and
Dialog
Box

Upper bound
Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound
Checking this option specifies that the valid signal range includes
the upper bound.

Lower bound
Lower bound of the range of valid input signal amplitudes.

2-86

Check Static Range

Inclusive lower bound
Checking this option specifies that the valid signal range includes
the lower bound.

Enable assertion
Unchecking this option disables the Check Static Range block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Static Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Range block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-87

Check Static Range

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-88

Check Static Upper Bound

Purpose Check that signal is less than (or optionally equal to) static upper bound

Library Model Verification

Description The Check Static Upper Bound block checks that each element of the
input signal is less than (or optionally equal to) a specified upper bound
at the current time step. The block’s parameter dialog box allows you to
specify the value of the upper bound and whether the bound is inclusive.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Data Type
Support

The Check Static Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-89

Check Static Upper Bound

Parameters
and
Dialog
Box

Upper bound
Upper bound on the range of amplitudes that the input signal
can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes
include the upper bound.

Enable assertion
Unchecking this option disables the Check Static Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-90

Check Static Upper Bound

disable all model verification blocks in a model, including Check
Static Upper Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Upper Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Upper Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-91

Check Static Upper Bound

Dimensionalized Yes

Zero Crossing No

2-92

Chirp Signal

Purpose Generate sine wave with increasing frequency

Library Sources

Description The Chirp Signal block generates a sine wave whose frequency increases
at a linear rate with time. You can use this block for spectral analysis of
nonlinear systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at
target time, determine the block’s output. You can specify any or all
of these variables as scalars or arrays. All the parameters specified
as arrays must have the same dimensions. The block expands scalar
parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you
select the Interpret vector parameters as 1-D option. If you select
this option and the parameters are row or column vectors, the block
outputs a vector (1-D array) signal.

Data Type
Support

The Chirp Signal block outputs a real-valued signal of type double.

2-93

Chirp Signal

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink® documentation.

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix
value. The default is 0.1 Hz.

Target time
The time at which the frequency reaches the Frequency at
target time parameter value, a scalar or matrix value. The
frequency continues to change at the same rate after this time.
The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix
value. The default is 1 Hz.

2-94

Chirp Signal

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial
frequency, Target time, and Frequency at target time
parameters result in a vector output whose elements are the
elements of the row or column. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Simulink documentation.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-95

Clock

Purpose Display and provide simulation time

Library Sources

Description The Clock block outputs the current simulation time at each simulation
step. This block is useful for other blocks that need the simulation time.

When you need the current time within a discrete system, use the
Digital Clock block.

Data Type
Support

The Clock block outputs a real-valued signal of type double.

Parameters
and
Dialog
Box

Display time
Use the Display time check box to display the current simulation
time inside the Clock icon.

Decimation
The Decimation parameter value is the increment at which
Simulink® software updates the Clock icon when Display time
is checked. Specify a positive integer (the default is 10). For

2-96

Clock

example, if the decimation is 1000, then, for a fixed integration
step of 1 millisecond, the Clock icon updates at 1 second, 2
seconds, and so on.

Characteristics Sample Time Continuous

Scalar Expansion N/A

Dimensionalized No

Zero Crossing No

2-97

Combinatorial Logic

Purpose Implement truth table

Library Logic and Bit Operations

Description The Combinatorial Logic block implements a standard truth table for
modeling programmable logic arrays (PLAs), logic circuits, decision
tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines
or flip-flops.

You specify a matrix that defines all possible block outputs as the
Truth table parameter. Each row of the matrix contains the output
for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number
of block outputs.

The relationship between the number of inputs and the number of
rows is

number of rows = 2 ^ (number of inputs)

Simulink® software returns a row of the matrix by computing the row’s
index from the input vector elements. Simulink software computes
the index by building a binary number where input vector elements
having zero values are 0 and elements having nonzero values are 1,
then adding 1 to the result. For an input vector, u, of m elements,

row index = 1 + u(m)*20 + u(m-1)*21 + ... + u(1)*2m-1

Example of Two-Input AND Function

This example builds a two-input AND function, which returns 1 when
both input elements are 1, and 0 otherwise. To implement this function,
specify the Truth table parameter value as [0; 0; 0; 1]. The portion
of the model that provides the inputs to and the output from the
Combinatorial Logic block might look like this.

2-98

Combinatorial Logic

The following table indicates the combination of inputs that generate
each output. The input signal labeled “Input 1” corresponds to the
column in the table labeled Input 1. Similarly, the input signal “Input
2” corresponds to the column with the same name. The combination of
these values determines the row of the Output column of the table that
is passed as block output.

For example, if the input vector is [1 0], the input references the third
row:

(2^1*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output

1 0 0 0

2 0 1 0

3 1 0 0

4 1 1 1

Example of Circuit

This sample circuit has three inputs: the two bits (a and b) to be
summed and a carry-in bit (c). It has two outputs: the carry-out bit (c’)
and the sum bit (s). Here are the truth table and the outputs associated
with each combination of input values for this circuit.

Inputs Outputs

a b c c’ s

0 0 0 0 0

2-99

Combinatorial Logic

Inputs Outputs

a b c c’ s

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

To implement this adder with the Combinatorial Logic block, you enter
the 8-by-2 matrix formed by columns c’ and s as the Truth table
parameter.

You can also implement sequential circuits (that is, circuits with states)
with the Combinatorial Logic block by including an additional input
for the state of the block and feeding the output of the block back into
this state input.

Data Type
Support

The type of signals accepted by a Combinatorial Logic block depends on
whether you selected the Boolean logic signals option (see “Implement
logic signals as boolean data (vs. double)” in the “Working with Data”
chapter of the Simulink documentation). If this option is enabled, the
block accepts real signals of type Boolean or double. The Truth table
parameter can have Boolean values (0 or 1) of any data type, including
fixed-point data types. If the table contains non-Boolean values, the
table’s data type must be double.

The type of the output is the same as that of the input except that
the block outputs double if the input is Boolean and the truth table
contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic
block accepts only signals of type Boolean. The block outputs double if

2-100

Combinatorial Logic

the truth table contains non-Boolean values of type double. Otherwise,
the output is Boolean.

Parameters
and
Dialog
Box

Truth table
The matrix of outputs. Each column corresponds to an element
of the output vector and each row corresponds to a row of the
truth table.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink
documentation.

2-101

Combinatorial Logic

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes; the output width is the number of
columns of the Truth table parameter

Zero Crossing No

2-102

Compare To Constant

Purpose Determine how signal compares to specified constant

Library Logic and Bit Operations

Description The Compare To Constant block compares an input signal to a constant.
Specify the constant in the Constant value parameter. Specify how the
input is compared to the constant value with the Operator parameter.
The Operator parameter can have the following values:

• == — Determine whether the input is equal to the specified constant.

• ~= — Determine whether the input is not equal to the specified
constant.

• < — Determine whether the input is less than the specified constant.

• <= — Determine whether the input is less than or equal to the
specified constant.

• > — Determine whether the input is greater than the specified
constant.

• >= — Determine whether the input is greater than or equal to the
specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type
Support

The Compare To Constant block accepts inputs of any data type
supported by Simulink® software, including fixed-point data types.
The block first converts its Constant value parameter to the input
data type, and then performs the specified operation. The block output
is uint8 or boolean as specified by the Output data type mode
parameter.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-103

Compare To Constant

Parameters
and
Dialog
Box

Operator
Specify how the input is compared to the constant value, as
discussed in Description.

Constant value
Specify the constant value to which the input is compared.

Output data type mode
Specify the data type of the output, uint8 or boolean.

Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-104

Compare To Constant

Multidimensionalized Yes

Zero Crossing Yes, if enabled.

See Also Compare To Zero

2-105

Compare To Zero

Purpose Determine how signal compares to zero

Library Logic and Bit Operations

Description The Compare To Zero block compares an input signal to zero. Specify
how the input is compared to zero with the Operator parameter. The
Operator parameter can have the following values:

• == — Determine whether the input is equal to zero.

• ~= — Determine whether the input is not equal to zero.

• < — Determine whether the input is less than zero.

• <= — Determine whether the input is less than or equal to zero.

• > — Determine whether the input is greater than zero.

• >= — Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type
Support

The Compare To Zero block accepts inputs of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uint8 or boolean as specified by the Output data type
mode parameter.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-106

Compare To Zero

Parameters
and
Dialog
Box

Operator
Specify how the input is compared to zero, as discussed in
Description.

Output data type mode
Specify the data type of the output, uint8 or boolean.

Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

Zero Crossing Yes, if enabled.

Multidimensionalized Yes

See Also Compare To Constant

2-107

Complex to Magnitude-Angle

Purpose Compute magnitude and/or phase angle of complex signal

Library Math Operations

Description The Complex to Magnitude-Angle block accepts a complex-valued signal
of type double or single. It outputs the magnitude and/or phase angle
of the input signal, depending on the setting of the Output parameter.
The outputs are real values of the same data type as the block input.
The input can be an array of complex signals, in which case the output
signals are also arrays. The magnitude signal array contains the
magnitudes of the corresponding complex input elements. The angle
output similarly contains the angles of the input elements.

Data Type
Support

See the preceding description.

Parameters
and
Dialog
Box

Output
Determines the output of this block. Choose from the following
values: Magnitude and angle (outputs the input signal’s
magnitude and phase angle in radians), Magnitude (outputs the

2-108

Complex to Magnitude-Angle

input’s magnitude), Angle (outputs the input’s phase angle in
radians).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-109

Complex to Real-Imag

Purpose Output real and imaginary parts of complex input signal

Library Math Operations

Description The Complex to Real-Imag block accepts a complex-valued signal of any
data type supported by Simulink® software, including fixed-point data
types. It outputs the real and/or imaginary part of the input signal,
depending on the setting of the Output parameter. The real outputs
are of the same data type as the complex input. The input can be an
array (vector or matrix) of complex signals, in which case the output
signals are arrays of the same dimensions. The real array contains the
real parts of the corresponding complex input elements. The imaginary
output similarly contains the imaginary parts of the input elements.

Data Type
Support

See the preceding description. For a discussion on the data types
supported by Simulink software, see “Data Types Supported by
Simulink” in the “Working with Data” chapter of the Simulink
documentation.

Parameters
and
Dialog
Box

2-110

Complex to Real-Imag

Output
Determines the output of this block. Choose from the following
values: Real and imag (outputs the input signal’s real and
imaginary parts), Real (outputs the input’s real part), Imag
(outputs the input’s imaginary part).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink
documentation.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-111

Configurable Subsystem

Purpose Represent any block selected from user-specified library of blocks

Library Ports & Subsystems

Description The Configurable Subsystem block represents one of a set of blocks
contained in a specified library of blocks. The block’s context menu lets
you choose which block the configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that
represent families of designs. For example, suppose that you want to
model an automobile that offers a choice of engines. To model such a
design, you would first create a library of models of the engine types
available with the car. You would then use a Configurable Subsystem
block in your car model to represent the choice of engines. To model a
particular variant of the basic car design, a user need only choose the
engine type, using the configurable engine block’s dialog.

To create a configurable subsystem in a model, you must first create a
library containing a master configurable subsystem and the blocks that
it represents. You can then create configurable instances of the master
subsystem by dragging copies of the master subsystem from the library
and dropping them into models.

You can add any type of block to a master configurable subsystem
library. Simulink® software derives the port names for the configurable
subsystem by making a unique list from the port names of all the
choices. Note that Simulink software uses default port names for
non-subsystem block choices.

Note that Simulink software does not allow you to break library links in
a configurable subsystem because Simulink software needs the links
to reconfigure the subsystem when you choose a new configuration.
Breaking links would be useful only if you never intended to reconfigure
the subsystem, in which case you could simply replace the configurable
subsystem with a nonconfigurable subsystem that implements the
permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

2-112

Configurable Subsystem

1 Create a library of blocks representing the various configurations
of the configurable subsystem.

2 Save the library.

3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the
Simulink Ports & Subsystems library into the library you created in
the preceding step.

4 Display the Configurable Subsystem block’s dialog by double-clicking
it. The dialog displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that
represent the various configurations of the configurable subsystems
you are creating.

6 Click the OK button to apply the changes and close the dialog box.

7 Select Block Choice from the Configurable Subsystem block’s
context menu.

The context menu displays a submenu listing the blocks that the
subsystem can represent.

8 Select the block that you want the subsystem to represent by default.

9 Save the library.

Note If you add or remove blocks from a library, you must recreate
any Configurable Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a
configurable subsystem, the change does not immediately propagate to
the configurable subsystem. To propagate this change, do one of the
following:

2-113

Configurable Subsystem

• Change the default block choice to another block in the subsystem,
then change the default block choice back to the original block.

• Recreate the configurable subsystem block, including the selection of
the updated block as the default block choice.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model,

1 Open the library containing the master configurable subsystem.

2 Drag a copy of the master into the model.

3 Select Block Choice from the copy’s context menu.

4 Select the block that you want the configurable subsystem to
represent.

The instance of the configurable system displays the icon and parameter
dialog box of the block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a
configurable subsystem instance to set the instance’s parameters
interactively and the set_param command to set the parameters from
the MATLAB® command line or in an M-file program. If you use
set_param, you must specify the full path name of the configurable
subsystem’s current block choice as the first argument of set_param,
e.g.,

curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');

curr_choice = ['mymod/myconfigsys/' curr_choice];

set_param(curr_choice, 'MaskValues', ...);

Mapping I/O Ports

A configurable subsystem displays a set of input and output ports
corresponding to input and output ports in the selected library.

2-114

Configurable Subsystem

Simulink software uses the following rules to map library ports to
Configurable Subsystem block ports:

• Map each uniquely named input/output port in the library to a
separate input/output port of the same name on the Configurable
Subsystem block.

• Map all identically named input/output ports in the library to the
same input/output ports on the Configurable Subsystem block.

• Terminate any input/output port not used by the currently selected
library block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to
the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and
that block A has input ports labeled a, b, and c and an output port
labeled d and that block B has input ports labeled a and b and an
output port labeled e. A Configurable Subsystem block based on this
library would have three input ports labeled a, b, and c, respectively,
and two output ports labeled d and e, respectively, as illustrated in
the following figure.

In this example, port a on the Configurable Subsystem block connects to
port a of the selected library block no matter which block is selected. On
the other hand, port c on the Configurable Subsystem block functions
only if library block A is selected. Otherwise, it simply terminates.

2-115

Configurable Subsystem

Note A Configurable Subsystem block does not provide ports that
correspond to non-I/O ports, such as the trigger and enable ports on
triggered and enabled subsystems. Thus, you cannot use a Configurable
Subsystem block directly to represent blocks that have such ports. You
can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

Data Type
Support

The Configurable Subsystem block accepts and outputs signals of the
same types as are accepted or output by the block that it currently
represents. The data types may be any supported by Simulink software,
including fixed-point data types.

Parameters
and
Dialog
Box

List of block choices
Select the blocks you want to include as members of the
configurable subsystem. You can include user-defined subsystems
as blocks.

2-116

Configurable Subsystem

Port information
Lists of input and output ports of member blocks. In the case of
multiports, you can rearrange selected port positions by clicking
the Up and Down buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block
that it currently represents. Double-clicking the block opens the dialog
box for the block that it currently represents.

2-117

Constant

Purpose Generate constant value

Library Sources

Description The Constant block generates a real or complex constant value. The
block generates scalar (one-element array), vector (1-D array), or matrix
(2-D array) output, depending on the dimensionality of the Constant
value parameter and the setting of the Interpret vector parameters
as 1-D parameter. Also, the block can generate either a sample-based
or frame-based signal, depending on the setting of the Sampling mode
parameter.

The output of the block has the same dimensions and elements as the
Constant value parameter. If you specify a vector for this parameter,
and you want the block to interpret it as a vector (i.e., a 1-D array),
select the Interpret vector parameters as 1-D parameter; otherwise,
the block treats the Constant value parameter as a matrix (i.e., a
2-D array).

Data Type
Support

By default, the Constant block outputs a signal whose data type
and complexity are the same as that of the block’s Constant value
parameter. However, you can specify the output to be any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-118

Constant

Parameters
and
Dialog
Box

The Main pane of the Constant block dialog appears as follows:

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink documentation.

Constant value
Specify the constant value output by the block. You can enter
any MATLAB® expression in this field, including the Boolean
keywords, true or false, that evaluates to a matrix value. The
Constant value parameter is converted from its data type to
the specified output data type offline using round-to-nearest and
saturation.

2-119

Constant

Interpret vector parameters as 1-D
If you select this check box, the Constant block outputs a vector
of length N if the Constant value parameter evaluates to an
N-element row or column vector, i.e., a matrix of dimension 1xN
or Nx1. If you uncheck this option, you can interact with the
Sampling mode parameter. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Simulink documentation.

Sampling mode
Specify whether the output signal is Sample based or Frame
based. For more information about these types of signals, see
“Sample-Based Signals” and “Frame-Based Signals” in the Signal
Processing Blockset™ User’s Guide.

Note To generate frame-based signals, you must have the Signal
Processing Blockset product installed.

Sample time
Specify the interval between times that the Constant block’s
output can change during simulation (e.g., as a result of tuning
its Constant value parameter). The default sample time is inf,
i.e., the block’s output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute
the block’s output. See “Specifying Sample Time” in the “How
Simulink Works” chapter of the Simulink documentation.

The Signal Attributes pane of the Constant block dialog appears as
follows:

2-120

Constant

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

2-121

Constant

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Characteristics Direct Feedthrough N/A

Sample Time Specified in the Sample time parameter

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-122

Coulomb and Viscous Friction

Purpose Model discontinuity at zero, with linear gain elsewhere

Library Discontinuities

Description The Coulomb and Viscous Friction block models Coulomb (static) and
viscous (dynamic) friction. The block models a discontinuity at zero
and a linear gain otherwise. The offset corresponds to the Coulombic
friction; the gain corresponds to the viscous friction. The block is
implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and Offset are block
parameters.

The block accepts one input and generates one output. The input can be
a scalar, vector, or matrix. If using a vector or matrix input, the offset
and gain must have the same dimensions as the input or be scalars.
If using a scalar input, the output will be a scalar, vector, or matrix
based on the dimensions of the offset and gain. For example, passing
a scalar input to the block when using the default offset produces an
output vector with four elements.

Data Type
Support

The Coulomb and Viscous Friction block accepts and outputs real
signals of type double.

2-123

Coulomb and Viscous Friction

Parameters
and
Dialog
Box

Coulomb friction value
The offset, applied to all input values. The default is [1 3 2 0].

Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, at the point where the static friction
is overcome

2-124

Counter Free-Running

Purpose Count up and overflow back to zero after maximum value possible is
reached for specified number of bits

Library Sources

Description The Counter Free-Running block counts up until the maximum possible
value, 2Nbits - 1, is reached, where Nbits is the number of bits. Then the
counter overflows to zero, and restarts counting up. The counter is
always initialized to zero.

You can specify the number of bits with the Number of Bits parameter.

You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

Data Type
Support

The Counter Free-Running block outputs an unsigned integer.

Parameters
and
Dialog
Box

2-125

Counter Free-Running

Number of Bits
Specified number of bits.

Sample time
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

See Also Counter Limited

2-126

Counter Limited

Purpose Count up and wrap back to zero after outputting specified upper limit

Library Sources

Description The Counter Limited block counts up until the specified upper limit is
reached. Then the counter wraps back to zero, and restarts counting
up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A
Sample time of -1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest
number of bits needed to represent the upper limit.

Data Type
Support

The Counter Limited block outputs an unsigned integer.

Parameters
and
Dialog
Box

2-127

Counter Limited

Upper limit
Upper limit.

Sample time
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

See Also Counter Free-Running

2-128

Data Store Memory

Purpose Define data store

Library Signal Routing

Description The Data Store Memory block defines and initializes a named shared
data store, which is a memory region usable by Data Store Read and
Data Store Write blocks with the same data store name.

The location of the Data Store Memory block that defines a data store
determines the Data Store Read and Data Store Write blocks that can
access the data store:

• If the Data Store Memory block is in the top-level system, the data
store can be accessed by Data Store Read and Data Store Write
blocks located anywhere in the model.

• If the Data Store Memory block is in a subsystem, the data store
can be accessed by Data Store Read and Data Store Write blocks
located in the same subsystem or in any subsystem below it in the
model hierarchy.

Note You can use signal objects in addition to or instead of Data
Store Memory blocks to define data stores. See “Working with Data
Stores” for more information.

You initialize the data store by specifying a scalar value or an array of
values in the Initial value parameter. The dimensions of the array
determine the dimensionality of the data store. Any data written to the
data store must have the dimensions designated by the Initial value
parameter. Otherwise, an error occurs.

2-129

Data Store Memory

Data Type
Support

The Data Store Memory block stores real or complex signals of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-130

Data Store Memory

Parameters
and
Dialog
Box

The Main pane of the Data Store Memory block dialog appears as
follows:

2-131

Data Store Memory

Data store name
Specify a name for the data store you are defining with this block.
Data Store Read and Data Store Write blocks with the same name
will be able to read from and write to the data store initialized
by this block.

Corresponding Data Store Read blocks
This parameter lists all the Data Store Read and Data Store
Write blocks that have the same data store name as the current
block, and that are in the current (sub)system or in any subsystem
below it in the model hierarchy. Double-click any entry on this list
to highlight the block and bring it to the foreground.

Initial value
Specify the initial value or values of the data store. The
dimensions of this value determine the dimensions of data that
may be written to the data store.

Data store must resolve to Simulink signal object
Causes Simulink software, when compiling the model, to search
the model and base workspace for a Simulink.Signal object
having the same name. If such an object is not found, Simulink
software halts the compilation and displays an error. Otherwise
Simulink software compares the attributes of the signal object
with the corresponding attributes of the data store memory block.
If the block and the object attributes are inconsistent, Simulink
software halts model compilation and displays an error.

These following parameters pertain to code generation and have no
effect during model simulation:

• Data store name must resolve to Simulink signal object

• RTW storage class

• RTW type qualifier

See “Block State Storage and Interfacing” in the Real-Time Workshop®

documentation for more information.

2-132

Data Store Memory

Interpret vector parameters as 1-D
If selected and the Initial value parameter is specified as a
column or row matrix, the data store is initialized to a 1-D array
whose elements are equal to the elements of the row or column
vector. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Simulink
documentation.

The Signal Attributes pane of the Data Store Memory block dialog
appears as follows:

2-133

Data Store Memory

Minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

2-134

Data Store Memory

• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: auto

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specify the numeric type, real or complex, of the values stored
in the data store.

The Diagnostics pane of the Data Store Memory block dialog appears
as follows:

2-135

Data Store Memory

Detect read before write
The model is attempting to read data from this data store without
having previously written data into the store in the current time
step.

2-136

Data Store Memory

Detect write after read
The model is attempting to store data in this data store after
previously reading data from it in the current time step.

Detect write after write
The model is attempting to store data in this data store twice in
succession in the current time step.

Characteristics Sample Time N/A

Dimensionalized Yes

Multidimensionalized Yes

See Also Data Store Read, Data Store Write

2-137

Data Store Read

Purpose Read data from data store

Library Signal Routing

Description The Data Store Read block copies data from the named data store to
its output.

The data store from which the data is read is determined by the location
of the Data Store Memory block or signal object that defines the data
store. For more information, see “Working with Data Stores”and Data
Store Memory.

More than one Data Store Read block can read from the same data store.

Note Be careful when setting an execution priority on a Data Store
Read block. Make sure that the block reads from the data store after
the store is updated by any Data Store Write blocks that write to the
store in the same time step.

Data Type
Support

The Data Store Read block can output a real or complex signal of any
data type supported by Simulink® software, including fixed-point data
types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-138

Data Store Read

Parameters
and
Dialog
Box

Data store name
Specifies the name of the data store from which this block reads
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Read block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

When Simulink software compiles the model containing this
block, Simulink software searches the model upwards from this
block’s level for a Data Store Memory block having the specified

2-139

Data Store Read

data store name. If Simulink software does not find such a block,
it searches the model workspace and the MATLAB® workspace
for a Simulink.Signal object having the same name. If Simulink
software finds the signal object, it creates a hidden Data Store
Memory block at the model’s root level having the properties
specified by the signal object and an initial value of 0. If Simulink
software finds neither the Data Store Memory block nor the signal
object, it halts the compilation and displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store from which this block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
The sample time, which controls when the block reads from
the data store. A value of -1 indicates that the sample time
is inherited. See “Specifying Sample Time” in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

Multidimensionalized Yes

See Also Data Store Memory, Data Store Write

2-140

Data Store Write

Purpose Write data to data store

Library Signal Routing

Description The Data Store Write block copies the value at its input to the named
data store.

Each write operation performed by a Data Store Write block writes over
the data store, replacing the previous contents.

The data store to which this block writes is determined by the location
of the Data Store Memory or signal object that defines the data store.
For more information, see “Working with Data Stores” and Data Store
Memory. The size of the data store is set by the signal object or the
Data Store Memory block that defines and initializes the data store.
Each Data Store Write block that writes to that data store must write
the same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same
data store during the same simulation step, results are unpredictable.

Data Type
Support

The Data Store Write block accepts a real or complex signal of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters
and
Dialog
Box

Data store name
Specifies the name of the data store to which this block writes
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Write block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

2-141

Data Store Write

When Simulink software compiles the model containing this
block, Simulink software searches the model upwards from this
block’s level for a Data Store Memory block having the specified
data store name. If Simulink software does not find such a block,
it searches the model workspace and the MATLAB® workspace
for a Simulink.Signal object having the same name. If Simulink
software finds the signal object, it creates a hidden Data Store
Memory block at the model’s root level having the properties
specified by the signal object and an initial value of 0. If Simulink
software finds neither the Data Store Memory block nor the signal
object, it halts the compilation and displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store to which this block writes.

Data store read blocks
This parameter lists all the Data Store Read blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
Specify the sample time that controls when the block writes
to the data store. A value of -1 indicates that the sample
time is inherited. See “Specifying Sample Time” in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

Multidimensionalized Yes

See Also Data Store Memory, Data Store Read

2-142

Data Type Conversion

Purpose Convert input signal to specified data type

Library Signal Attributes

Description The Data Type Conversion block converts an input signal of any
Simulink® software data type to the data type and scaling specified by
the block’s Output data type parameter. The input can be any real-
or complex-valued signal. If the input is real, the output is real. If the
input is complex, the output is complex.

Note This block requires that you specify the data type and/or scaling
for the conversion. If you want to inherit this information from an input
signal, you should use the Data Type Conversion Inherited block.

The Input and output to have equal parameter controls how the
input is processed. The possible values are Real World Value (RWV)
and Stored Integer (SI):

• Select Real World Value (RWV) to treat the input as V = SQ + B
where S is the slope and B is the bias. V is used to produce Q = (V -
B)/S, which is stored in the output. This is the default value.

• Select Stored Integer (SI) to treat the input as a stored integer,
Q. The value of Q is directly used to produce the output. In this
mode, the input and output are identical except that the input is a
raw integer lacking proper scaling information. Selecting Stored
Integer may be useful in these circumstances:

- If you are generating code for a fixed-point processor, the resulting
code only uses integers and does not use floating-point operations.

- If you want to partition your model based on hardware
characteristics. For example, part of your model may involve
simulating hardware that produces integers as output.

2-143

Data Type Conversion

Working with Fixed-Point Values Greater than 32 Bits

The MATLAB® built-in integer data types are limited to 32 bits. If you
want to output fixed-point numbers that range between 33 and 53 bits
without loss of precision or range, you should break the number into
pieces using the Gain block, and then output the pieces using the Data
Type Conversion block to store the value inside a double.

For example, suppose the original signal is an unsigned 128-bit value
with default scaling. You can break this signal into four pieces using
four parallel Gain blocks configured with the gain and output settings
shown below.

Piece Gain Output Data Type

1 2^0 uint(32) - Least significant 32 bits

2 2^-32 uint(32)

3 2^-64 uint(32)

4 2^-96 uint(32) - Most significant 32 bits

For each Gain block, you must also configure the Round integer
calculations toward parameter to Floor, and the Saturate on
integer overflow check box must be cleared.

Data Type
Support

The Data Type Conversion block handles any data type supported by
Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-144

Data Type Conversion

Parameters
and
Dialog
Box

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-145

Data Type Conversion

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Input and output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same.

2-146

Data Type Conversion

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink
documentation.

Examples Example 1 — Real World Values Versus Stored Integers

This example uses the Data Type Conversion block to help you
understand the difference between a real-world value and a stored
integer. Consider the two fixed-point models shown below.

2-147

Data Type Conversion

In the top model, the Data Type Conversion block treats the input as a
real-world value, and maps that value to an 8-bit signed generalized
fixed-point data type with a scaling of 2-2. When the value is then output
from the Data Type Conversion1 block as a real-world value, the scaling
and data type information is retained and the output value is 001111.00,
or 15. When the value is output from the Data Type Conversion2 block
as a stored integer, the scaling and data type information is not retained
and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Data Type Conversion3 block treats the input
as a stored integer, and the data type and scaling information is not
applied. When the value is then output from the Data Type Conversion4
block as a real-world value, the scaling and data type information is
applied to the stored integer, and the output value is 000011.11, or 3.75.

2-148

Data Type Conversion

When the value is output from the Data Type Conversion5 block as a
stored integer, you get back the original input value of 15.

Example 2 — Real World Values and Stored Integers in
Summations

The model shown below illustrates how a summation operation applies
to real-world values and stored integers, and how scaling information is
dealt with in generated code.

Note that the summation operation produces the correct result when
the Data Type Conversion (2 or 5) block outputs a real-world value.
This is because the specified scaling information is applied to the stored
integer value. However, when the Data Type Conversion4 block outputs
a stored integer value, then the summation operation produces an
unexpected result due to the absence of scaling information.

2-149

Data Type Conversion

If you generate code for the above model, then the code captures
the appropriate scaling information. The code for the Sum block is
shown below. The inputs to this block are tagged with the specified
scaling information so that the necessary shifts are performed for the
summation operation.

/* Sum Block: <Root>/Sum
*
* y = u0 + u1
*
* Input0 Data Type: Fixed Point S16 2^-2
* Input1 Data Type: Fixed Point S16 2^-4
* Output0 Data Type: Fixed Point S16 2^-5
*
* Round Mode: Floor
* Saturation Mode: Wrap
*
*/

sum = ((in1) << 3);

sum += ((in2) << 1);

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

See Also Data Type Conversion Inherited

2-150

Data Type Conversion Inherited

Purpose Convert from one data type to another using inherited data type and
scaling

Library Signal Attributes

Description The Data Type Conversion Inherited block forces dissimilar data types
to be the same. The first input is used as the reference signal and the
second input is converted to the reference type by inheriting the data
type and scaling information. (See “Changing the Orientation of a
Block” in the Simulink® documentation for a description of the port
order for various block orientations.) Either input is scalar expanded
such that the output has the same width as the widest input.

Inheriting the data type and scaling provides these advantages:

• It makes reusing existing models easier.

• It allows you to create new fixed-point models with less effort since
you can avoid the detail of specifying the associated parameters.

Data Type
Support

The Data Type Conversion Inherited block handles any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-151

Data Type Conversion Inherited

Parameters
and
Dialog
Box

Input and Output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same. Refer
to Description in the Data Type Conversion block reference page
for more information about these choices.

Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate to max or min when overflows occur
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

2-152

Data Type Conversion Inherited

See Also Data Type Conversion

2-153

Data Type Duplicate

Purpose Force all inputs to same data type

Library Signal Attributes

Description The Data Type Duplicate block forces all inputs to have exactly the
same data type. Other attributes of input signals, such as dimension,
complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of
data types among blocks. If all signals do not have the same data type,
the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to
the block controls the data type for all other blocks. The other blocks
are set to inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks
can be placed in any model, and the data type for all library blocks are
configured according to the usage in the model. To create a library block
with more complex data type rules than duplication, use the Data Type
Propagation block.

Data Type
Support

The Data Type Duplicate block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-154

Data Type Duplicate

Parameters
and
Dialog
Box

Number of input ports
Number of input ports.

Characteristics Scalar Expansion Yes

States 0

2-155

Data Type Propagation

Purpose Set data type and scaling of propagated signal based on information
from reference signals

Library Signal Attributes

Description The Data Type Propagation block allows you to control the data
type and scaling of signals in your model. You can use this block in
conjunction with fixed-point blocks that have their Output data type
parameter configured to Inherit: Inherit via back propagation.

The block has three inputs: Ref1 and Ref2 are the reference inputs,
while the Prop input back propagates the data type and scaling
information gathered from the reference inputs. This information is
then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type
and scaling information. For example, you can:

• Use the number of bits from the Ref1 reference signal, or use the
number of bits from widest reference signal.

• Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

• Use a bias of zero, regardless of the biases used by the reference
signals.

• Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the
Propagated data type parameter list. If the parameter list is
configured as Specify via dialog, then you manually specify the data
type via the Propagated data type edit field. If the parameter list is
configured as Inherit via propagation rule, then you must use the
parameters described in “Parameters and Dialog Box” on page 2-159.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify
via dialog, then you manually specify the scaling via the Propagated
scaling edit field. If the parameter list is configured as Inherit via

2-156

Data Type Propagation

propagation rule, then you must use the parameters described in
“Parameters and Dialog Box” on page 2-159.

After you use the information from the reference signals, you can apply
a second level of adjustments to the data type and scaling by using
individual multiplicative and additive adjustments. This flexibility has
a variety of uses. For example, if you are targeting a DSP, then you
can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input
signal, and has a certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force
the computed number of bits to a useful value. For example, if you are
targeting a 16-bit micro, then the target C compiler is likely to support
sizes of only 8 bits, 16 bits, and 32 bits. The block will force these three
choices to be used. For example, suppose the block computes a data type
size of 24 bits. Since 24 bits is not directly usable by the target chip, the
signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals.
This makes it easier to create designs that are easily retargeted from
fixed-point chips to floating-point chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected
signals. Without this data type propagation process, a subsystem
that you use from a library will almost certainly not work as desired
with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can
eliminate the manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to
bottom. Additionally:

• Double-precision reference inputs have precedence over all other
data types.

2-157

Data Type Propagation

• Single-precision reference inputs have precedence over integer and
fixed-point data types.

• Multiplicative adjustments are carried out before additive
adjustments.

• The number of bits is determined before the precision or positive
range is inherited from the reference inputs.

Data Type
Support

The Data Type Propagation block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.
For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-158

Data Type Propagation

Parameters
and
Dialog
Box

The Propagated type pane of the Data Type Propagation block dialog
appears as follows:

2-159

Data Type Propagation

Propagated data type
Use the parameter list to propagate the data type via the dialog
box, or inherit the data type from the reference signals. Use the
edit field to specify the data type via the dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or vice versa.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or visa versa.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Is-Signed
Specify the sign of Prop as one of the following values:

Parameter
Value Description

IsSigned1 Prop is a signed data type if Ref1 is a signed
data type.

IsSigned2 Prop is a signed data type if Ref2 is a signed
data type.

IsSigned1 or
IsSigned2

Prop is a signed data type if either Ref1 or
Ref2 are signed data types.

TRUE Ref1 and Ref2 are ignored, and Prop is always
a signed data type.

FALSE Ref1 and Ref2 are ignored, and Prop is always
an unsigned data type.

2-160

Data Type Propagation

For example, if the Ref1 signal is ufix(16), the Ref2 signal
is sfix(16), and the Is-Signed parameter is IsSigned1 or
IsSigned2, then Prop is forced to be a signed data type.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Base
Specify the number of bits used by Prop for the base data type
as one of the following values:

Parameter Value Description

NumBits1 The number of bits for Prop is given by the
number of bits for Ref1.

NumBits2 The number of bits for Prop is given by the
number of bits for Ref2.

max([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with largest number
of bits.

min([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with smallest number
of bits.

NumBits1+NumBits2 The number of bits for Prop is given by the
sum of the reference signal bits.

Refer to Targeting an Embedded Processor in the Simulink®

Fixed Point™ User’s Guide for more information about the base
data type.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

2-161

Data Type Propagation

Number-of-bits: Multiplicative adjustment
Specify the number of bits used by Prop by including a
multiplicative adjustment. For example, suppose you want to
guarantee that the number of bits associated with a multiply and
accumulate (MAC) operation is twice as wide as the input signal.
To do this, you configure this parameter to the value 2.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Additive adjustment
Specify the number of bits used by Prop by including an additive
adjustment. For example, if you are performing multiple additions
during a MAC operation, the result might overflow. To prevent
overflow, you can associate guard bits with the propagated data
type. To associate four guard bits, you specify the value 4.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Allowable final values
Force the computed number of bits used by Prop to a useful value.
For example, if you are targeting a processor that supports only 8,
16, and 32 bits, then you configure this parameter to [8,16,32].
The block always propagates the smallest specified value that
fits. If you want to allow all fixed-point data types, you would
specify the value 1:128.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

The Propagated scaling pane of the Data Type Propagation block
dialog appears as follows:

2-162

Data Type Propagation

2-163

Data Type Propagation

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box,
inherit the scaling from the reference signals, or calculate the
scaling to obtain best precision.

Propagated scaling (Slope or [Slope Bias])
Specify the scaling as either a slope or a slope and bias.

This parameter is visible only if Specify via dialog is selected
for the Propagated scaling parameter list.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as
the upper and lower limits on the propagated input. Based on
the data type, the scaling will automatically be selected such
that these values can be represented with no overflow error and
minimum quantization error.

This parameter is visible only if Obtain via best precision is
selected for the Propagated scaling parameter list.

Slope: Base
Specify the slope used by Prop for the base data type as one of
the following values:

Parameter Value Description

Slope1 The slope of Prop is given by the slope
of Ref1.

Slope2 The slope of Prop is given by the slope
of Ref2.

max([Slope1
Slope2])

The slope of Prop is given by the
maximum slope of the reference
signals.

min([Slope1
Slope2])

The slope of Prop is given by the
minimum slope of the reference
signals.

2-164

Data Type Propagation

Parameter Value Description

Slope1*Slope2 The slope of Prop is given by the
product of the reference signal slopes.

Slope1/Slope2 The slope of Prop is given by the ratio
of the Ref1 slope to the Ref2 slope.

PosRange1 The range of Prop is given by the range
of Ref1.

PosRange2 The range of Prop is given by the range
of Ref2.

max([PosRange1
PosRange2])

The range of Prop is given by the
maximum range of the reference
signals.

min([PosRange1
PosRange2])

The range of Prop is given by the
minimum range of the reference
signals.

PosRange1*PosRange2 The range of Prop is given by the
product of the reference signal ranges.

PosRange1/PosRange2 The range of Prop is given by the ratio
of the Ref1 range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and
you control the range of Prop with PosRange1 and PosRange2.
Additionally, PosRange1 and PosRange2 are one bit higher than
the maximum positive range of the associated reference signal.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative
adjustment. For example, if you want 3 bits of additional precision
(with a corresponding decrease in range), the multiplicative
adjustment is 2^-3.

2-165

Data Type Propagation

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Additive adjustment
Specify the slope used by Prop by including an additive
adjustment. An additive slope adjustment is often not needed.
The most likely use is to set the multiplicative adjustment to
0, and set the additive adjustment to force the final slope to a
specified value.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Base
Specify the bias used by Prop for the base data type. The
parameter values are described as follows:

Parameter
Value Description

Bias1 The bias of Prop is given by the bias of Ref1.

Bias2 The bias of Prop is given by the bias of Ref2.

max([Bias1
Bias2])

The bias of Prop is given by the maximum
bias of the reference signals.

min([Bias1
Bias2])

The bias of Prop is given by the minimum
bias of the reference signals.

Bias1*Bias2 The bias of Prop is given by the product of
the reference signal biases.

Bias1/Bias2 The bias of Prop is given by the ratio of the
Ref1 bias to the Ref2 bias.

Bias1+Bias2 The bias of Prop is given by the sum of the
reference biases.

Bias1-Bias2 The bias of Prop is given by the difference of
the reference biases.

2-166

Data Type Propagation

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative
adjustment.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is
zero, you should configure both the multiplicative adjustment and
the additive adjustment to 0.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-167

Data Type Scaling Strip

Purpose Remove scaling and map to built in integer

Library Signal Attributes

Description The Scaling Strip block strips the scaling off a fixed point signal. It
maps the input data type to the smallest built in data type that has
enough data bits to hold the input. The stored integer value of the input
is the value of the output. The output always has nominal scaling (slope
= 1.0 and bias = 0.0), so the output does not make a distinction between
real world value and stored integer value.

Data Type
Support

The Data Type Scaling Strip block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-168

Dead Zone

Purpose Provide region of zero output

Library Discontinuities

Description The Dead Zone block generates zero output within a specified region,
called its dead zone. The lower and upper limits of the dead zone
are specified as the Start of dead zone and End of dead zone
parameters. The block output depends on the input and dead zone:

• If the input is within the dead zone (greater than the lower limit and
less than the upper limit), the output is zero.

• If the input is greater than or equal to the upper limit, the output is
the input minus the upper limit.

• If the input is less than or equal to the lower limit, the output is
the input minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a
sine wave as input.

This plot shows the effect of the Dead Zone block on the sine wave. While
the input (the sine wave) is between -0.5 and 0.5, the output is zero.

2-169

Dead Zone

Data Type
Support

The Dead Zone block accepts and outputs a real signal of any data type
supported by Simulink® software, except Boolean. The Dead Zone block
supports fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-170

Dead Zone

Parameters
and
Dialog
Box

Start of dead zone
Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone
Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow
Select to have overflows saturate.

Treat as gain when linearizing
The linearization commands in Simulink software treat this block
as a gain in state space. Select this option to cause the commands
to treat the gain as 1; otherwise, the commands treat the gain as 0.

2-171

Dead Zone

Enable zero crossing detection
Select to enable zero crossing detection to detect when the
limits are reached. For more information, see Zero Crossing
Detection in the “How Simulink Works” chapter of the Simulink
documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See Specifying Sample Time in the
“How Simulink Works” chapter of the Simulink documentation.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes, if enabled

See Also Dead Zone Dynamic

2-172

Dead Zone Dynamic

Purpose Set inputs within bounds to zero

Library Discontinuities

Description The Dead Zone Dynamic block dynamically bounds the range of the
input signal, providing a region of zero output. The bounds change
according to the upper and lower limit input signals where

• The input within the bounds is set to zero.

• The input below the lower limit is shifted down by the lower limit.

• The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the lo port.

Data Type
Support

The Dead Zone Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-173

Dead Zone Dynamic

See Also Dead Zone

2-174

Decrement Real World

Purpose Decrease real world value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Real World block decreases the real world value of the
signal by one. Overflows always wrap.

Data Type
Support

The Decrement Real World block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To
Zero, Increment Real World

2-175

Decrement Stored Integer

Purpose Decrease stored integer value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Stored Integer block decreases the stored integer value
of a signal by one.

Floating-point signals are also decreased by one, and overflows always
wrap.

Data Type
Support

The Decrement Stored Integer block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero,
Increment Stored Integer

2-176

Decrement Time To Zero

Purpose Decrease real-world value of signal by sample time, but only to zero

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement Time To Zero block decreases the real-world value of
the signal by the sample time, Ts. The output will never go below zero.
This block only works with fixed sample rates.

Data Type
Support

The Decrement Time To Zero block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

2-177

Decrement To Zero

Purpose Decrease real-world value of signal by one, but only to zero

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Decrement To Zero block decreases the real-world value of the
signal by one. The output will never go below zero.

Data Type
Support

The Decrement To Zero block accepts signals of any data type supported
by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Decrement Stored Integer, Decrement Time
To Zero

2-178

Demux

Purpose Extract and output elements of bus or vector signal

Library Signal Routing

Description The Demux block extracts the components of an input signal and
outputs the components as separate signals. The output signals are
ordered from top to bottom output port. (See “Changing the Orientation
of a Block”in the Simulink® documentation for a description of the port
order for various block orientations.) To avoid adding clutter to a model,
Simulink software hides the name of a Demux block when you copy it
from the Simulink library to a model.

The Number of outputs parameter allows you to specify the number
and, optionally, the dimensionality of each output port. If you do not
specify the dimensionality of the outputs, the block determines the
dimensionality of the outputs for you.

The Demux block operates in either vector mode or bus selection
mode, depending on whether you selected the Bus selection mode
parameter. The two modes differ in the types of signals they accept.
Vector mode accepts only a vector-like signal, that is, either a scalar
(one-element array), vector (1-D array), or a column or row vector (one
row or one column 2-D array). Bus selection mode accepts only the
output of a Mux block or another Demux block.

Note The MathWorks discourages enabling Bus selection mode
and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

The Demux block’s Number of outputs parameter determines the
number and dimensionality of the block’s outputs, depending on the
mode in which the block operates.

2-179

Demux

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying
the number of outputs or a vector whose elements specify the widths of
the block’s output ports. The block determines the size of its outputs
from the size of the input signal and the value of the Number of
outputs parameter.

The following table summarizes how the block determines the outputs
for an input vector of width n.

Parameter Value Block outputs... Comments

p = n p scalar signals For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

p > n Error

p < n

n mod p = 0

p vector signals each having
n/p elements

If the input is a six-element
vector and you specify three
outputs, the block outputs
three two-element vectors.

p < n

n mod p = m

m vector signals each having
(n/p)+1 elements and p-m
signals having n/p elements

If the input is a five-element
vector and you specify
three outputs, the block
outputs two two-element
vector signals and one scalar
signal.

[p1 p2 ... pm]

p1+p2+...+pm=n

pi > 0

m vector signals having
widths p1, p2, ... pm

If the input is a five-element
vector and you specify [3,
2] as the output, the block
outputs three of the input
elements on one port and the
other two elements on the
other port.

2-180

Demux

Parameter Value Block outputs... Comments

[p1 p2 ... pm]

p1+p2+...+pm=n

some or all

pi = -1

m vector signals If pi is greater than zero,
the corresponding output
has width pi. If pi is -1, the
width of the corresponding
output is dynamically sized.

[p1 p2 ... pm]

p1+p2+...+pm!=n

pi = > 0

Error

Note that you can specify the number of outputs as fewer than the
number of input elements, in which case the block distributes the
elements as evenly as possible over the outputs as illustrated in the
following example.

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression
[-1, 3 -1] causes the block to output three signals in which the second
signal always has three elements while the sizes of the first and third
signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block
assigns as many elements as needed to the ports with positive values
and distributes the remain elements as evenly as possible over the ports
with -1 values. For example, suppose that the block input is seven

2-181

Demux

elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the
second, and two elements on the third.

Specifying the Number of Outputs in Bus Selection Mode

In bus selection mode, the value of the Number of outputs parameter
can be a

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For
example, if the input bus comprises two signals and the value of this
parameter is a scalar, the value must equal 2.

• Vector each of whose elements specifies the number of signals to
output on the corresponding port

2-182

Demux

For example, if the input bus contains five signals, you can specify
the output as [3, 2], in which case the block outputs three of the
input signals on one port and the other two signals on a second port.

• Cell array each of whose elements is a cell array of vectors specifying
the dimensions of the signals output by the corresponding port

The cell array format constrains the Demux block to accept only signals
of specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells
the block to accept only a bus signal comprising a 2-by-2 matrix, a
three-element vector, and a scalar signal. You can use the value -1 in
a cell array expression to let the block determine the dimensionality
of a particular output based on the input. For example, the following
diagram uses the cell array expression {{-1}, {-1,-1}} to specify the output
of the leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output
port, i.e., if you specify any value other than -1, the corresponding input
element must match the specified dimensionality.

2-183

Demux

Note The MathWorks discourages enabling Bus selection mode
and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

Data Type
Support

The Demux block accepts and outputs complex or real signals of any
data type supported by Simulink software, including fixed-point data
types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters
and
Dialog
Box

Number of outputs
The number and dimensions of outputs.

2-184

Demux

Display option
Options for displaying the Demux block. The options are

Option Description Example

bar Display the icon as a
solid bar of the block’s
foreground color.

none Display the icon as a box
containing the block’s
type name.

Bus selection mode
Enable bus selection mode.

Note The MathWorks discourages enabling Bus selection mode
and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

2-185

Derivative

Purpose Output time derivative of input

Library Continuous

Description The Derivative block approximates the derivative of its input by
computing

where du is the change in input value and dt is the change in time since
the previous simulation time step. The block accepts one input and
generates one output. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken
in the simulation. Smaller steps allow a smoother and more accurate
output curve from this block. Unlike blocks that have continuous states,
the solver does not take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the
input is an impulse when the value of the input changes, otherwise it is
0. You can obtain the discrete derivative of a discrete signal using

and taking the z-transform

See “Circuit Model” in Using Simulink® for an example on choosing
the best-form mathematical model to avoid using Derivative blocks
in your models.

Using linmod to linearize a model that contains a Derivative block
can be troublesome. To improve the accuracy of linearizations of this
block, use the optional linearization parameter within the block dialog
box. Additionally, for more information about how to avoid problems

2-186

Derivative

linearizing Derivative blocks, see Linearizing Models in the “Analyzing
Simulation Results” chapter of the Simulink documentation.

Data Type
Support

The Derivative block accepts and outputs a real signal of type double.

Parameters
and
Dialog
Box

The exact linearization of the Derivative block is difficult due to the
fact that the block cannot be represented as a state space system since

the dynamic equation for the block is y u= � . However, it is possible to
approximate the linearization by adding a pole to the Derivative to
create a proper transfer function. The addition of the pole has the effect
of filtering the signal before differentiating it, to remove the effect of
noise. The approximated linearization of the Derivative block is then

s
Ns+1 . You can change the Linearization Time Constant, N, to more

accurately approximate the linearization for your system. Its default
value is Inf, corresponding to a linearization of 0, but it is common

practice to change it to 1
fb

, where fb is the break frequency for the filter.

2-187

Derivative

Characteristics Direct Feedthrough Yes

Sample Time Continuous

Scalar Expansion N/A

States 2*[1+(number of input elements)]

Dimensionalized Yes

Zero Crossing No

See Also Discrete Derivative

2-188

Detect Change

Purpose Detect change in signal’s value

Library Logic and Bit Operations

Description The Detect Change block determines if an input does not equal its
previous value where

• The output is true (equal to 1), when the input signal does not equal
its previous value.

• The output is false (equal to 0), when the input signal equals its
previous value.

Data Type
Support

The Detect Change block accepts signals of any data type supported by
Simulink® software, including fixed-point data types. The block output
is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-189

Detect Change

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-190

Detect Decrease

Purpose Detect decrease in signal’s value

Library Logic and Bit Operations

Description The Detect Decrease block determines if an input is strictly less than
its previous value where

• The output is true (equal to 1), when the input signal is less than
its previous value.

• The output is false (equal to 0), when the input signal is greater than
or equal to its previous value.

Data Type
Support

The Detect Decrease block accepts signals of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-191

Detect Decrease

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-192

Detect Fall Negative

Purpose Detect falling edge when signal’s value decreases to strictly negative
value, and its previous value was nonnegative

Library Logic and Bit Operations

Description The Detect Fall Negative block determines if the input is less than zero,
and its previous value was greater than or equal to zero where

• The output is true (equal to 1), when the input signal is less than
zero, and its previous value was greater than or equal to zero.

• The output is false (equal to 0), when the input signal is greater than
or equal to zero, or if the input signal is nonnegative, its previous
value was positive or zero.

Data Type
Support

The Detect Fall Negative block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z < 0.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect
Increase, Detect Rise Nonnegative, Detect Rise Positive

2-193

Detect Fall Nonpositive

Purpose Detect falling edge when signal’s value decreases to nonpositive value,
and its previous value was strictly positive

Library Logic and Bit Operations

Description The Detect Fall Nonpositive block determines if the input is less than or
equal to zero, and its previous value was positive where

• The output is true (equal to 1), when the input signal is less than or
equal to zero, and its previous value was greater than zero.

• The output is false (equal to 0), when the input signal is greater than
zero, or if it is nonpositive, its previous value was nonpositive.

Data Type
Support

The Detect Fall Nonpositive block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.

2-194

Detect Fall Nonpositive

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,
Detect Rise Nonnegative, Detect Rise Positive

2-195

Detect Increase

Purpose Detect increase in signal’s value

Library Logic and Bit Operations

Description The Detect Increase block determines if an input is strictly greater than
its previous value where

• The output is true (equal to 1), when the input signal is greater than
its previous value.

• The output is false (equal to 0), when the input signal is less than or
equal to its previous value.

Data Type
Support

The Detect Increase block accepts signals of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition for the previous input U/z.

2-196

Detect Increase

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

2-197

Detect Rise Nonnegative

Purpose Detect rising edge when signal’s value increases to nonnegative value,
and its previous value was strictly negative

Library Logic and Bit Operations

Description The Detect Rise Nonnegative block determines if the input is greater
than or equal to zero, and its previous value was less than zero where

• The output is true (equal to 1), when the input signal is greater than
or equal to zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input signal is less than
zero, or if nonnegative, its previous value was greater than or equal
to zero.

Data Type
Support

The Detect Rise Nonnegative block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uint8.

Parameters
and
Dialog
Box

2-198

Detect Rise Nonnegative

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Positive

2-199

Detect Rise Positive

Purpose Detect rising edge when signal’s value increases to strictly positive
value, and its previous value was nonpositive

Library Logic and Bit Operations

Description The Detect Rise Positive block determines if the input is strictly
positive, and its previous value was nonpositive where

• The output is true (equal to 1), when the input signal is greater than
zero, and its previous value was less than zero.

• The output is false (equal to 0), when the input is negative or zero, or
if the input is positive, its previous value was also positive.

Data Type
Support

The Detect Rise Positive block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uint8.

Parameters
and
Dialog
Box

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

2-200

Detect Rise Positive

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall
Nonpositive, Detect Increase, Detect Rise Nonnegative

2-201

Difference

Purpose Calculate change in signal over one time step

Library Discrete

Description The Difference block outputs the current input value minus the previous
input value.

Data Type
Support

The Difference block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

The Main pane of the Difference block dialog appears as follows:

2-202

Difference

Initial condition for previous output
Set the initial condition for the previous output.

The Signal Attributes pane of the Difference block dialog appears
as follows:

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

2-203

Difference

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of inputs and gain

2-204

Digital Clock

Purpose Output simulation time at specified sampling interval

Library Sources

Description The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous
value.

Use this block rather than the Clock block (which outputs continuous
time) when you need the current time within a discrete system.

Data Type
Support

The Digital Clock block outputs a real signal of type double.

Parameters
and
Dialog
Box

Sample time
The sampling interval. The default value is 1 second. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Simulink® documentation.

2-205

Digital Clock

Characteristics Sample Time Specified in the Sample time parameter

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-206

Direct Lookup Table (n-D)

Purpose Index into N-dimensional table to retrieve element, column, or 2-D
matrix

Library Lookup Tables

Description The Direct Lookup Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape
of the output desired. The output can be an element, a column, or a
2-D matrix. The lookup table uses zero-based indexing, so integer data
types can fully address their range. For example, a table dimension
using the uint8 data type can address all 256 elements.

You define a set of output values as the Table data parameter. You
specify what object the inputs select from the table: an element, a
column, or a 2-D matrix. The first input specifies the zero-based index
to the first dimension higher than the number of dimensions in the
output, the next input specifies the index to the next table dimension,
and so on, as shown by this figure:

The figure shows a 5-D table with an output shape set to “2-D Matrix”;
the output is a 2-D Matrix with R rows and C columns. (See “Changing
the Orientation of a Block”in the Simulink® documentation for a
description of the port order for various block orientations.)

This figure shows the set of all the different icons that the Direct
Lookup Table block shows (depending on the options you choose in the
block’s dialog box).

2-207

Direct Lookup Table (n-D)

With dimensions higher than 4, the icon matches the 4-D icons, but
shows the exact number of dimensions in the top text, e.g., “8-D T[k].”
The top row of icons is used when the block output is made from one
or more single-element lookups on the table. The blocks labeled “n-D
Direct Table Lookup5,” 6, 8, and 12 are configured to extract a column
from the table, and the two blocks ending in 7 and 9 are extracting a
plane from the table. Blocks in the figure ending in 10, 11, and 12 are
configured to have the table be an input instead of a parameter.

Example

In this example, the block parameters are defined as

Inputs select this object from table: "Column"
Table data: int16(a)

2-208

Direct Lookup Table (n-D)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB® functions.

a = ones(20,4,5,7); L = prod(size(a));
a(1:L) = [1:L]';

The figure shows the block outputting a vector of the 20 values in the
second column of the fourth element of the third dimension from the
third element of the fourth dimension.

Note that the output has the same data type as the table, i.e., int16.
Also note that the block uses zero-based indexing. The output values in
this example can be calculated manually using the following MATLAB
command (which uses 1-based indexing):

a(:,1+1,1+3,1+2)

ans =

1061
1062
1063
1064
1065
1066
1067
1068

2-209

Direct Lookup Table (n-D)

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Data Type
Support

The Direct Lookup Table (n-D) block accepts mixed-type signals of data
type supported by Simulink software. For a discussion on the data
types supported by Simulink software, see “Data Types Supported
by Simulink” in the “Working with Data” chapter of the Simulink
documentation.

The output type can differ from the input type and can be any of the
types listed for input; the output type is inherited from the data type of
the Table data parameter.

In the case that the table comes into the block on an input port, the
output port type is inherited from the table input port. Inputs for
indexing must be real; table data can be complex.

2-210

Direct Lookup Table (n-D)

Parameters
and
Dialog
Box

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables
for the table and hence the number of inputs to the block. The
options are 1, 2, 3, 4, or More dimensions. If you choose More,
the dialog box displays an edit field, Explicit number of table
dimensions, that allows you to enter a number of dimensions.

Explicit number of table dimensions
This field appears if you select more as the value of the Number
of table dimensions. Enter the number of table dimensions in
this field.

2-211

Direct Lookup Table (n-D)

Inputs select this object from table
Specify whether the output data is a single element, a column, or
a 2-D matrix. The number of ports changes for each selection:

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB indexing. For example, if
you have a 4-D table of data, to access a single element you must
specify four indices, as in array(1,2,3,4). To specify a column,
you need three indices, as in array(:,2,3,4). Finally, to specify
a 2-D matrix, you only need two indices, as in array(:,:,3,4).

Make table an input
Selecting this box forces the Direct Lookup Table (n-D) block to
ignore the Table Data parameter. Instead, a new port appears
with “T” next to it. Use this port to input table data.

Table data
The table of output values. The matrix size must match the
dimensions defined by the Number of table dimensions
parameter or by the Explicit number of dimensions parameter
when the number of dimensions exceeds four. During block
diagram editing, you can leave the Table data field empty, but for
running the simulation, you must match the number of dimensions
in the Table data to the Number of table dimensions. For
information about how to construct multidimensional arrays
in MATLAB software, see “Multidimensional Arrays” in the
MATLAB online documentation. (This field appears only if Make
table an input is not selected.)

Action for out of range input
None, Warning, Error.

2-212

Direct Lookup Table (n-D)

Sample time
The time interval between samples. To inherit the sample time,
set this parameter to -1. See “Specifying Sample Time” in the
Simulink documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Dimensionalized For scalar lookups only (not when
returning a column or a 2-D matrix from
the table)

Zero Crossing No

2-213

Discrete Derivative

Purpose Compute discrete time derivative

Library Discrete

Description The Discrete Derivative block computes an optionally scaled discrete
time derivative as follows

y t
Ku t

T
Ku t

Tn
n

s

n

s
()

() ()
= − −1

where u tn() and y tn() are the block’s input and output at the current

time step, respectively, u tn()−1 is the block’s input at the previous time

step, K is a scaling factor, and Ts is the simulation’s discrete step size,
which must be fixed.

Data Type
Support

The Discrete Derivative block supports all Simulink® software data
types, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-214

Discrete Derivative

Parameters
and
Dialog
Box

The Main pane of the Discrete Derivative block dialog appears as
follows:

Gain value
Scaling factor used to weight the block’s input at the current
time step.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

The Signal Attributes pane of the Discrete Derivative block dialog box
appears as follows:

2-215

Discrete Derivative

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-216

Discrete Derivative

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of inputs and gain

See Also Derivative

2-217

Discrete Filter

Purpose Model IIR and FIR filters

Library Discrete

Description The Discrete Filter block models Infinite Impulse Response (IIR) and
Finite Impulse Response (FIR) filters using a direct form II structure
(also known as “control canonical form”). You specify the filter as a
ratio of polynomials in z-1. You can specify that the block have a scalar
output or vector output where the elements correspond to a set of filters
that have the same denominator polynomial but different numerator
polynomials.

Use the Numerator coefficient parameter to specify the coefficients
of the discrete filter’s numerator polynomial or polynomials. Use a
vector to specify the coefficients for a single numerator polynomial. Use
a matrix to specify the coefficients of multiple numerator polynomials
where each row contains the coefficients of one of the polynomials. Use
the Denominator coefficient parameter to specify the coefficients of
the function’s denominator polynomial. The value of the Denominator
coefficient parameter must be a vector of coefficients.

You must specify the coefficients of the numerator and denominator
polynomials in ascending powers of z-1. The order of the denominator
must be greater than or equal to the order of the numerator.

If you specify a single numerator polynomial, i.e., a vector as the value
of the Numerator coefficient parameter, the block’s output is a scalar
signal. If you specify multiple numerator polynomials, i.e., a matrix as
the value of the Numerator coefficient parameter, the block’s output
is a vector signal whose width equals the number of matrix rows, i.e.,
the number or numerator polynomials.

The Discrete Filter block lets you use polynomials in z-1 (the delay
operator) to represent a discrete system, a method typically used by
signal processing engineers. By contrast, the Discrete Transfer Fcn
block lets you use polynomials in z to represent a discrete system,
the method typically used by control engineers. The two methods are
identical when the numerator and denominator polynomials have the
same length.

2-218

Discrete Filter

The block displays the numerator and denominator according to how
they are specified. For a discussion of how Simulink® software displays
the icon, see Transfer Fcn.

Data Type
Support

The Discrete Filter block accepts and outputs a real signal of type
single or double.

Parameters
and
Dialog
Box

Numerator coefficient
A vector of polynomial coefficients or a matrix of coefficients
where each row of coefficients corresponds to a distinct numerator
polynomial. You must specify the polynomial coefficients in
ascending powers of z-1. If you specify a vector of coefficients,
i.e., a single numerator polynomial, the output of the block
is a scalar signal. If you specify a matrix of coefficients, i.e.,
multiple polynomials, the block’s output is a vector of signals,

2-219

Discrete Filter

each corresponding to the filter consisting off the corresponding
numerator polynomial and the denominator polynomial specified
by the Denominator coefficient parameter. The default is [1].

Denominator coefficient
The vector of denominator coefficients. The default is [1 0.5].
The width of the vector, i.e., the order of the denominator, must
be greater than or equal to the width of the numerator vector or
matrix rows, i.e., the order of the numerator.

Sample time
The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink
documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more
information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

2-220

Discrete FIR Filter

Purpose Model FIR filters

Library Discrete

Description The Discrete FIR Filter block independently filters each channel of
the input signal with the specified digital FIR filter. The block can
implement static filters with fixed coefficients, as well as time-varying
filters with coefficients that change over time. You can tune the
coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over
time, treating each element of the input as an individual channel. The
output dimensions are always the same as those of the input signal that
is filtered, except in single-input/multi-output mode.

The outputs of this block numerically match the outputs of the Signal
Processing Blockset™ Digital Filter Design block and of the Signal
Processing Toolbox™ dfilt function.

This block supports the Simulink® state logging feature. See “States” in
the Simulink User’s Guide for more information.

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to
zero by default, which is equivalent to assuming that past inputs and
outputs are zero. You can optionally use the Initial states parameter
to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to
specify them, see the table on valid initial states. The Initial states
parameter can take one of the forms described in the next table.

2-221

Discrete FIR Filter

Valid Initial States

Initial Condition Description

Scalar The block initializes all delay elements in the filter to the scalar
value.

Vector or matrix
(for applying different
delay elements to each
channel)

Each vector or matrix element specifies a unique initial condition
for a corresponding delay element in a corresponding channel:

• The vector length must be equal to the product of the number
of input channels and the number of delay elements in the
filter, #_of_filter_coeffs-1.

• The matrix must have the same number of rows as the number
of delay elements in the filter, #_of_filter_coeffs-1, and
must have one column for each channel of the input signal.

Data Type
Support

The Discrete FIR Filter block accepts and outputs real and complex
signals of any data type supported by Simulink except Boolean. The
same types are supported for the numerator coefficients. The input
states have the same data type as the block input.

The following diagrams show the filter structure and the data types
used within the Discrete FIR Filter block for fixed-point signals.

2-222

Discrete FIR Filter

2-223

Discrete FIR Filter

2-224

Discrete FIR Filter

Parameters
and
Dialog
Box

The Main pane of the Discrete FIR Filter block dialog appears as
follows.

2-225

Discrete FIR Filter

Coefficient source
Specify whether you want to input the filter coefficients on the
block mask or inherit them from an input port.

Numerator coefficient
Specify the vector of numerator coefficients of the filter’s transfer
function.

This parameter is only visible when Dialog parameters is
selected for the Coefficient source parameter.

Initial states
Specify the initial conditions of the filter states. To learn how to
specify initial states, see “Specifying Initial States” on page 2-221.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
“How Simulink Works” in the Simulink documentation.

2-226

Discrete FIR Filter

The Fixed-point pane of the Discrete FIR Filter block dialog appears
as follows.

2-227

Discrete FIR Filter

Coefficient minimum
Specify the minimum value that a filter coefficient should have.
The default value, [], is equivalent to -Inf. Simulink software
uses this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Automatic scaling of fixed-point data types

Coefficient maximum
Specify the maximum value that a filter coefficient should have.
The default value, [], is equivalent to Inf. Simulink software
uses this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Automatic scaling of fixed-point data types

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Coefficient data type
Specify the coefficient data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same
word length as input

• A built-in integer, for example, int8

2-228

Discrete FIR Filter

• A data type object, for example, a Simulink.NumericType
object

• An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Coefficient data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Product output data type
Specify the product output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• A built-in data type, for example, int8

• A data type object, for example, a Simulink.NumericType
object

• An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Product output data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Accumulator data type
Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same
as product output

2-229

Discrete FIR Filter

• A built-in data type, for example, int8

• A data type object, for example, a Simulink.NumericType
object

• An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same
as accumulator

• A built-in data type, for example, int8

• A data type object, for example, a Simulink.NumericType
object

• An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs.

2-230

Discrete FIR Filter

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate. Otherwise, they wrap.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of initial states

States See “Specifying Initial States” on page
2-221

Dimensionalized Yes

Zero Crossing No

2-231

Discrete State-Space

Purpose Implement discrete state-space system

Library Discrete

Description The Discrete State-Space block implements the system described

by

where u is the input, x is the state, and y is the output. The matrix
coefficients must have these characteristics, as illustrated in the
following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink® software converts a matrix containing zeros to a sparse
matrix for efficient multiplication.

Data Type
Support

The Discrete State Space block accepts and outputs a real signal of
type single or double.

2-232

Discrete State-Space

Parameters
and
Dialog
Box

A, B, C, D
The matrix coefficients, as defined in the preceding equations.

Initial conditions
The initial state vector. The default is 0. Simulink software does
not allow the initial states of this block to be inf or NaN.

2-233

Discrete State-Space

Sample time
The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink
documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more
information.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of the initial conditions

States Determined by the size of A

Dimensionalized Yes

Zero Crossing No

2-234

Discrete-Time Integrator

Purpose Perform discrete-time integration or accumulation of signal

Library Discrete

Description You can use the Discrete-Time Integrator block in place of the Integrator
block to create a purely discrete system.

The Discrete-Time Integrator block allows you to

• Define initial conditions on the block dialog box or as input to the
block.

• Define an input gain (K) value.

• Output the block state.

• Define upper and lower limits on the integral.

• Reset the state depending on an additional reset input.

These features are described below.

Integration and Accumulation Methods

The block can integrate or accumulate using the Forward Euler,
Backward Euler, and Trapezoidal methods. For a given step n,
Simulink® software updates y(n) and x(n+1). In integration mode, T is
the block’s sample time (delta T in the case of triggered sample time). In
accumulation mode, T = 1; the block’s sample time determines when
the block’s output is computed but not the output’s value. K is the gain
value. Values are clipped according to upper or lower limits.

• Forward Euler method (the default), also known as Forward
Rectangular, or left-hand approximation.

For this method, 1/s is approximated by T/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n-1)

2-235

Discrete-Time Integrator

Let x(n+1) = x(n) + K*T*u(n). The block uses the following steps
to compute its output:

Step 0: y(0) = x(0) = IC (clip if necessary)
x(1) = y(0) + K*T*u(0)

Step 1: y(1) = x(1)
x(2) = x(1) + K*T*u(1)

Step n: y(n) = x(n)
x(n+1) = x(n) + K*T*u(n) (clip if necessary)

With this method, input port 1 does not have direct feedthrough.

• Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n)

Let x(n) = y(n-1). The block uses the following steps to compute its
output

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step 0: x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1) = x(1) + K*T*u(1)
x(2) = y(1)

Step n: y(n) = x(n) + K*T*u(n)
x(n+1) = y(n)

2-236

Discrete-Time Integrator

With this method, input port 1 has direct feedthrough.

• Trapezoidal method. For this method, 1/s is approximated by

T/2*(z+1)/(z-1)

When T is fixed (equal to the sampling period), let

x(n) = y(n-1) + K*T/2 * u(n-1)

The block uses the following steps to compute its output

Step 0: x(0) = IC (clipped if necessary)
x(1) = y(0) + K*T/2 * u(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2 * u(1)
x(2) = y(1) + K*T/2 * u(1)

Step n: y(n) = x(n) + K*T/2 * u(n)
x(n+1) = y(n) + K*T/2 * u(n)

Here, x(n+1) is the best estimate of the next output. It isn’t quite
the state, in the sense that x(n) != y(n).

If T is variable (i.e. obtained from the triggering times), the block
uses the following algorithm to compute its outputs

Step 0: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary)

2-237

Discrete-Time Integrator

x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + T/2 * (u(1) + u(0))
x(2) = y(1)

Step n: y(n) = x(n) + T/2 * (u(n) + u(n-1))
x(n+1) = y(n)

With this method, input port 1 has direct feedthrough.

The block reflects the selected integration or accumulation method,
as this figure shows.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

• To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

• To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

2-238

Discrete-Time Integrator

Using the State Port

In two situations, you must use the state port instead of the output port:

• When the output of the block is fed back into the block through the
reset port or the initial condition port, causing an algebraic loop. For
an example of this situation, see the sldemo_bounce model.

• When you want to pass the state from one conditionally executed
subsystem to another, which can cause timing problems. For an
example of this situation, see the sldemo_clutch model.

You can correct these problems by passing the state through the state
port rather than the output port. Although the values are the same,
Simulink software generates them at slightly different times, which
protects your model from these problems. You output the block state
by selecting the Show state port check box.

By default, the state port appears on the top of the block, as shown in
this figure.

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter
fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

2-239

Discrete-Time Integrator

• When the integral is less than or equal to the Lower saturation
limit and the input is negative, the output is held at the Lower
saturation limit.

• When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation
limit and the input is positive, the output is held at the Upper
saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown in this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

Resetting the State

The block can reset its state to the specified initial condition, based on
an external signal. To cause the block to reset its state, select one of the
External reset parameter choices. A trigger port appears below the
block’s input port and indicates the trigger type, as shown in this figure.

2-240

Discrete-Time Integrator

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results. To resolve this loop, feed the
output of the block’s state port into the reset port instead. To access the
block’s state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the
reset signal that triggers the reset. The trigger options include:

• rising

Resets the state when the reset signal has a rising edge. For example,
the following figure shows the effect that a rising reset trigger has
on backward Euler integration.

�����

���	�

�����������������
�����

��������

• falling

2-241

Discrete-Time Integrator

Resets the state when the reset signal has a falling edge. For
example, the following figure shows the effect that a falling reset
trigger has on backward Euler integration.

�����

���	�

������������������
�����

��������

• either

Resets the state when the reset signal rises or falls. For example,
the following figure shows the effect that an either reset trigger has
on backward Euler integration.

�����

���	�

������������������
�����

��������

• level

2-242

Discrete-Time Integrator

Resets and holds the output to the initial condition while the reset
signal is nonzero. For example, the following figure shows the effect
that a level reset trigger has on backward Euler integration.

�����

���	�

�����������������
�����

��������

• sampled level

Resets the output to the initial condition when the reset signal is
nonzero. For example, the following figure shows the effect that a
sampled level reset trigger has on backward Euler integration.

���	�

�����

���������������
�����������
������������

2-243

Discrete-Time Integrator

Note The sampled level reset option requires fewer computations
and hence is more efficient than the level reset option. However,
the level reset option, but may introduces a discontinuity when
integration resumes.

Choosing All Options

When all options are selected, the icon looks like this.

Data Type
Support

The Discrete-Time Integrator block accepts real signals of any data type
supported by Simulink software, including fixed-point data types.

2-244

Discrete-Time Integrator

Parameters
and
Dialog
Box

The Main pane of the Discrete-Time Integrator block dialog appears
as follows:

2-245

Discrete-Time Integrator

Integrator method
Specify the integration or accumulation method.

Gain value
Specify a value by which to multiply the integrator input.
Specifying a value other than 1.0 (the default) is semantically
equivalent to connecting a signal to the input of the integrator
via a Gain block, i.e., to

Using this parameter to specify the input gain eliminates a
multiplication operation in the generated code. Realizing this
benefit, however, requires that this parameter be nontunable.
Accordingly, the Real-Time Workshop® software generates
a warning during code generation if the Model Parameter
Configuration dialog box for this model declares this parameter
to be tunable. If you want to tune the input gain, set this
parameter to 1.0 and use an external Gain block to specify the
input gain.

External reset
Resets the states to their initial conditions when a trigger event
occurs in the reset signal. See “Resetting the State” on page 2-240
for more information.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (internal) or from an external block (external).
Simulink software does not allow the initial condition of this
block to be inf or NaN.

2-246

Discrete-Time Integrator

Initial condition
The states’ initial conditions. This parameter is only available
if the Initial condition source parameter is set to internal.
Simulink software does not allow the initial condition of this
block to be inf or NaN.

Use initial condition as initial and reset value for
When you set this parameter to State and output,

y(0) = IC

x(0) = IC

or at reset

y(n) = IC

x(n) = IC

When you set this parameter to State only (most efficient),

x(0) = IC

or at reset

x(n) = IC

Sample time
The time interval between samples. The default is 1. In
accumulation mode, the sample time specifies when the block’s
output is computed. See Specifying Sample Time in the “How
Simulink Works” chapter of the Simulink documentation.

Limit output
If selected, limits the block’s output to a value between the Lower
saturation limit and Upper saturation limit parameters.

2-247

Discrete-Time Integrator

Upper saturation limit
The upper limit for the integral. This parameter is only available
if you select the Limit output parameter.

Lower saturation limit
The lower limit for the integral. This parameter is only available
if you select the Limit output parameter.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

The Signal Attributes pane of the Discrete-Time Integrator block
dialog appears as follows:

2-248

Discrete-Time Integrator

2-249

Discrete-Time Integrator

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

2-250

Discrete-Time Integrator

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop User’s Guide for more
information.

Characteristics Direct Feedthrough Yes, of the reset and external initial
condition source ports. The input has
direct feedthrough for every integration
method except forward Euler and
accumulation forward Euler.

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of parameters

States Inherited from driving block and
parameter

Dimensionalized Yes

Zero Crossing No

2-251

Discrete Transfer Fcn

Purpose Implement discrete transfer function

Library Discrete

Description The Discrete Transfer Fcn block implements the z-transform transfer
function described by the following equations:

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be
a vector or matrix, den must be a vector, and both are specified as
parameters on the block dialog box. The order of the denominator must
be greater than or equal to the order of the numerator.

Block input is scalar; output width is equal to the number of rows in
the numerator.

The Discrete Transfer Fcn block represents the method typically used
by control engineers, representing discrete systems as polynomials in z.
The Discrete Filter block represents the method typically used by signal
processing engineers, who describe digital filters using polynomials
in z-1 (the delay operator). The two methods are identical when the
numerator is the same length as the denominator.

The Discrete Transfer Fcn block displays the numerator and
denominator within its icon depending on how they are specified. See
Transfer Fcn for more information.

Data Type
Support

The Discrete Transfer Function block accepts and outputs real signals
of type single or double.

2-252

Discrete Transfer Fcn

Parameters
and
Dialog
Box

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1
0.5].

Sample time
The time interval between samples. The default is 1. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Simulink® documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage

2-253

Discrete Transfer Fcn

and Interfacing” in the Real-Time Workshop® User’s Guide for more
information.

Characteristics Direct Feedthrough Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Denominator parameter -1

Dimensionalized No

Zero Crossing No

2-254

Discrete Zero-Pole

Purpose Model system defined by zeros and poles of discrete transfer function

Library Discrete

Description The Discrete Zero-Pole block models a discrete system defined by the
zeros, poles, and gain of a z-domain transfer function. This block
assumes that the transfer function has the following form

where Z represents the zeros vector, P the poles vector, and K the gain.
The number of poles must be greater than or equal to the number of
zeros (n ≥ m). If the poles and zeros are complex, they must be complex
conjugate pairs.

The block displays the transfer function depending on how the
parameters are specified. See Zero-Pole for more information.

Data Type
Support

The Discrete Zero-Pole block accepts and outputs real signals of type
double.

2-255

Discrete Zero-Pole

Parameters
and
Dialog
Box

Zeros
The matrix of zeros. The default is [1].

Poles
The vector of poles. The default is [0 0.5].

Gain
The gain. The default is 1.

Sample time
The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink®

documentation.

2-256

Discrete Zero-Pole

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more
information.

Characteristics Direct Feedthrough Yes, if the number of zeros and poles are
equal

Sample Time Specified in the Sample time parameter

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No

2-257

Display

Purpose Show value of input

Library Sinks

Description The Display block shows the value of its input on its icon.

You control the display format using the Format parameter:

• short — displays a 5-digit scaled value with fixed decimal point

• long — displays a 15-digit scaled value with fixed decimal point

• short_e — displays a 5-digit value with a floating decimal point

• long_e — displays a 16-digit value with a floating decimal point

• bank — displays a value in fixed dollars and cents format (but with
no $ or commas)

• hex (Stored Integer) — displays the stored integer value of a
fixed-point input in hexadecimal format

• binary (Stored Integer) — displays the stored integer value of a
fixed-point input in binary format

• decimal (Stored Integer) — displays the stored integer value of a
fixed-point input in decimal format

• octal (Stored Integer) — displays the stored integer value of a
fixed-point input in octal format

The amount of data displayed and the time steps at which the data is
displayed are determined by the Decimation block parameter and
the SampleTime property:

• The Decimation parameter enables you to display data at every nth
sample, where n is the decimation factor. The default decimation, 1,
displays data at every time step.

• The SampleTime property, settable with set_param, enables you to
specify a sampling interval at which to display points. This property
is useful when you are using a variable-step solver where the interval

2-258

Display

between time steps might not be the same. The default value of -1
causes the block to ignore the sampling interval when determining
the points to display.

If the block input is an array, you can resize the block to show more
than just the first element. You can resize the block vertically or
horizontally; the block adds display fields in the appropriate direction.
A black triangle indicates that the block is not displaying all input
array elements. For example, the following figure shows a model that
passes a vector (1-D array) to a Display block. The black triangle on the
Display block indicates more data to be displayed.

The following figure shows the resized block displaying both input
elements.

Note The Display block shows only the first 200 elements of a
one-dimensional (vector) signal and only the first 20 rows and 10
columns of a two-dimensional (matrix) signal.

2-259

Display

Display Abbreviations

The following abbreviations appear on the Display block to help you
identify the format of the number being displayed.

Symbol Description

(SI) This alerts you to the fact that the number being
displayed is the stored integer value. This symbol
does not appear when the signal is of an integer data
type.

hex The number being displayed is in hexadecimal
format.

bin The number being displayed is in binary format.

oct The number being displayed is in octal format.

Floating Display

To use the block as a floating display, select the Floating display
check box. The block’s input port disappears and the block displays
the value of the signal on a selected line. If you select the Floating
display option, you must turn off the signal storage reuse feature in
your Simulink® software. See “Signal storage reuse” in the “Running
Simulations” chapter of the Simulink documentation.

Note The floating display does not support multidimensional signals.
If you connect a multidimensional signal to a floating display, the
display generates an error.

Data Type
Support

The Display block accepts and outputs real or complex signals of any
data type supported by Simulink software, including fixed-point data
types.

2-260

Display

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters
and
Dialog
Box

Format
Specify the format of the data displayed, as discussed in
Description. The default is short.

Decimation
Specify how often to display data. The default value, 1, displays
every input point.

Floating display
If selected, the block’s input port disappears, which enables the
block to be used as a floating Display block.

Characteristics SampleTime Use set_param to specify the SampleTime
property

Dimensionalized Yes

2-261

Divide

Purpose Multiply or divide inputs

Library Math Operations

Description The Divide block is an implementation of the Product block. See
Product for more information.

2-262

DocBlock

Purpose Create text that documents model and save text with model

Library Model-Wide Utilities

Description The DocBlock allows you to create and edit text that documents a
model, and save that text with the model. Double-clicking an instance
of the block creates a temporary file containing the text associated with
this block and opens the file in an editor. Use the editor to modify the
text and save the file. Simulink® software stores the contents of the
saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII
text document types. The default editors for these different document
types are

• HTML — Microsoft® Word (if available). Otherwise, the DocBlock
opens HTML documents using the editor specified on the
Editor/Debugger Preferences pane of the Preferences dialog box.

• RTF — Microsoft Word (if available). Otherwise, the DocBlock opens
RTF documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

• Text — The DocBlock opens text documents using the editor specified
on the Editor/Debugger Preferences pane of the Preferences
dialog box.

Use the docblock command to change the default editors.

Note Simulink software embeds DocBlock documents in the model file
(see Chapter 9, “Model File Format”). This can greatly increase the size
of a model file, for example, if the RTF document contains bitmapped
images, and can require more time to open and save the model.

Data Type
Support

Not applicable.

2-263

DocBlock

Parameters
and
Dialog
Box

Double-clicking an instance of the DocBlock opens an editor. To access
the DocBlock parameter dialog box, select the block in the Model Editor
and then select Mask Parameters from either the Edit menu or the
block’s context menu.

RTW Embedded Coder Flag (Real-Time Workshop® Embedded
Coder™ license required)

Enter a template symbol name in this field. Real-Time Workshop
Embedded Coder software uses this symbol to add comments
to the code generated from the model. See “Adding Global
Comments” in the Real-Time Workshop Embedded Coder Module
Packaging Features documentation for more information.

Document Type
Specifies the type of document associated with the DocBlock. The
options are

• Text (the default)

• RTF

• HTML

2-264

DocBlock

Characteristics Not applicable

2-265

Dot Product

Purpose Generate dot product of two vectors

Library Math Operations

Description The Dot Product block generates the dot product of the vectors at its
inputs. The scalar output, y, is equal to the MATLAB® operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vectors at the block’s top and bottom
inputs, respectively. (See “Changing the Orientation of a Block”in
the Simulink® documentation for a description of the port order for
various block orientations.) The inputs can be vectors, column vectors
(single-column matrices), or scalars. If both inputs are vectors or
column vectors, they must be the same length. If u1 and u2 are both
column vectors, the block outputs the equivalent of the MATLAB
expression u1'*u2.

The elements of the input vectors can be real- or complex-valued
signals. The signal type (complex or real) of the output depends on the
signal types of the inputs.

Input 1 Input 2 Output

real real real

real complex complex

complex real complex

complex complex complex

To perform element-by-element multiplication without summing, use
the Product block.

Data Type
Support

The Dot Product block accepts and outputs signals of any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink”.

2-266

Dot Product

Parameters
and
Dialog
Box

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

2-267

Dot Product

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

States 0

Dimensionalized Yes

Zero Crossing No

2-268

Embedded MATLAB Function

Purpose Include MATLAB® code in models that generate embeddable C code

Library User-Defined Functions

Description An Embedded MATLAB™ Function block lets you compose a MATLAB
function within a Simulink® model like the following example:

The MATLAB function you create executes for simulation and generates
code for a Real-Time Workshop® target. If you are new to the Simulink
and MATLAB products, see “Using the Embedded MATLAB Function

2-269

Embedded MATLAB Function

Block” in the Simulink documentation for a comprehensive overview
including a step-by-step example.

You create the MATLAB function in the Embedded MATLAB Editor.
To learn about this editor’s capabilities see “The Embedded MATLAB
Function Editor”.

You specify input and output data to the Embedded MATLAB Function
block in the function header as arguments and return values. Notice
that the argument and return values of the preceding example function
correspond to the inputs and outputs of the block in the Simulink model.

The Embedded MATLAB Function block supports a subset of the
language for which it can generate efficient embeddable code. For details
about the Embedded MATLAB subset, see “Working with the Embedded
MATLAB Subset” in the Embedded MATLAB documentation.

To generate embeddable code, the Embedded MATLAB Function block
relies on an analysis that determines the size and class of each variable.
This analysis imposes the following additional restrictions on the way
in which the above features may be used.

2-270

Embedded MATLAB Function

1 The first definition of a variable must define both its class and size.
The class and size of a variable cannot be changed once it has been
set.

2 Whether data is complex or real is determined by the first definition.
Subsequent definitions may assign real numbers into complex
storage but may not assign complex numbers into real storage.

The preceding limitations require you to code in a certain style.
Some common idioms to avoid are listed in “Using Matrix Indexing
Operations” and “Working with Complex Numbers” in the Embedded
MATLAB documentation.

In addition to language restrictions, Embedded MATLAB Function
blocks support only a subset of the functions available in MATLAB. A
list of supported functions is given in the “Embedded MATLAB Function
Library Reference” in the Embedded MATLAB documentation. These
functions include functions in common categories like

• Arithmetic functions like plus, minus, and power

• Matrix operations like size, and length

• Advanced matrix operations like lu, inv, svd, and chol

• Trigonometric functions like sin, cos, sinh, and cosh

to name just a few. See “Embedded MATLAB Function Library —
Categorical List” in the Embedded MATLAB documentation for a
complete list of function categories.

2-271

file:///B:/matlab/doc/src/techdoc/ref/arithmeticoperators.html

Embedded MATLAB Function

Note Although Embedded MATLAB software attempts to produce
exactly the same results as MATLAB software, there will be occasions
when they will differ due to rounding errors. These numerical
differences, which may be a few eps initially, might be magnified
after repeated operations. Reliance on the behavior of nan is not
recommended. Different C compilers may yield different results for the
same computation.

To support visualization of data, Embedded MATLAB Function blocks
support calls to MATLAB functions for simulation only. See “Calling
MATLAB Functions” in the Embedded MATLAB documentation to
understand some of the limitations of this capability, and how it
is integrated into Embedded MATLAB analysis. If these calls do
not directly affect any of the Simulink inputs or outputs, they are
eliminated from the generated code when generating code with
Real-Time Workshop.

You can declare an Embedded MATLAB input to be a Simulink
parameter instead of a port in the Model Explorer. The Embedded
MATLAB Function block also supports inheritance of types and size
for inputs, outputs, and parameters. If needed, you can also set these
explicitly using the Model Explorer. See “Typing Function Arguments”,
“Sizing Function Arguments”, and “Parameter Arguments in Embedded
MATLAB Functions”, for more detailed descriptions of variables that
you use in Embedded MATLAB Functions.

Note that recursive calls are not allowed in Embedded MATLAB
functions.

Data Type
Support

The Embedded MATLAB Function block accepts inputs of any type
supported by Simulink software. For a discussion on the variable types
supported by Embedded MATLAB functions in Simulink software, refer
to “Data Types Supported by Simulink” in the Simulink documentation.

2-272

Embedded MATLAB Function

For more information on fixed-point support in Embedded MATLAB,
refer to “Working with the Fixed-Point Embedded MATLAB Subset” in
the Fixed-Point Toolbox™ documentation.

The Embedded MATLAB Function block supports Simulink frames.
See “Frame-Based Signals” in the Signal Processing Blockset™
documentation for more information.

Parameters
and
Dialog
Box

The Block Parameters dialog box for an Embedded MATLAB Function
block is identical to the Block Parameters dialog box for a Subsystem
block. See the reference page for the Subsystem, Atomic Subsystem,
CodeReuse Subsystem blocks for an identification of each field.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-273

Enable

Purpose Add enabling port to subsystem

Library Ports & Subsystems

Description Adding an Enable block to a subsystem makes it an enabled subsystem.
An enabled subsystem executes while the input received at the Enable
port is greater than zero.

At the start of simulation, Simulink® software initializes the states of
blocks inside an enabled subsystem to their initial conditions. When
an enabled subsystem restarts (executes after having been disabled),
the States when enabling parameter determines what happens to the
states of blocks contained in the enabled subsystem:

• reset resets the states to their initial conditions (zero if not defined).

• held holds the states at their previous values.

You can output the enabling signal by selecting the Show output
port check box. Selecting this option allows the system to process the
enabling signal.

A subsystem can contain no more than one Enable block.

Data Type
Support

The data type of the input of the Enable port, i.e., the enable port that
appears on the subsystem in which the Enable block resides, can be
any data type supported by Simulink software, including fixed-point
data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-274

Enable

Parameters
and
Dialog
Box

States when enabling
Specifies how to handle internal states when the subsystem
becomes reenabled.

Show output port
If selected, Simulink software draws the Enable block output port
and outputs the enabling signal.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Characteristics Sample Time Determined by the signal at the enable
port

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-275

Enabled and Triggered Subsystem

Purpose Represent subsystem whose execution is enabled and triggered by
external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled and triggered subsystem. For
more information, see “Triggered and Enabled Subsystems” in the
online Simulink® help.

2-276

Enabled Subsystem

Purpose Represent subsystem whose execution is enabled by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled subsystem. For more information,
see “Enabled Subsystems” in the “Creating a Model” chapter of the
Simulink® documentation.

2-277

Environment Controller

Purpose Create branches of block diagram that apply only to simulation or only
to code generation

Library Signal Routing

Description This block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its RTW port
only if code is being generated from the model. This allows you to create
branches of a model’s block diagram that apply only to simulation or
only to code generation. The table below describes various scenarios
where either the Sim or RTW port applies.

Scenario Output

Normal mode simulation Sim

Accelerator mode simulation Sim

Rapid Accelerator mode
simulation

RTW

Simulation of a referenced model Sim

External mode simulation RTW

Standard code generation RTW

Code generation of a referenced
model

RTW

Processor-in-the-loop target code
generation

Sim

Real-Time Workshop® does not generate code for blocks connected to
the Sim port. If you enable block reduction optimization (see “Block
reduction” in the online Simulink® documentation), Simulink software
eliminates blocks in the branch connected to the block’s RTW port when
compiling the model for simulation.

2-278

Environment Controller

Note Real-Time Workshop eliminates the blocks connected to the Sim
branch only if the Sim branch has the same signal dimensions as the
RTW branch. Regardless of whether it eliminates the Sim branch,
Real-Time Workshop uses the sample times on the Sim branch as well
as the RTW branch to determine the fundamental sample time of the
generated code and may, in some cases, generate sample-time handling
code that applies only to sample times specified on the Sim branch.

Data Type
Support

The Environment Controller block accepts signals of any numeric or
data type. It outputs the type at its input.

Parameters
and
Dialog
Box

Characteristics Multidimensionalized Yes

2-279

Extract Bits

Purpose Output selection of contiguous bits from input signal

Library Logic and Bit Operations

Description The Extract Bits block allows you to output a contiguous selection of bits
from the stored integer value of the input signal. The Bits to extract
parameter defines the method by which you select the output bits.

• Select Upper half to output the half of the input bits that contain
the most significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

• Select Lower half to output the half of the input bits that contain
the least significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

• Select Range starting with most significant bit to output
a certain number of the most significant bits of the input signal.
Specify the number of most significant bits to output in the Number
of bits parameter.

• Select Range ending with least significant bit to output a
certain number of the least significant bits of the input signal.
Specify the number of least significant bits to output in the Number
of bits parameter.

• Select Range of bits to indicate a series of contiguous bits of the
input to output in the Bit indices parameter. You indicate the range
in [start end] format, and the indices of the input bits are labeled
contiguously starting at 0 for the least significant bit.

2-280

Extract Bits

Data Type
Support

The Extract Bits block accepts inputs of any data type supported by
Simulink® software, including fixed-point data types. Floating-point
inputs are passed through the block unchanged. Boolean inputs are
treated as uint8 signals.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Bits to extract
Select the mode by which to extract bits from the input signal, as
discussed in Description.

Number of bits
(Not shown on dialog above.) Select the number of bits to output
from the input signal.

This parameter is only visible if you select Range starting
with most significant bit or Range ending with least
significant bit for the Bits to extract parameter.

2-281

Extract Bits

Bit indices
(Not shown on dialog above.) Specify a contiguous range of bits
of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0
at the least significant bit.

This parameter is only visible if you select Range of bits for
the Bits to extract parameter.

Output scaling mode
Select the scaling mode to use on the output bits selection:

• When you select Preserve fixed-point scaling, the fixed-point
scaling of the input is used to determine the output scaling during
the data type conversion.

• When you select Treat bit field as an integer, the fixed-point
scaling of the input is ignored, and only the stored integer is used to
compute the output data type.

Example Consider an input signal that is represented in binary by 110111001:

• If you select Upper half for the Bits to extract parameter, the
output is 11011 in binary.

• If you select Lower half for the Bits to extract parameter, the
output is 11001 in binary.

• If you select Range starting with most significant bit for the
Bits to extract parameter, and specify 3 for the Number of bits
parameter, the output is 110 in binary.

• If you select Range ending with least significant bit for the
Bits to extract parameter, and specify 8 for the Number of bits
parameter, the output is 10111001 in binary.

• If you select Range of bits for the Bits to extract parameter, and
specify [4 7] for the Bit indices parameter, the output is 1011 in
binary.

2-282

Extract Bits

Characteristics Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion N/A

States None

Dimensionalized Inherited

Zero Crossing No

2-283

Fcn

Purpose Apply specified expression to input

Library User-Defined Functions

Description The Fcn block applies the specified mathematical expression to its input.
The expression can be made up of one or more of these components:

• u — The input to the block. If u is a vector, u(i) represents the ith
element of the vector; u(1) or u alone represents the first element.

• Numeric constants

• Arithmetic operators (+ - * /^)

• Relational operators (== != > < >= <=) — The expression returns 1
if the relation is true; otherwise, it returns 0.

• Logical operators (&& || !) — The expression returns 1 if the
relation is true; otherwise, it returns 0.

• Parentheses

• Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos,
cosh, exp, fabs, floor, hypot, ln, log, log10, pow, power, rem, sgn,
sin, sinh, sqrt, tan, and tanh.

• Workspace variables — Variable names that are not recognized in
the preceding list of items are passed to MATLAB® for evaluation.
Matrix or vector elements must be specifically referenced (e.g.,
A(1,1) instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:

1 ()

2 ^

3 + - (unary)

4 !

2-284

Fcn

5 * /

6 + -

7 > < <= >=

8 == !=

9 &&

10 ||

The expression differs from a MATLAB expression in that the
expression cannot perform matrix computations. Also, this block does
not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For
vector output, consider using the Math Function block. If a block input
is a vector and the function operates on input elements individually (for
example, the sin function), the block operates on only the first vector
element.

Data Type
Support

The Fcn block accepts and outputs signals of type single or double.

2-285

Fcn

Parameters
and
Dialog
Box

Expression
The mathematical expression applied to the input. Expression
components are listed above. The expression must be
mathematically well formed (i.e., matched parentheses, proper
number of function arguments, etc.).

Note You cannot tune the expression during accelerated-mode
simulation (see “Accelerating Models”), in referenced models
executing in Accelerator mode (see “Referencing a Model”, or in
generated code.

The Fcn block does not support custom storage classes. See
“Custom Storage Classes”.

2-286

Fcn

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-287

First-Order Hold

Purpose Implement first-order sample-and-hold

Library Discrete

Description The First-Order Hold block implements a first-order sample-and-hold
that operates at the specified sampling interval. This block has little
value in practical applications and is included primarily for academic
purposes.

This figure compares the output from a Sine Wave block and a
First-Order Hold block.

Data Type
Support

The First-Order Hold block accepts and outputs signals of type double.

2-288

First-Order Hold

Parameters
and
Dialog
Box

Sample time
The time interval between samples. See “Specifying Sample
Time” in the online documentation for more information.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

States 1 continuous and 1 discrete per input
element

Dimensionalized Yes

Zero Crossing No

2-289

Fixed-Point State-Space

Purpose Implement discrete-time state space

Library Additional Math & Discrete / Additional Discrete

Description The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+1) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations
have the same data type.

The matrices A, B, C and D have the following characteristics:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

In addition:

• The state x must be a n-by-1 vector

• The input u must be a m-by-1 vector

• The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Data Type
Support

The Fixed-Point State-Space block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-290

Fixed-Point State-Space

Parameters
and
Dialog
Box

The Main pane of the Fixed-Point State-Space block dialog appears
as follows:

State Matrix A
Specify the matrix of states.

Input Matrix B
Specify the column vector of inputs.

Output Matrix C
Specify the column vector of outputs.

Direct Feedthrough Matrix D
Specify the matrix for direct feedthrough.

2-291

Fixed-Point State-Space

Initial condition for state
Specify the initial condition for the state.

The Signal Data Types pane of the Fixed-Point State-Space block
dialog appears as follows:

Data type for internal calculations
Specify the data type for internal calculations.

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU
Specify the scaling for output equations.

2-292

Fixed-Point State-Space

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-293

For Iterator

Purpose Repeatedly execute contents of subsystem at current time step until
iteration variable exceeds specified iteration limit

Library Ports & Subsystems/For Iterator Subsystem

Description The For Iterator block, when placed in a subsystem, repeatedly executes
the contents of the subsystem at the current time step until an iteration
variable exceeds a specified iteration limit. You can use this block
to implement the block diagram equivalent of a for loop in the C
programming language.

The output of a For Iterator subsystem can not be a function-call signal.
Simulink® software will display an error message if the simulation is
run or the diagram updated.

The block’s parameter dialog allows you to specify the maximum value
of the iteration variable or an external source for the maximum value
and an optional external source for the next value of the iteration
variable. If you do not specify an external source for the next value of
the iteration variable, the next value is determined by incrementing the
current value:

in+1 = in +1

The model in the following figure uses a For Iterator block to increment
an initial value of zero by 10 over 20 iterations at every time step.

2-294

For Iterator

The following figure shows the result.

2-295

For Iterator

The For Iterator subsystem in this example is equivalent to the
following C code.

sum = 0;
iterations = 20;
sum_increment = 10;
for (i = 0; i < iterations; i++) {
sum = sum + sum_increment;

}

Note Placing a For Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

2-296

For Iterator

Data Type
Support

The following rules apply to the data type of the number of iterations
(N) input port:

• The input port accepts data of mixed types.

• If the input port value is noninteger, it is first truncated to an integer.

• Internally, the input value is cast to an integer of the type specified
for the iteration variable output port.

• If no output port is specified, the input port value is cast to type
int32.

• If the input port value exceeds the maximum value of the output
port’s type, it is truncated to that maximum value.

Data output for the iterator value can be selected as double, int32,
int16, or int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

• It can appear only if the iteration variable output port is enabled.

• The data type of the iteration variable input port is the same as the
data type of the iteration variable output port.

2-297

For Iterator

Parameters
and
Dialog
Box

States when starting
Set this field to reset if you want the states of the For subsystem
to be reinitialized before the first iteration at each time step.
Otherwise, set this field to held (the default) to make sure that
these subsystem states retain their values from the last iteration
at the previous time step.

2-298

For Iterator

Iteration limit source
If you set this field to internal, the value of the Number of
iterations field determines the number of iterations. If you set
this field to external, the signal at the For Iterator block’s N port
determines the number of iterations. The iteration limit source
must reside outside the For Iterator subsystem.

Iteration limit
Set the number of iterations for the For Iterator block to this
value. This field appears only if you selected internal for the
Source of number of iterations field.

Set next i (iteration variable) externally
This option can be selected only if you select the Show iteration
variable option. If you select this option, the For Iterator block
displays an additional input for connecting an external iteration
variable source. The value of the input at the current iteration is
used as the value of the iteration variable at the next iteration.

Show iteration variable
If you select this check box, the For Iterator block outputs its
iteration value.

Index mode
If you set this field to Zero-based, the iteration number starts
at zero. If you set this field to One-based, the iteration number
starts at one.

Iteration variable data type
Set the type for the iteration value output from the iteration
number port to double, int32, int16, or int8.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving blocks

Scalar Expansion No

2-299

For Iterator

Dimensionalized No

Zero Crossing No

2-300

For Iterator Subsystem

Purpose Represent subsystem that executes repeatedly during simulation time
step

Library Ports & Subsystems

Description The For Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
that executes repeatedly during a simulation time step. For more
information, see the For Iterator block in the online Simulink®

block reference and “Modeling Control Flow Logic” in the Simulink
documentation.

2-301

From

Purpose Accept input from Goto block

Library Signal Routing

Description The From block accepts a signal from a corresponding Goto block, then
passes it as output. The data type of the output is the same as that of
the input from the Goto block. From and Goto blocks allow you to pass
a signal from one block to another without actually connecting them.
To associate a Goto block with a From block, enter the Goto block’s
tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a
Goto block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent
to connecting the blocks to which those blocks are connected. In the
model at the left, Block1 passes a signal to Block2. That model is
equivalent to the model at the right, which connects Block1 to the Goto
block, passes that signal to the From block, then on to Block2.

The visibility of a Goto block tag determines the From blocks that
can receive its signal. For more information, see Goto and Goto Tag
Visibility. The block indicates the visibility of the Goto block tag:

• A local tag name is enclosed in brackets ([]).

• A scoped tag name is enclosed in braces ({}).

• A global tag name appears without additional characters.

Data Type
Support

The From block outputs real or complex signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-302

From

Parameters
and
Dialog
Box

Goto Tag
The tag of the Goto block that forwards its signal to this From
block. To change the tag, select a new tag from this control’s
drop-down list. The drop-down list displays the Goto tags that the
From block can currently see. An item labeled <More Tags...>
appears at the end of the list the first time you display the list in
a Simulink session. Selecting this item causes the block to update
the tags list to include the tags of Goto blocks residing in library
subsystems referenced by the model containing this From block.
Simulink software displays a progress bar while building the list of
library tags. Simulink software saves the updated tags list for the
duration of the Simulink session or until the next time you select
the adjacent Update Tags button. You need to update the tags
list again in the current session only if the libraries referenced by
the model have changed since the last time you updated the list.

2-303

From

Update Tags
Updates the list of tags visible to this From block, including tags
residing in libraries referenced by the model containing this From
block.

Goto Source
Path of the Goto block connected to this From block. Clicking the
path displays and highlights the Goto block.

Icon Display
Specifies the text to display on the From block’s icon. The
options are the block’s tag, the name of the signal that the block
represents, or both the tag and the signal name.

Characteristics Sample Time Inherited from block driving the Goto
block

Dimensionalized Yes

Multidimensionalized Yes

2-304

From File

Purpose Read data from MAT-file

Library Sources

Description The From File block outputs scalar or vector data of type double read
from a MAT-file. The block’s icon shows the pathname of the file
supplying the data. Simulink® software reads the MAT-file into memory
at the start of the simulation, automatically uncompressing it if it had
previously been saved and automatically compressed by MATLAB®.
Therefore:

• Enough memory must be available at the start of simulation to
contain the complete uncompressed MAT-file.

• A From File block cannot read data from a MAT-file written by a To
File block during the current simulation.

The MAT-file contains the stored data as a matrix of two or more rows.
The first element of each column contains a simulation time. The
remainder of each column contains scalar or vector data for the time
shown at the top of the column, one element for each data point in the
input. The time values in the first row must increase monotonically.
The matrix in the file has this form:

The width of the output depends on the number of rows in the MAT-file.
The block uses the time data at the top of each column to determine
when to output the data values in the column, but does not output the
time value itself. This means that given a MAT-file containing m rows,
the block outputs a vector of length m-1, consisting of data from all
but the first row of each column.

2-305

From File

See “Importing Data from a Workspace” for guidelines on choosing time
vectors for discrete systems.

Missing and Duplicate Time Stamps

If an output value is needed at a time that falls between two values in
the MAT-file, the value is linearly interpolated between the appropriate
values. If the required time is less than the first time value or greater
than the last time value in the MAT-file, Simulink software extrapolates,
using the first two or last two data points to compute a value.

If the matrix includes two or more columns at the same time value, the
output is the data point for the first such column encountered. For
example, for a matrix that has this data:

time values: 0 1 2 2
data points: 2 3 4 5

At time 2, the output is 4, the data point for the first column
encountered at that time value.

Using Data Saved by a To File Block

The From File block can read data written by a To File block without
any modifications to the data or other special provisions.

Using Data Saved by a To Workspace Block

The From File block can read data written by a To Workspace block
subject to the following requirements:

• The data must include the simulation times. The easiest way to
include time data in the simulation output is to specify a variable
for time on the Data Import/Export pane of the Configuration
Parameters dialog box. See “Data Import/Export Pane” for more
information.

• The data must be the transposition of the data saved to the workspace
by the To Workspace block. Before saving the data to a MAT-file,
transpose it to the form expected by the From File block.

• The data in the file must be scalar or vector data of type double.

2-306

From File

Data Type
Support

The From File block can read data only in MAT-file format. The block
can output only vector and scalar data of type double. The block cannot
output matrix signals or complex data.

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” for details.

File name
The fully qualified pathname or file name of the MAT-file
that contains the data used as input. On UNIX® systems, the
pathname can start with a tilde (~) character signifying your
home directory. The default file name is untitled.mat. If you
specify an unqualified file name, Simulink software assumes
that the MAT-file resides in the MATLAB working directory.
(To determine the working directory, enter pwd at the MATLAB
command line.) If Simulink software cannot find the specified file
name in the working directory, it displays an error message.

2-307

From File

Sample time
The sample period and offset of the data read from the file. The
default is 0, which specifies continuous sample time: the MAT-file
is read at the base (fastest) rate of the model. See “Specifying
Sample Time” for more information.

If the specified Sample time requires data at a time for which
the MAT-file contains no matching time stamp, Simulink
software extrapolates or interpolates to obtain the needed data,
as described in “Missing and Duplicate Time Stamps” on page
2-306. If the MAT-file contains columns with time stamps that the
specified Sample time never requires, the data points in columns
with those time stamps are ignored.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized 1-D array only

Zero Crossing No

See Also From Workspace, To File, To Workspace

2-308

From Workspace

Purpose Read data from workspace

Library Sources

Description The From Workspace block reads data from a workspace. The block’s
Data parameter specifies the workspace data using a MATLAB®

expression that evaluates to a matrix (2-D array), a structure containing
an array of signal values and time steps, or a time series object (see
Simulink.Timeseries). The From Workspace icon displays the
expression specified in the Data parameter. The Simulink® software
evaluates this expression as described in “Resolving Symbols”.

The format of the matrix or structure is the same as that used to load
root-level input port data from the workspace. See “Importing Data
from a Workspace” for more information. See the documentation of
the sim command for some data import capabilities that are available
only for programmatic simulation.

Note You must use the structure-with-time format or a time series
object to load matrix (2-D) data from the workspace.

The From Workspace block’s Interpolate data parameter determines
the block’s output in the time interval for which workspace data is
supplied. If you select the Interpolate data option, the block uses
linear Lagrangian interpolation to compute data values for time steps
that occur between time steps for which the workspace supplies data.
In particular, the block linearly interpolates a missing data point from
the two known data points between which it falls. For example, suppose
the block reads the following time series from the workspace.

time: 1 2 3 4
signal: 253 254 ? 256

In this case, the block would output:

2-309

From Workspace

time: 1 2 3 4
signal: 253 254 255 256

If you do not select the Interpolate data option, the block uses the
most recent data value supplied from the workspace.

Note The data type of the workspace data can affect interpolated
values. See “How Data Types Affect Interpolation” on page 2-313 for
more information.

The block’s Form output after final data value by parameter
determines the block’s output after the last time step for which data
is available from the workspace. The following table summarizes the
output block based on the options that the parameter provides.

Form Output
Option

Interpolate
Option

Block Output After Final
Data

Extrapolate On Extrapolated from final data
value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace.
This option is valid only
for workspace data in
structure-without-time format.

2-310

From Workspace

If the input array contains more than one entry for the same time
step, Simulink software detects a zero crossing at this time step. For
example, suppose the input array has this data:

time: 0 1 2 2 3
signal: 2 3 4 5 6

At time 2, there is a zero crossing from input signal discontinuity.

If the interpolation option is on, the block uses the last two known data
points to extrapolates data points that occur after the last known point.
Consider the following example.

2-311

From Workspace

In this example, the From Workspace block reads data from the
workspace consisting of the output of the Simulink Sine block sampled
at one-second intervals. The workspace contains the first 16 samples of
the output. The top and bottom X-Y plots display the output of the Sine
Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects
the block’s linear extrapolation of missing data points at the end of
the simulation.

Note A From Workspace block can directly read the output
of a To Workspace block (see To Workspace) if the output is in
structure-with-time format (see “Importing Data from a Workspace”
for a description of these formats).

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

Using Data Saved by a To File Block

The From Workspace block requires data that is the transposition of the
data written by the To File block. To provide the required format, use
MATLAB commands to open, transpose, and resave the MAT-file. You
will then be able to use a From Workspace block to access the data after
loading the file to the workspace.

Using Data Saved by a To Workspace Block

In a To Workspace block, use the Structure with Time format to save
sample-based data if you intend to use a From Workspace block to play
back the data in another simulation.

Data Type
Support

The From Workspace block accepts from the workspace and outputs
real or complex signals of any type supported by Simulink software,
including fixed-point data types. Real signals of type double can be in
either structure or matrix format. Complex signals and real signals of
any type other than double must be in structure format.

2-312

From Workspace

How Data Types Affect Interpolation

The data type of the data supplied by the workspace can affect
interpolation and extrapolation of missing values in the following cases.

Integer data

If the input data type is an integer type and an interpolated data point
exceeds the data type’s range, the block sets the missing data point to
be the maximum value that the data type can represent. Similarly, if
the interpolated or extrapolated value is less than the minimum value
that the data type can represent, the block sets the missing data point
to the minimum value that the data type can represent. For example,
suppose that the data type is uint8 and the value interpolated for a
missing data point is 256.

time: 1 2 3 4
signal: 253 254 255 ?

In this case, the block sets the value of the missing point to 255, the
largest value that can be represented by the uint8 data type:

time: 1 2 3 4
signal: 253 254 255 255

Boolean data

If the input data is boolean, the block uses the value of the nearest
workspace data point as the value of missing data point when
determining missing data points that fall between the first and last
known points. For example, suppose the workspace supplies values at
time steps 1 and 4 but not at 2 and 3:

time: 1 2 3 4
signal: 1 ? ? 0

In this case, the block would use the value of data point 1 as the value
of data point 2 and the value of data point 4 as the value of data point 3:

2-313

From Workspace

time: 1 2 3 4
signal: 1 1 0 0

The block uses the value of the last known data point as the value of
time steps that occur after the last known data point.

Parameters
and
Dialog
Box

2-314

From Workspace

Data
An expression that evaluates to an array or a structure containing
an array of simulation times and corresponding signal values. For
example, suppose that the workspace contains a column vector of
times named T and a vector of corresponding signal values named
U. Entering the expression [T,U] for this parameter yields the
required input array. If the required signal-versus-time array or
structure already exists in the workspace, enter the name of the
structure or matrix in this field.

Sample time
Sample rate of data from the workspace. See “Specifying Sample
Time” in the online documentation for more information.

Interpolate data
This option causes the block to linearly interpolate at time steps
for which no corresponding workspace data exists. Otherwise,
the current output equals the output at the most recent time for
which data exists.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Form output after final data value by
Select method for generating output after the last time point for
which data is available from the workspace.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing Yes

2-315

From Workspace

See Also From File, To File, To Workspace

2-316

Function-Call Generator

Purpose Execute function-call subsystem specified number of times at specified
rate

Library Ports & Subsystems

Description The Function-Call Generator block executes a function-call subsystem
(for example, a Stateflow® state chart configured as a function-call
system) at the rate specified by the block’s Sample time parameter.
To execute multiple function-call subsystems in a prescribed order,
first connect a Function-Call Generator block to a Demux block that
has as many output ports as there are function-call subsystems to be
controlled. Then connect the output ports of the Demux block to the
systems to be controlled. The system connected to the first demux port
executes first, the system connected to the second demux port executes
second, and so on.

Data Type
Support

The Function-Call Generator block outputs a signal of type fcn_call.

2-317

Function-Call Generator

Parameters
and
Dialog
Box

Sample time
The time interval between samples. See “Specifying Sample
Time”in the online documentation for more information.

Number of iterations
Number of times to execute the block per time step. The value of
this parameter may be a vector where each element of the vector
specifies a number of times to execute a function-call subsystem.
The total number of times that a function-call subsystem executes
per time step equals the sum of the values of the elements of the
generator signal entering its control port. For example, suppose
you specify the number of iterations to be [2 2] and connect
the output of this block to the control port of a function-call
subsystem. In this case, the function-call subsystem executes four
times at each time step.

2-318

Function-Call Generator

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-319

Function-Call Subsystem

Purpose Represent subsystem that can be invoked as function by another block

Library Ports & Subsystems

Description The Function-Call Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a function-call
subsystem. For more information, see “Function-Call Subsystems” in
the “Creating a Model” chapter of the Simulink® documentation.

2-320

Gain

Purpose Multiply input by constant

Library Math Operations

Description The Gain block multiplies the input by a constant value (gain). The
input and the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The
Multiplication parameter lets you specify element-wise or matrix
multiplication. For matrix multiplication, this parameter also lets you
indicate the order of the multiplicands.

The gain is converted from doubles to the data specified in the block
mask offline using round-to-nearest and saturation. The input and gain
are then multiplied, and the result is converted to the output data type
using the specified rounding and overflow modes.

Data Type
Support

The Gain block accepts a real or complex scalar, vector, or matrix of any
data type supported by Simulink® software. The Gain block supports
fixed-point data types. If the input of the Gain block is real and the gain
is complex, the output is complex.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-321

Gain

Parameters
and
Dialog
Box

The Main pane of the Gain block dialog appears as follows:

Gain
Specify the value by which to multiply the input. The gain may be
a scalar, vector, or matrix. The gain may not be Boolean.

Multiplication
Specify the multiplication mode:

• Element-wise(K.*u) — Each element of the input is multiplied
by each element of the gain. The block performs expansions, if
necessary, so that the input and gain have the same dimensions.

• Matrix(K*u) — The input and gain are matrix multiplied with
the input as the second operand.

• Matrix(u*K) — The input and gain are matrix multiplied with
the input as the first operand.

2-322

Gain

• Matrix(K*u)(u vector) — The input and gain are matrix
multiplied with the input as the second operand. The input
and the output are required to be vectors and their lengths are
determined by the dimensions of the gain.

Sample time (-1 for inherited):
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Gain block dialog appears as follows:

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

2-323

Gain

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

If you select Inherit: Inherit via internal rule for this
parameter, Simulink software chooses a combination of output
scaling and data type that requires the smallest amount of
memory consistent with accommodating the output range and
maintaining the output precision of the block and with the
word size of the targeted hardware implementation specified for
the model. If the Device type parameter on the Hardware
Implementation configuration parameters pane is set to

2-324

Gain

ASIC/FPGA, Simulink software chooses the output data type
without regard to hardware constraints. Otherwise, Simulink
software chooses the smallest available hardware data type
capable of meeting the range and precision constraints. For
example, if the block multiplies an input of type int8 by a gain
of int16 and ASIC/FPGA is specified as the targeted hardware
type, the output data type is sfix24. If Unspecified (assume
32-bit Generic), i.e., a generic 32-bit microprocessor, is specified
as the target hardware, the output data type is int32. If none
of the word lengths provided by the target microprocessor can
accommodate the output range, Simulink software displays an
error message in the Simulation Diagnostics Viewer.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

The Parameter Attributes pane of the Gain block dialog appears
as follows:

2-325

Gain

Parameter minimum
Specify the minimum value of the gain. The default value, [], is
equivalent to -Inf. Simulink software uses this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Automatic scaling of fixed-point data types

Parameter maximum
Specify the maximum value of the gain. The default value, [], is
equivalent to Inf. Simulink software uses this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Automatic scaling of fixed-point data types

Parameter data type
Specify the data type of the Gain parameter. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same
as input

2-326

Gain

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Parameter data type parameter. (See “Using the Data Type
Assistant” in Using Simulink.)

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input and Gain parameter for
Element-wise(K.*u) multiplication

Dimensionalized Yes

Multidimensionalized Yes, only if the Multiplication
parameter specifies
Element-wise(K.*u)

Zero Crossing No

2-327

Goto

Purpose Pass block input to From blocks

Library Signal Routing

Description The Goto block passes its input to its corresponding From blocks. The
input can be a real- or complex-valued signal or vector of any data
type. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them.

A Goto block can pass its input signal to more than one From block,
although a From block can receive a signal from only one Goto block.
The input to that Goto block is passed to the From blocks associated
with it as though the blocks were physically connected. Goto blocks and
From blocks are matched by the use of Goto tags, defined in the Tag
parameter.

The Tag Visibility parameter determines whether the location of From
blocks that access the signal is limited:

• local, the default, means that From and Goto blocks using the same
tag must be in the same subsystem. A local tag name is enclosed
in brackets ([]).

• scoped means that From and Goto blocks using the same tag must be
in the same subsystem or at any level in the model hierarchy below
the Goto Tag Visibility block that does not entail crossing a nonvirtual
subsystem boundary, i.e., the boundary of an atomic, conditionally
executed, or function-call subsystem or a model reference. A scoped
tag name is enclosed in braces ({}).

• global means that From and Goto blocks using the same tag can
be anywhere in the model except in locations that span nonvirtual
subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual
subsystem boundaries has the following exception. A Goto block
connected to a state port in one conditionally executed subsystem is
visible to a From block inside another conditionally executed subsystem.
For more information about conditionally executed subsystems, see

2-328

Goto

“Creating Conditional Subsystems” in the “Creating a Model” chapter
of the Simulink® documentation.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the nonvirtual subsystems it contains. Simulink
software generates an error if you run or update a diagram that has a
Goto Tag Visibility block at a higher level in the block diagram than the
corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name
reside in the same subsystem. You must use global or scoped tags when
the Goto and From blocks using the same tag name reside in different
subsystems. When you define a tag as global, all uses of that tag access
the same signal. A tag defined as scoped can be used in more than one
place in the model. This example shows a model that uses two scoped
tags with the same name (A).

2-329

Goto

Data Type
Support

The Goto block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-330

Goto

Parameters
and
Dialog
Box

Tag
The Goto block identifier. This parameter identifies the Goto
block whose scope is defined in this block.

Tag Visibility
The scope of the Goto block tag: local, scoped, or global. The
default is local.

Corresponding From blocks
List of the From blocks connected to this Goto block.
Double-clicking any entry in this list displays and highlights the
corresponding From block.

2-331

Goto

Icon Display
Specifies the text to display on the block’s icon. The options are
the block’s tag, the name of the signal that the block represents,
or both the tag and the signal name.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Multidimensionalized Yes

2-332

Goto Tag Visibility

Purpose Define scope of Goto block tag

Library Signal Routing

Description The Goto Tag Visibility block defines the accessibility of Goto block
tags that have scoped visibility. The tag specified as the Goto tag
parameter is accessible by From blocks in the same subsystem that
contains the Goto Tag Visibility block and in subsystems below it in
the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag
Visibility parameter value is scoped. No Goto Tag Visibility block is
needed if the tag visibility is either local or global. The block shows
the tag name enclosed in braces ({}).

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

2-333

Goto Tag Visibility

Goto tag
The Goto block tag whose visibility is defined by the location of
this block.

Characteristics Sample Time N/A

Dimensionalized N/A

2-334

Ground

Purpose Ground unconnected input port

Library Sources

Description The Ground block can be used to connect blocks whose input ports
are not connected to other blocks. If you run a simulation with blocks
having unconnected input ports, Simulink® software issues warning
messages. Using Ground blocks to ground those blocks avoids warning
messages. The Ground block outputs a signal with zero value. The data
type of the signal is the same as that of the port to which it is connected.

Data Type
Support

The Ground block outputs a signal of the same numeric type and data
type as the port to which it is connected. For example, consider the
following model.

In this example, the output of the Constant block determines the data
type (int8) of the port to which the Ground block is connected. That port
in turn determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink
software, including fixed-point data types.

2-335

Ground

Parameters
and
Dialog
Box

Characteristics Sample Time Inherited from driven block

Dimensionalized Yes

Multidimensionalized Yes

2-336

Hit Crossing

Purpose Detect crossing point

Library Discontinuities

Description The Hit Crossing block detects when the input reaches the Hit crossing
offset parameter value in the direction specified by the Hit crossing
direction property.

The block accepts one input of type double. If you select the Show
output port check box, the block output indicates when the crossing
occurs. If the input signal is exactly the value of the offset value after
the hit crossing is detected, the block continues to output a value of 1. If
the input signals at two adjacent points bracket the offset value (but
neither value is exactly equal to the offset), the block outputs a value
of 1 at the second time step. If the Show output port check box is
not selected, the block ensures that the simulation finds the crossing
point but does not generate output. If the input signal is constant and
equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

When the block’s Hit crossing direction property is set to either,
the block serves as an "Almost Equal" block, useful in working around
limitations in finite mathematics and computer precision. Used for
these reasons, this block might be more convenient than adding logic to
your model to detect this condition.

The hardstop and sldemo_clutch demos illustrate the use of the
Hit Crossing block. In the hardstop demo, the Hit Crossing block
is in the Friction Model subsystem. In the sldemo_clutch demo, the
Hit Crossing block is in the Friction Mode Logic/Lockup Detection
subsystem.

Data Type
Support

The Hit Crossing block outputs a signal of type Boolean if Boolean logic
signals are enabled (see “Implement logic signals as boolean data (vs.
double)”). Otherwise, the block outputs a signal of type double.

2-337

Hit Crossing

Parameters
and
Dialog
Box

Hit crossing offset
The value whose crossing is to be detected.

Hit crossing direction
The direction from which the input signal approaches the hit
crossing offset for a crossing to be detected.

Show output port
If selected, draw an output port.

2-338

Hit Crossing

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink® documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-339

IC

Purpose Set initial value of signal

Library Signal Attributes

Description The IC block sets the initial condition of the signal at its input port,
e.g., the value of the signal at the simulation start time (tstart). The
block does this by outputting the specified initial condition when you
start the simulation, regardless of the actual value of the input signal.
Thereafter, the block outputs the actual value of the input signal.

Note If an IC block inherits or specifies a nonzero sample time offset
(toffset), the IC block outputs its initial value at time t,

t = n * tperiod + toffset

where n is the smallest integer such that t ≥ tstart.

That is, the IC block outputs its initial value the first time blocks with
sample time [tperiod, toffset] execute, which can be after tstart.

The IC block is useful for providing an initial guess for the algebraic
state variables in a loop. For more information, see “Algebraic Loops” in
the “How Simulink Works” chapter of Using Simulink®.

Data Type
Support

The IC block accepts and outputs signals of any Simulink built-in and
fixed-point data type. The Initial value parameter accepts any built-in
data type supported by Simulink software.

2-340

IC

Parameters
and
Dialog
Box

Initial value
Specify the initial value for the input signal.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Examples The following diagram illustrates how the IC block initializes a signal
labeled “test signal.”

At t = 0, the signal value is 3. Afterward, the signal value is 6.

2-341

IC

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameter only

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-342

If

Purpose Model if-else control flow

Library Ports & Subsystems

Description The If block, along with If Action subsystems containing Action Port
blocks, implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

In this example, the inputs to the If block determine the values of
conditions represented as output ports. Each output port is attached to
an If Action subsystem. The conditions are evaluated top down starting
with the if condition. If a condition is true, its If Action subsystem is
executed and the If block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by
the following pseudocode.

if (u1 > 0) {
body_1;

}

2-343

If

else if (u2 > 0){
body_2;

}
else {
body_3;

}

You construct a Simulink® if-else control flow statement like the
preceding example as follows:

1 Place an If block in the current system.

2 Open the Block Parameters dialog of the If block and enter as
follows:

• Enter the Number of inputs field with the required number of
inputs necessary to define conditions for the if-else control flow
statement.

Elements of vector inputs can be accessed for conditions using (row,
column) arguments. For example, you can specify the fifth element
of the vector u2 in the condition u2(5) > 0 in an If expression or
Elseif expressions field.

• Enter the expression for the if condition of the if-else control
flow statement in the If expression field.

This creates an if output port for the If block with a label of the
form if(condition). This is the only required If Action signal
output for an If block.

• Enter expressions for any elseif conditions of the if-else control
flow statement in the Elseif expressions field.

Use a comma to separate one condition from another. Entering
these conditions creates an output port for the If block for each
condition, with a label of the form elseif(condition). elseif ports
are optional and not required for operation of the If block.

2-344

If

• Check the Show else condition check box to create an else
output port.

The else port is optional and not required for the operation of the
If block.

3 Create If Action subsystems to connect to each of the if, else, and
elseif ports.

These consist of a subsystem with an Action Port block. When you
place an Action Port block inside each subsystem, an input port
named Action is added to the subsystem.

4 Connect each if, else, and elseif port of the If block to the Action port
of an If Action subsystem.

When you make the connection, the icon for the If Action block is
renamed to the type of the condition that it attaches to.

Note During simulation of an if-else control flow statement, the
Action signal lines from the If block to the If Action subsystems turn
from solid to dashed.

5 In each If Action subsystem, enter the Simulink blocks appropriate
to the body to be executed for the condition it handles.

Note All blocks in an If Action Subsystem must run at the same
rate as the driving If block. You can achieve this by setting each
block’s sample time parameter to be either inherited (-1) or the same
value as the If block’s sample time.

In the preceding example, the If Action subsystems are named
body_1, body_2, and body_3.

2-345

If

Data Type
Support

Inputs u1,u2,...,un can be scalar or vector of any built-in Simulink
data type and must be all of the same data type. For a discussion on the
data types supported by Simulink software, see “Data Types Supported
by Simulink” in the Simulink documentation.

Outputs from the if, else, and elseif ports are Action signals to If Action
subsystems that are created with Action Port blocks and subsystems.
See Action Port.

2-346

If

Parameters
and
Dialog
Box

2-347

If

Number of inputs
The number of inputs to the If block. These appear as data
input ports labeled with a 'u' character followed by a number,
1,2,...,n, where n equals the number of inputs that you specify.

If expression
The condition for the if output port. This condition appears on
the If block adjacent to the if output port. The if expression can
use any of the following operators: <. <=, ==, ~=, >, >=,
&, |, ~, (), unary-minus. The If Action subsystem attached
to the if port executes if its condition is true. The expression
must not contain data type expressions, e.g., int8(6), and must
not reference workspace variables whose data type is other than
double or single.

Note You cannot tune the If expression during accelerated-mode
simulation (see “Accelerating Models”), in referenced models
executing in Accelerator mode, or in code generated from the
model. The If block also does not support custom storage classes.

Elseif expressions
A string list of elseif conditions delimited by commas. These
conditions appear below the if port and above the else port if you
select the Show else condition check box. elseif expressions
can use any of the following operators: <, <=, ==, ~=, >, >=,
&, |, ~, (), unary-minus. The If Action subsystem attached to
an elseif port executes if its condition is true and all of the if and
elseif conditions are false. The expression must not contain data
type expressions, e.g., int8(6), and must not reference workspace
variables whose data type is other than double or single.

2-348

If

Note You cannot tune the Elseif expression during
accelerated-mode simulation (see “Accelerating Models”), in
referenced models executing in Accelerator mode, or in code
generated from the model. The If block also does not support
custom storage classes.

Show else condition
If you select this check box, an else port is created. The If Action
subsystem attached to the else port executes if the if port and
all the elseif ports are false.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time
Specify the sample time of the input signal. See “Specifying
Sample Time” in the online documentation for more information.

Examples The If block does not directly support fixed-point data types. However,
you can use the Compare To Constant block to work around this
limitation.

For example, consider the following floating-point model.

2-349

If

In this model, the If Action subsystems use their default configurations.
The block and simulation parameters for the model are set to their
default values except as follows:

Block or Dialog Parameter Setting

Configuration
Parameters Dialog
— Solver pane

Start time 0.0

Stop time 1.0

Type Fixed-step

Solver discrete (no
continuous states)

Fixed-step size .1

Repeating Sequence
Stair

Vector of output
values

[-2 -1 1 2].'

Repeating Sequence
Stair1

Vector of output
values

[0 0 0 0 1 1 1
1].'

If Number of inputs 2

2-350

If

Block or Dialog Parameter Setting

If expression (u1 > 0) | (u2 >
0.5)

Show else
condition

selected

Constant Constant value -4

Constant1 Constant value 4

Scope Number of axes 3

Time range 1

For this model, if input u1 is greater than 0 or input u2 is greater than
0.5, the output is 4. Otherwise, the output is -4. The Scope block shows
the output, u1, and u2 as depicted here:

2-351

If

2-352

If

The same model can be implemented using fixed-point data types:

The Repeating Sequence stair blocks are now outputting fixed-point
data types.

The Compare To Constant blocks implement two parts of the If
expression that is used in the If block in the floating-point version
of the model, (u1 > 0) and (u2 > 0.5). The OR operation, (u1|u2),
can still be implemented inside the If block. For a fixed-point model,
the expression must be partially implemented outside of the If block
as it is here.

The block and simulation parameters for the fixed-point model are
the same as for the floating-point model with the following exceptions
and additions:

Block Parameter Setting

Compare To
Constant

Operator >

Constant value 0

Output data type
mode

Boolean

2-353

If

Block Parameter Setting

Enable zero crossing
detection

unselected

Compare To
Constant1

Operator >

Constant value 0.5

Output data type
mode

Boolean

Enable zero crossing
detection

unselected

If Number of inputs 2

If expression u1|u2

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-354

If Action Subsystem

Purpose Represent subsystem whose execution is triggered by If block

Library Ports & Subsystems

Description The If Action Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
whose execution is triggered by an If block.

Note All blocks in an If Action Subsystem must run at the same rate
as the driving If block. You can achieve this by setting each block’s
sample time parameter to be either inherited (-1) or the same value as
the If block’s sample time.

For more information, see the If block and Modeling with Control
Flow Blocks in the “Creating a Model” chapter of the Simulink®

documentation.

2-355

Increment Real World

Purpose Increase real world value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Increment Real World block increases the real world value of the
signal by one. Overflows always wrap.

Data Type
Support

The Increment Real World block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Real World, Increment Stored Integer

2-356

Increment Stored Integer

Purpose Increase stored integer value of signal by one

Library Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Increment Stored Integer block increases the stored integer value
of a signal by one.

Floating-point signals are also increased by one, and overflows always
wrap.

Data Type
Support

The Increment Stored Integer block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Decrement Stored Integer, Increment Real World

2-357

Index Vector

Purpose Switch output between different inputs based on value of first input

Library Signal Routing

Description The Index Vector block is an implementation of the Multiport Switch
block. See Multiport Switch for more information.

2-358

Inport

Purpose Create input port for subsystem or external input

Library Ports & Subsystems, Sources

Description Inport blocks are the links from outside a system into the system.

Simulink® software assigns Inport block port numbers according to
these rules:

• It automatically numbers the Inport blocks within a top-level system
or subsystem sequentially, starting with 1.

• If you add an Inport block, it is assigned the next available number.

• If you delete an Inport block, other port numbers are automatically
renumbered to ensure that the Inport blocks are in sequence and that
no numbers are omitted.

• If you copy an Inport block into a system, its port number is not
renumbered unless its current number conflicts with an Inport block
already in the system. If the copied Inport block port number is not
in sequence, you must renumber the block or you will get an error
message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using
the Port dimensions parameter, or let Simulink software determine it
automatically by providing a value of -1.

The Sample time parameter is the rate at which the signal is coming
into the system. A value of -1 causes the block to inherit its sample
time from the block driving it. You might need to set this parameter
for Inport blocks in a top-level system or in models where Inport
blocks are driven by blocks whose sample times cannot be determined.
See “Specifying Sample Time” in the online documentation for more
information.

Inport Blocks in a Subsystem

Inport blocks in a subsystem represent inputs to the subsystem. A
signal arriving at an input port on a Subsystem block flows out of the

2-359

Inport

associated Inport block in that subsystem. The Inport block associated
with an input port on a Subsystem block is the block whose Port
number parameter matches the relative position of the input port
on the Subsystem block. For example, the Inport block whose Port
number parameter is 1 gets its signal from the block connected to the
topmost port on the Subsystem block.

If you renumber the Port number of an Inport block, the block becomes
connected to a different input port, although the block continues to
receive its signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To
suppress display of the label, select the Inport block and choose Hide
Name from the Format menu.

Inport Blocks in a Top-Level System

Inport blocks in a top-level system have two uses:

• To supply external inputs from the workspace, use either the
Configuration Parameters dialog (see “Importing Data from a
Workspace”) or the ut argument of the sim command (see sim) to
specify the inputs.

• To provide a means for perturbation of the model by the linmod and
trim analysis functions, use Inport blocks to define the points where
inputs are injected into the system.

Creating Duplicate Inports

You can create any number of duplicates of an Inport block. The
duplicates are graphical representations of the original intended
to simplify block diagrams by eliminating unnecessary lines. The
duplicate has the same port number, properties, and output as the
original. Changing a duplicate’s properties changes the original’s
properties and vice versa.

To create a duplicate of an Inport block,

1 Select the block.

2-360

Inport

2 Select Copy from the Simulink Edit menu or from the block’s
context menu.

3 Position the mouse cursor in the model’s block diagram where you
want to create the duplicate.

4 Select Paste Duplicate Inport from the Simulink Edit menu or the
block diagram’s context menu.

Data Type
Support

The Inport block accepts complex or real signals of any data type
supported by Simulink software, including fixed-point data types. For
a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink”.

The numeric and data types of the block’s output are the same as those
of its input. You can specify the signal type, data type, and sampling
mode of an external input to a root-level Inport block using the Signal
type, Data type, and Sampling mode parameters.

The elements of a signal array connected to a root-level Inport block
must be of the same numeric and data types. Signal elements connected
to a subsystem input port can be of differing numeric and data types
except in the following circumstance: If the subsystem contains an
Enable or Trigger block or is an Atomic Subsystem and the input port,
or an element of the input port, is connected directly to an output port,
the input elements must be of the same type. For example, consider the
follow enabled subsystem.

2-361

Inport

In this example, the elements of a signal vector connected to In1 must
be of the same type. The elements connected to In2, however, can be of
differing types.

2-362

Inport

Parameters
and
Dialog
Box

The Main pane of the Inport block dialog appears as follows:

2-363

Inport

Port number
Specify the port number of the Inport block.

Icon display
Specifies the information to be displayed on the icon of this input
port. The options are:

Port number Displays port number of this port.

Signal name Displays the name of the signal
connected to this port (or signals
if the input is a bus).

Port name and signal
name

Displays both the port number
and the names of the signals
connected to this port.

Latch input by delaying outside signal
This option applies only to triggered subsystems and is enabled
only if the Inport block resides in a triggered subsystem. If
selected, the block outputs the value of the input signal at the
previous time step. This enables Simulink software to resolve
data dependencies among triggered subsystems that are part of a
loop. Type sl_subsys_semantics at the MATLAB® prompt for
examples using latched inputs with triggered subsystems.

The Inport block indicates that this option is selected by
displaying <Lo>.

1

Out1

Trigger

1<Lo>

In1

2-364

Inport

Latch input by copying inside signal
This option applies only to function-call subsystems and hence
is enabled only if the Inport block resides in a function-call
subsystem. Selecting this option causes Simulink software to
copy the signal output by the block into a buffer before executing
the contents of the subsystem and to use this copy as the block’s
output during execution of the subsystem. This ensures that the
subsystem’s inputs, including those generated by the subsystem’s
context, will not change during execution of the subsystem. Type
sl_subsys_semantics at the MATLAB prompt for examples
using latched inputs with function-call subsystems.

The Inport block displays to indicate that this option is
selected.

f()

Trigger

1

In1

Interpolate data
Select this parameter to cause the block to interpolate or
extrapolate output at time steps for which no corresponding
workspace data exists when loading data from the workspace. See
“Importing Data from a Workspace” for more information.

The Signal Attributes pane of the Inport block dialog appears as
follows:

2-365

Inport

2-366

Inport

Specify properties via bus object
Select this option to use a bus object to define the structure of the
bus created by this block (see “Working with Data Objects” and
Simulink.Bus class to learn how to create bus objects).

Bus object for validating input bus
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of the bus object
that defines the structure that a bus must have to be connected
to this input port. At the beginning of a simulation or when you
update the model’s diagram, Simulink software checks whether
the bus connected to this input port has the specified structure. If
not, Simulink software displays an error message.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block
outputs a nonvirtual bus; otherwise, it outputs a virtual bus (see
“Virtual and Nonvirtual Buses”). Select this option if you want
code generated from this model to use a C structure to define the
structure of the bus signal output by this block.

Port dimensions
Specify the dimensions of the input signal to the Inport block.
Valid values are:

-1 Dimensions are inherited from input signal

n Vector signal of width n accepted

[m n] Matrix signal having m rows and n columns
accepted

Sample time
Specify the sample time of the input signal. See “Specifying
Sample Time”.

2-367

Inport

Minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Data type
Specify the output data type of the external input. You can set
it to:

• A rule that inherits a data type, for example, Inherit: auto

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specify the numeric type (real or complex) of the external input.
To accept either type, set this parameter to auto.

2-368

Inport

Sampling mode
Specify the sampling mode (Sample based or Frame based) that
the input signal must match. To accept any sampling mode, set
this parameter to auto. This parameter is intended to support
signal processing applications based on Simulink models. See
the documentation for the buffer function provided by Signal
Processing Toolbox™ software or “Frame-Based Signals” in the
Signal Processing Blockset™ documentation for information
about frame-based signals.

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized Yes

Multidimensionalized Yes

2-369

Integer Delay

Purpose Delay signal N sample periods

Library Discrete

Description The Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector
are delayed by the same sample period.

Data Type
Support

The Integer Delay block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

2-370

Integer Delay

Initial condition
The initial output of the simulation. The Initial condition
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Number of delays
The number of periods to delay the input signal.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input or initial conditions

2-371

Integrator

Purpose Integrate signal

Library Continuous

Description The Integrator block outputs the integral of its input at the current
time step. The following equation represents the output of the block y
as a function of its input u and an initial condition y0, where y and u are
vector functions of the current simulation time t.

Simulink® software can use a number of different numerical integration
methods to compute the Integrator block’s output, each with advantages
in particular applications. The Solver pane of the Configuration
parameters dialog box (see “Solver Pane”) allows you to select the
technique best suited to your application.

Simulink software treats the Integrator block as a dynamic system
with one state, its output. The Integrator block’s input is the state’s
time derivative.

The currently selected solver computes the output of the Integrator
block at the current time step, using the current input value and
the value of the state at the previous time step. To support this
computational model, the Integrator block saves its output at the
current time step for use by the solver to compute its output at the next
time step. The block also provides the solver with an initial condition
for use in computing the block’s initial state at the beginning of a
simulation run. The default value of the initial condition is 0. The
block’s parameter dialog box allows you to specify another value for the
initial condition or create an initial value input port on the block.

2-372

Integrator

The parameter dialog box also allows you to

• Define upper and lower limits on the integral

• Create an input that resets the block’s output (state) to its initial
value, depending on how the input changes

• Create an optional state output that allows you to use the value of
the block’s output to trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete
system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

• To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

• To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

Note If the integrator limits its output (see “Limiting the
Integral” on page 2-374), the initial condition must fall inside the
integrator’s saturation limits. If the initial condition is outside the
block’s saturation limits, the block displays an error message.

2-373

Integrator

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter
fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

• When the integral is less than or equal to the Lower saturation
limit, the output is held at the Lower saturation limit.

• When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

• When the integral is greater than or equal to the Upper saturation
limit, the output is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown on this figure.

The signal has one of three values:

• 1 indicates that the upper limit is being applied.

• 0 indicates that the integral is not limited.

• -1 indicates that the lower limit is being applied.

When you select this option, the block has three zero crossings: one to
detect when it enters the upper saturation limit, one to detect when

2-374

Integrator

it enters the lower saturation limit, and one to detect when it leaves
saturation.

Resetting the State

The block can reset its state to the specified initial condition based on
an external signal. To cause the block to reset its state, select one of the
External reset choices. A trigger port appears below the block’s input
port and indicates the trigger type, as shown in this figure.

• Select rising to reset the state when the reset signal rises from a
zero to a positive value or from a negative to a positive value.

• Select falling to reset the state when the reset signal falls from a
positive value to zero or from a positive to a negative value.

• Select either to reset the state when the reset signal changes from a
zero to a nonzero value or changes sign.

• Select level to reset the state when the reset signal is nonzero at the
current time step or changes from nonzero at the previous time step
to zero at the current time step.

• Select level hold to reset the state when the reset signal is nonzero
at the current time step.

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results (see “Algebraic Loops”). The
Integrator block’s state port allows you to feed back the block’s output
without creating an algebraic loop.

2-375

Integrator

Note To be compliant with the Motor Industry Software Reliability
Association (MISRA®) software standard, your model must use Boolean
signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the Show state port option on the Integrator block’s
parameter dialog box causes an additional output port, the state port, to
appear atop the Integrator block.

The output of the state port is the same as the output of the block’s
standard output port except for the following case. If the block is reset
in the current time step, the output of the state port is the value that
would have appeared at the block’s standard output if the block had not
been reset. The state port’s output appears earlier in the time step than
the output of the Integrator block’s output port. This allows you to avoid
creating algebraic loops in the following modeling scenarios:

• Self-resetting integrators (see “Creating Self-Resetting Integrators”
on page 2-377)

• Handing off a state from one enabled subsystem to another (see
“Handing Off States Between Enabled Subsystems” on page 2-378)

2-376

Integrator

Note When updating a model, Simulink software checks to ensure
that the state port is being used in one of these two scenarios. If not,
Simulink software signals an error. Also, Simulink software does
not allow you to log the output of this port in a referenced model
that executes in Accelerator mode. If logging is enabled for the port,
Simulink software generates a "signal not found" warning during
execution of the referenced model.

Creating Self-Resetting Integrators

The Integrator block’s state port allows you to avoid creating algebraic
loops when creating an integrator that resets itself based on the value
of its output. Consider, for example, the following model.

This model tries to create a self-resetting integrator by feeding the
integrator’s output, subtracted from 1, back into the integrator’s reset
port. In so doing, however, the model creates an algebraic loop. To
compute the integrator block’s output, Simulink software needs to know
the value of the block’s reset signal, and vice versa. Because the two
values are mutually dependent, Simulink software cannot determine
either. It therefore signals an error if you try to simulate or update
this model.

2-377

Integrator

The following model uses the integrator’s state port to avoid the
algebraic loop.

In this version, the value of the reset signal depends on the value of the
state port. The value of the state port is available earlier in the current
time step than the value of the integrator block’s output port. Thus,
Simulink software can determine whether the block needs to be reset
before computing the block’s output, thereby avoiding the algebraic loop.

Handing Off States Between Enabled Subsystems

The state port allows you to avoid an algebraic loop when passing a
state between two enabled subsystems. Consider, for example, the
following model.

2-378

Integrator

In this model, a constant input signal drives two enabled subsystems
that integrate the signal. A pulse generator generates an enabling
signal that causes execution to alternate between the two subsystems.
The enable port of each subsystem is set to reset. This causes the
subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition
port. The initial condition port of the integrator in each subsystem is
connected to the output port of the integrator in the other subsystem.

This connection is intended to enable continuous integration of the
input signal as execution alternates between the two subsystems.
However, the connection creates an algebraic loop. To compute the
output of A, Simulink software needs to know the output of B, and vice
versa. Because the outputs are mutually dependent, Simulink software
cannot compute them. It therefore generates an error if you attempt
to update or simulate this model.

2-379

Integrator

The following version of the same model uses the integrator state port
to avoid creating an algebraic loop when handing off the state.

In this model, the initial condition of the integrator in A depends on
the value of the state port of the integrator in B, and vice versa. The
values of the state ports are updated earlier in the simulation time step
than the values of the integrator output ports. Thus, Simulink software
can compute the initial condition of either integrator without knowing
the final output value of the other integrator. For another example of
using the state port to hand off states between conditionally executed
subsystems, see the sldemo_clutch model.

2-380

Integrator

Note Simulink software does not permit three or more enabled
subsystems to hand off a model state. If Simulink software detects
that a model is handing off a state among more than two enabled
subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block’s Outputs

By default Simulink software uses the absolute tolerance value
specified in the Configuration Parameters dialog box (see “Specifying
Variable-Step Solver Error Tolerances”) to compute the output of the
Integrator block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of
the Integrator block’s dialog box. The value that you specify is used to
compute all of the block’s outputs.

Choosing All Options

When all options are selected, the icon looks like this.

Data Type
Support

The Integrator block accepts and outputs signals of type double on
its data ports. Its external reset port accepts signals of type double
or Boolean.

2-381

Integrator

Parameters
and
Dialog
Box

External reset
Resets the states to their initial conditions when a trigger event
(rising, falling, either, level, or level hold) occurs in the

2-382

Integrator

reset signal. For more information, see “Resetting the State” on
page 2-375.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (if set to internal) or from an external block (if set
to external).

Initial condition
The states’ initial conditions. Set the Initial condition source
parameter value to internal. Simulink software does not allow
the initial condition of this block to be inf or NaN.

Limit output
If selected, limits the states to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Absolute tolerance
Absolute tolerance used to compute the block’s outputs. You
can enter auto or a numeric value. If you enter auto, Simulink
software determines the absolute tolerance (see “Specifying
Variable-Step Solver Error Tolerances”). If you enter a numeric
value, Simulink software uses the specified value to compute the
block’s outputs. Note that a numeric value overrides the setting
for the absolute tolerance in the Configuration Parameters
dialog box.

2-383

Integrator

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

Enable zero crossing detection
If this option, Limit output, and zero-crossing detection for
the model as a whole are selected, the Integrator block uses
zero-crossings to detect and take a time step at any of the
following events: reset, entering or leaving an upper saturation
state, entering or leaving a lower saturation state. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Simulink documentation.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity' .

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'} . Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than states, but there
cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in
the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

2-384

Integrator

Characteristics Direct Feedthrough Yes, of the reset and external initial
condition source ports

Sample Time Continuous

Scalar Expansion Yes, of parameters

States Inherited from driving block or
parameter

Dimensionalized Yes

Zero Crossing Yes, if enabled and you select
the Limit output option, one for
detecting reset, one each to detect
upper and lower saturation limits,
one when leaving saturation

2-385

Interpolation Using Prelookup

Purpose Use output of Prelookup block to accelerate approximation of
N-dimensional function

Library Lookup Tables

Description The Interpolation Using Prelookup block is intended for use with the
Prelookup block. The Prelookup block calculates the index and interval
fraction that specifies how its input value relates to the breakpoint
data set. You feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional
table. This combination of blocks performs the equivalent operation that
a single instance of the Lookup Table (n-D) block performs. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can result in more efficient simulation performance.

To use this block, you must define a set of output values as the Table
data parameter. In normal use, these table values correspond to the
breakpoint data sets specified in Prelookup blocks. The Interpolation
Using Prelookup block generates its output by looking up or estimating
table values based on the index and interval fraction values (denoted on
the block as k and f, respectively) fed into the block by each Prelookup
block:

• If the inputs match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block outputs the table
value at the intersection of the row, column, and higher dimension
breakpoints.

• If the inputs do not match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block generates output
by interpolating appropriate table values. If the inputs are beyond
the range of breakpoint data sets, the Interpolation Using Prelookup
block can extrapolate its output value.

The Interpolation Using Prelookup block can perform interpolation on a
portion of its table. The Number of sub-table selection dimensions
parameter lets you specify that interpolation occur only on a subset of its
Table data parameter. For example, if your 3-D table data constitutes

2-386

Interpolation Using Prelookup

a stack of 2-D tables to be interpolated, set the Number of sub-table
selection dimensions parameter to 1. The block displays an input
port (labeled as sel) used to select and interpolate the 2-D tables.

Data Type
Support

The Interpolation Using Prelookup block accepts real signals of any
data type supported by Simulink® software, except Boolean. The
Interpolation Using Prelookup block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-387

Interpolation Using Prelookup

Parameters
and
Dialog
Box

The Main pane of the Interpolation Using Prelookup block dialog
appears as follows:

2-388

Interpolation Using Prelookup

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables for
the table and hence the number of inputs to the block. Enter an
integer between 1 and 30 into this field.

Table data
The table of output values. During simulation, the matrix size
must match the dimensions defined by the Number of table
dimensions parameter. But note that during block diagram
editing, you can enter either an empty matrix (specified as
[]) or an undefined workspace variable as the Table data
parameter. This allows you to postpone specifying a correctly
dimensioned matrix for the Table data parameter and
continue editing the block diagram. For information about
how to construct multidimensional arrays in MATLAB®, see
“Multidimensional Arrays” in the MATLAB Programming
Fundamentals documentation.

Note At runtime, the Interpolation Using Prelookup block
converts the data type of its Table data parameter to that of its
output.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the Simulink documentation).

Interpolation method
None - Flat or Linear. See “Interpolation Methods” in the
Simulink documentation for more information.

Extrapolation method
None - Clip or Linear. See “Extrapolation Methods” in
the Simulink documentation for more information. The
Extrapolation method parameter is visible only if you select
Linear as the Interpolation method parameter.

2-389

Interpolation Using Prelookup

Note The Interpolation Using Prelookup block does not support
Linear extrapolation if its input or output signals specify integer
or fixed-point data types.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are

• None — the default, no warning or error message

• Warning — display a warning message in the MATLAB
Command Window and continue the simulation

• Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Check index in generated code (Real-Time Workshop® license
required)

Specifies whether Real-Time Workshop software generates code
that checks the validity of the index values fed to this block.

Valid index input may reach last index
Specifies how the index and interval fraction inputs to the block
(labeled respectively as k and f on the block) access the last
elements of the n-dimensional table specified by the Table data
parameter. If enabled, the block returns the value of the last
element in a particular dimension of its table when k indexes
the last table element in the corresponding dimension and f is 0.
If disabled, the block returns the value of the last element in a
particular dimension of its table when k indexes the next-to-last
table element in the corresponding dimension and f is 1. Note
that index values are zero-based.

This parameter is visible only if the Interpolation method
specifies Linear and the Extrapolation method is None - Clip.

2-390

Interpolation Using Prelookup

Note If you enable the Valid index input may reach last
index parameter for an Interpolation Using Prelookup block,
you must also enable the Use last breakpoint for input at or
above upper limit parameter for all Prelookup blocks that feed
it. This allows the blocks to use the same indexing convention
when accessing the last elements of their Breakpoint data and
Table data parameters.

Number of sub-table selection dimensions
Specifies the number of dimensions of the subtable used to
compute this block’s output. Specify 0 (the default) to interpolate
the entire table, effectively disabling subtable selection.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the Simulink documentation for more information.

The Signal Attributes pane of the Interpolation Using Prelookup
block dialog appears as follows:

2-391

Interpolation Using Prelookup

2-392

Interpolation Using Prelookup

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-393

Interpolation Using Prelookup

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Block parameters such as Table data are always rounded to
the nearest representable value. To control the rounding of a
block parameter, enter an expression using a MATLAB rounding
function into the mask field.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Prelookup

2-394

Interval Test

Purpose Determine if signal is in specified interval

Library Logic and Bit Operations

Description The Interval Test block outputs TRUE if the input is between the values
specified by the Lower limit and Upper limit parameters. The block
outputs FALSE if the input is outside those values. The output of the
block when the input is equal to the Lower limit or the Upper limit is
determined by whether the boxes next to Interval closed on left and
Interval closed on right are selected in the dialog box.

Data Type
Support

The Interval Test block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

2-395

Interval Test

Interval closed on right
When you select this check box, the Upper limit is included in
the interval for which the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When you select this check box, the Lower limit is included in
the interval for which the block outputs TRUE.

Lower limit
The lower limit of the interval for which the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Interval Test Dynamic

2-396

Interval Test Dynamic

Purpose Determine if signal is in specified interval

Library Logic and Bit Operations

Description The Interval Test Dynamic block outputs TRUE if the input is between
the values of the external signals up and lo. The block outputs FALSE
if the input is outside those values. The output of the block when the
input is equal to the signal up or the signal lo is determined by whether
the boxes next to Interval closed on left and Interval closed on
right are selected in the dialog box.

Data Type
Support

The Interval Test Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Interval closed on right
When you select this check box, the value of the signal connected
to the block’s “up” input port is included in the interval for which
the block outputs TRUE.

2-397

Interval Test Dynamic

Interval closed on left
When you select this check box, the value of the signal connected
to the block’s “lo” input port is included in the interval for which
the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Interval Test

2-398

Level-2 M-File S-Function

Purpose Use Level-2 M-file S-function in model

Library User-Defined Functions

Description This block allows you to use a Level-2 M-file S-function (see “Writing
Level-2 M-File S-Functions”) in a model. To do this, create an instance
of this block in the model. Then enter the name of the Level-2 M-File
S-function in the M-file name field of the block’s parameter dialog box.

Note Use the S-Function block to include a Level-1 M-file S-function
in a block.

If the Level-2 M-file S-function defines any additional parameters, you
can enter them in the Parameters field of the block’s parameter dialog
box. Enter them as MATLAB® expressions that evaluate to their values
in the order defined by the M-file S-function. Use commas to separate
each expression.

If a model includes a Level-2 M-File S-Function block, and an error
occurs in the S-function, the Level-2 M-File S-Function block displays
M-file stack trace information for the error in a dialog box. Click OK
to remove the dialog box.

Data Type
Support

Depends on the M-file that defines the behavior of a particular instance
of this block.

2-399

Level-2 M-File S-Function

Parameters
and
Dialog
Box

M-file name
Name of an M-file that defines the behavior of this block. The
M-file must follow the Level-2 standard for writing M-file
S-functions (see “Writing Level-2 M-File S-Functions”).

Parameters
Values of the parameters of this block.

Characteristics Direct Feedthrough Depends on the M-file S-function

Sample Time Depends on the M-file S-function

Scalar Expansion Depends on contents M-file
S-function

Dimensionalized Depends on the M-file S-function

2-400

Level-2 M-File S-Function

Multidimensionalized Yes

Zero Crossing No

2-401

Logical Operator

Purpose Perform specified logical operation on input

Library Logic and Bit Operations

Description The Logical Operator block performs the specified logical operation
on its inputs. An input value is TRUE (1) if it is nonzero and FALSE
(0) if it is zero.

You select the Boolean operation connecting the inputs with the
Operator parameter list. If you select rectangular as the Icon shape
property, the block updates to display the name of the selected operator.
The supported operations are given below.

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE

NOT TRUE if the input is FALSE

If you select distinctive as the Icon shape, the block’s appearance
indicates its function. Simulink® software displays a distinctive shape
for the selected operator, conforming to the IEEE® Standard Graphic
Symbols for Logic Functions:

2-402

Logical Operator

The number of input ports is specified with the Number of input
ports parameter. The output type is specified with the Output data
type parameter. An output value is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers, and
any floating-point data type.

The size of the output depends on input vector size and the selected
operator:

• If the block has more than one input, any nonscalar inputs must have
the same dimensions. For example, if any input is a 2-by-2 array, all
other nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the
nonscalar inputs.

If the block has more than one input, the output has the same
dimensions as the inputs (after scalar expansion) and each output
element is the result of applying the specified logical operation to the
corresponding input elements. For example, if the specified operation
is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2 array
whose top left element is the result of applying AND to the top left
elements of the inputs, etc.

2-403

Logical Operator

• For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. The output is always a
scalar.

• The NOT operator accepts only one input, which can be a scalar or a
vector. If the input is a vector, the output is a vector of the same size
containing the logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE Standard
for Logic Elements.

Data Type
Support

The Logical Operator block accepts real or complex signals of any data
type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-404

Logical Operator

Parameters
and
Dialog
Box

The Main pane of the Logical Operator block dialog appears as follows:

Operator
The logical operator to be applied to the block inputs. Valid
choices are the operators listed previously.

Number of input ports
The number of block inputs. The value must be appropriate for
the selected operator.

Icon shape
The shape of the block icon. Specifying rectangular (the default)
results in a rectangular block that displays the name of the
selected operator. The distinctive option uses the graphic
symbol for the selected operator as specified by the IEEE
standard.

2-405

Logical Operator

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Logical Operator block dialog
appears as follows:

Require all inputs and output to have the same data type
Select to require all inputs and the output to have the same data
type.

Output data type
Specify the output data type. You can set it to:

2-406

Logical Operator

Option Description

boolean Specifies the output data type as boolean.

Inherit:
Logical

Use the Implement logic signals as
boolean data model configuration parameter
(see “Implement logic signals as boolean data
(vs. double)”) to specify the output data type.

Note This option is intended to support
models created before the boolean option
became available. Use one of the other options,
preferably boolean, for new models.

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Note You should use data types that represent zero exactly. Data
types that satisfy this condition include signed and unsigned integers
and any floating-point data type.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of inputs

Dimensionalized Yes

2-407

Logical Operator

Multidimensionalized Yes

Zero Crossing No

2-408

Lookup Table

Purpose Approximate one-dimensional function

Library Lookup Tables

Description The Lookup Table block computes an approximation to some function y
= f(x) given data vectors x and y.

Note To map two inputs to an output, use the Lookup Table (2-D) block.

The length of the x and y data vectors provided to this block must
match. Also, the x data vector must be strictly monotonically increasing
(i.e., the value of the next element in the vector is greater than the value
of the preceding element) after conversion to the input’s fixed-point data
type. However, the x data vector may be monotonically increasing (i.e.,
the value of the next element in the vector is greater than or equal to
the value of the preceding element) if all of the following apply:

• The input and output signals are both either single or double.

• The lookup method is Interpolation-Extrapolation.

For more information about size and monotonicity requirements, see
“Characteristics of Lookup Table Data” in Using Simulink®. To learn
how to model a discontinuous function using a Lookup Table block,
see “Representing Discontinuities”.

You define the table by specifying the Vector of input values
parameter as a 1-by-n vector and the Table data parameter as a 1-by-n
vector. The block generates output based on the input values using one
of these methods selected from the Lookup method parameter list:

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

2-409

Lookup Table

- If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note If the Lookup method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop® can generate
code for this block only if its input and output signals have the same
floating-point data type.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x below the current input, then the nearest
element is found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x above the current input, then the nearest
element is found.

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

2-410

Lookup Table

The Lookup Table icon displays a graph of the input vector versus the
output vector. If you change a parameter on the block’s dialog box, the
graph is automatically redrawn when you click the OK or Apply button.

To avoid parameter saturation errors, the Simulink® Fixed Point™
software’s automatic scaling script employs a special rule for the Lookup
Table block. autofixexp modifies the scaling by using the output lookup
values in addition to the logged minimum and maximum simulation
values. This prevents the data from being saturated to different values.
The lookup values are given by the Table data parameter.

Data Type
Support

The Lookup Table block supports all data types supported by Simulink
software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-411

Lookup Table

Parameters
and
Dialog
Box

The Main pane of the Lookup Table block dialog appears as follows:

Vector of input values
Specify the vector of input values. The input values vector must
be the same size as the Table data. Also, the input values vector
must be strictly monotonically increasing after conversion to the
input’s fixed-point data type. However, the input values vector
may be monotonically increasing if the input and output signals
are both either single or double, and if the lookup method is
Interpolation-Extrapolation. Note that due to quantization,
the input values vector may be strictly monotonic in doubles
format, but not so after conversion to a fixed-point data type.

The Vector of input values parameter is converted offline to the
input signal’s data type using round-to-nearest and saturation.

2-412

Lookup Table

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

Table data
Specify the vector of output values. The table data must be the
same size as the Vector of input values.

The Table data parameter is converted offline to the Output
data type using the specified rounding and saturation.

Lookup method
Specify the lookup method. See Description for a discussion of the
options for this parameter. For an example that demonstrates
values that the Lookup Table block returns based on different
lookup methods, see “Example Output” in Using Simulink.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Lookup Table block dialog appears
as follows:

2-413

Lookup Table

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

2-414

Lookup Table

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point lookup table calculations
that occur during simulation or execution of code generated from
the model. For more information, see “Rounding” in the Simulink
Fixed Point User’s Guide.

Note that this option does not affect rounding of block parameters
values, such as Table data. Simulink software rounds such
values to the nearest representable integer value. To control
the rounding of a block parameter, enter an expression using
a MATLAB® rounding function into the parameter’s edit field
on the block dialog box.

2-415

Lookup Table

Saturate on integer overflow
Select to have overflows saturate.

Example See “Example of a Logarithm Lookup Table” in Using Simulink for a
demonstration of the Lookup Table block.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

See Also Lookup Table (2-D), Lookup Table (n-D)

2-416

Lookup Table (2-D)

Purpose Approximate two-dimensional function

Library Lookup Tables

Description The Lookup Table (2-D) block computes an approximation to some
function z = f(x,y) given x, y, z data points. The first input port
corresponds to the first table dimension, x. (See “Changing the
Orientation of a Block” in the Simulink® documentation for a description
of the port order for various block orientations.)

The Row index input values parameter is a 1-by-m vector of x data
points, the Column index input values parameter is a 1-by-n vector
of y data points, and the Table data parameter is an m-by-n matrix of
z data points. Both the row and column vectors must be monotonically
increasing (i.e., the value of the next element in the vector is greater
than or equal to the value of the preceding element). However, these
vectors must be strictly monotonically increasing (i.e., the value of the
next element in the vector is greater than the value of the preceding
element) in the following cases:

• The input and output data types are both fixed-point.

• The input and output data types are different.

• The lookup method is not Interpolation-Extrapolation.

• The matrix of output values is complex.

• Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these
methods selected from the Lookup method parameter list:

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If the inputs match row and column parameter values, the output
is the value at the intersection of the row and column.

2-417

Lookup Table (2-D)

- If the inputs do not match row and column parameter values, then
the block generates output by linearly interpolating between the
appropriate row and column values. If either or both block inputs
are less than the first or greater than the last row or column
values, the block extrapolates using the first two or last two points.

Note If the Lookup method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop® can generate
code for this block only if its input and output signals have the same
floating-point data type.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of x and y. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the elements in x and y nearest the current
inputs are found. The corresponding element in z is then used as
the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and below the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y below the current inputs,
then the nearest elements are found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and above the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y above the current inputs,
then the nearest elements are found.

2-418

Lookup Table (2-D)

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

For information about creating a table with step transitions, see
“Representing Discontinuities” in Using Simulink.

To avoid parameter saturation errors, the Simulink® Fixed Point™
software’s automatic scaling script employs a special rule for the
Lookup Table (2-D) block. autofixexp modifies the scaling by using the
output lookup values in addition to the logged minimum and maximum
simulation values. The output lookup values are converted to the
specified output data type. This prevents the data from being saturated
to different values.

Data Type
Support

The Lookup Table (2-D) block supports all data types supported by
Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-419

Lookup Table (2-D)

Parameters
and
Dialog
Box

The Main pane of the Lookup Table (2-D) block dialog appears as
follows:

Row index input values
The row values for the table, entered as a vector. The vector
values must increase monotonically.

The Row index input values parameter is converted offline to
the corresponding input signal’s data type using round-to-nearest
and saturation.

Column index input values
The column values for the table, entered as a vector. The vector
values must increase monotonically.

2-420

Lookup Table (2-D)

The Column index input values parameter is converted
offline to the corresponding input signal’s data type using
round-to-nearest and saturation.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

Table data
The table of output values. The matrix size must match the
dimensions defined by the Row and Column parameters.

The Table data parameter is converted offline to the Output
data type using the specified rounding and saturation.

Lookup method
Specify the lookup method. See Description for a discussion of
the options for this parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Lookup Table (2-D) block dialog
appears as follows:

2-421

Lookup Table (2-D)

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

2-422

Lookup Table (2-D)

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Require all inputs to have the same data type
Select to require all inputs to have the same data type.

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink Fixed Point User’s
Guide.

Note that block parameters such as Table data are always
rounded to the nearest representable value. To control the

2-423

Lookup Table (2-D)

rounding of a block parameter, enter an expression using a
MATLAB® rounding function into the mask field.

Saturate on integer overflow
Select to have overflows saturate.

Examples In this example, the block parameters are defined as

Row index input values: [1 2]
Column index input values: [3 4]
Table data: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection
of block inputs that match row and column values. The first input is
1 and the second input is 4. These values select the table value at the
intersection of the first row (row parameter value 1) and second column
(column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These
values cause the block to interpolate between row and column values,
as shown in the table at the left. The value at the intersection (28)
is the output value.

2-424

Lookup Table (2-D)

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of one input if the other is a
vector

Dimensionalized Yes

Zero Crossing No

See Also Lookup Table, Lookup Table (n-D)

2-425

Lookup Table (n-D)

Purpose Approximate N-dimensional function

Library Lookup Tables

Description The Lookup Table (n-D) block evaluates a sampled representation of a
function in N variables, , where the function F
might be known only empirically. The block efficiently maps its inputs
to an output value by looking up or interpolating a table of values as
defined by the block’s parameters. The block supports flat (constant),
linear, and cubic spline interpolation methods. You can apply any of
these methods to 1-D, 2-D, 3-D, or higher dimensional tables.

To use this block, specify the number of dimensions of your lookup
table using the Number of table dimensions parameter. In the
Breakpoints for dimension parameter, enter a breakpoint vector
that corresponds to each dimension of your lookup table. Define the
associated set of output values as the Table data parameter. You can
customize the block’s lookup and estimation behaviors by specifying,
for example, values for its Index search method, Interpolation
method, and Extrapolation method parameters.

The first block input identifies the first dimension (row) breakpoints,
the next block input identifies the second dimension (column)
breakpoints, and so on. See “Changing the Orientation of a Block” in
Using Simulink® for a description of the port order for various block
orientations.

2-426

Lookup Table (n-D)

During simulation, the Lookup Table (n-D) block generates its output
by looking up or estimating table values based on its input values:

• If the inputs match the values of indices specified in breakpoint
vectors, the Lookup Table (n-D) block outputs the table value at the
intersection of the row, column, and higher dimension breakpoints.

• If the inputs do not match the values of indices specified in
breakpoint vectors, the Lookup Table (n-D) block generates output
by interpolating appropriate table values. If the inputs are beyond
the range of breakpoint vectors, the block can extrapolate its output
values.

Alternatively, you can use the Interpolation Using Prelookup block with
the Prelookup block to perform the equivalent operation of a Lookup
Table (n-D) block. This combination of blocks offers greater flexibility
that can result in more efficient simulation performance for linear
interpolations in certain circumstances.

For noninterpolated table lookups, use the Direct Lookup Table (n-D)
block when the lookup operation is a simple array access, for example, if
you have an integer value k and you want the kth element of a table,
y = table(k).

Data Type
Support

The Lookup Table (n-D) block supports all data types supported by
Simulink software, including fixed-point data types. For a discussion
on the data types supported by Simulink software, see “Data Types
Supported by Simulink” in the Simulink documentation.

Inputs for indexing must be real; table data can be complex.

2-427

Lookup Table (n-D)

Parameters
and
Dialog
Box

The Main pane of the Lookup Table (n-D) block dialog appears as
follows:

2-428

Lookup Table (n-D)

Number of table dimensions
Enter the number of dimensions of the Table data parameter by
specifying an integer from 1 to 30. This determines the number of
independent variables for the table and hence the number of block
inputs. It also determines the number of dimensions that appear
in the Breakpoints for dimension parameter.

Breakpoints for dimension
Define breakpoint sets that correspond to the dimensions of the
Table data parameter. For each dimension, specify breakpoints
as a vector whose values are strictly monotonically increasing.

The breakpoint sets are converted offline to their corresponding
input signal’s data type using round-to-nearest and saturation.

Index search method
Select Evenly spaced points, Linear search, or Binary
search (the default). Each search method has speed advantages
in different circumstances:

• If the breakpoint data is evenly spaced, e.g., 10, 20, 30, ..., you
can achieve the greatest speed by selecting Evenly spaced
points to calculate the table indices.

• For irregularly spaced breakpoint sets, if the input signals do
not vary much from one time step to the next, selecting Linear
search in combination with Begin index search using
previous index result produces the best performance.

• For irregularly spaced breakpoint sets with rapidly varying
input signals that jump more than one or two table intervals
per time step, selecting Binary search produces the best
performance.

A suboptimal choice of index search method can lead to slow
performance of models that rely heavily on lookup tables.

2-429

Lookup Table (n-D)

Note The Evenly spaced points algorithm uses only the
first two breakpoints to determine the offset and spacing of the
remaining points.

Begin index search using previous index result
Select this option if you want the block to start its search using
the index that was found at the previous time step. For inputs
that change slowly with respect to the interval size, enabling this
option can improve performance. Otherwise, the linear search and
binary search methods might take significantly longer, especially
for large breakpoint sets.

Use one input port for all input data
Instead of having one input port per independent variable, the
block is configured with just one input port that expects a signal
that is N elements wide for an N-dimensional table. This might
be useful in removing line clutter on a block diagram with many
lookup tables.

Process out-of-range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are:

• None — the default, no warning or error message

• Warning — display a warning message in the MATLAB®

Command Window and continue the simulation

• Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Table data
The table of output values. During simulation, the matrix size
must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing,
you can enter either an empty matrix (specified as []) or an
undefined workspace variable as the Table data parameter.
This technique allows you to postpone specifying a correctly

2-430

Lookup Table (n-D)

dimensioned matrix for the Table data parameter and continue
editing the block diagram. For information about how to construct
multidimensional arrays in MATLAB, see “Multidimensional
Arrays” in the MATLAB documentation.

The Table data parameter is converted offline to the Output
data type using the specified rounding and saturation.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in Using Simulink for more information).

Interpolation method
Select None - Flat, Linear (the default), or Cubic spline. See
“Interpolation Methods” in Using Simulink for more information.

Extrapolation method
Select None - Clip, Linear (the default), or Cubic spline. See
“Extrapolation Methods” in Using Simulink for more information.

Use last table value for inputs at or above last breakpoint
Specify the indexing convention that the block uses internally
to address the last element of a breakpoint vector and its
corresponding table value. If selected, the block addresses the end
of a breakpoint vector and its table value using the last element’s
index and 0 for the interval fraction. Otherwise, the block
addresses those same values using the index of the next-to-last
breakpoint and 1 for the interval fraction.

This parameter is visible only if the Interpolation method
specifies Linear and the Extrapolation method is None - Clip.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
Using Simulink for more information.

The Signal Attributes pane of the Lookup Table (n-D) block dialog
appears as follows:

2-431

Lookup Table (n-D)

Require all inputs to have the same data type
Select to require all inputs to have the same data type.

2-432

Lookup Table (n-D)

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-433

Lookup Table (n-D)

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point lookup table calculations
that occur during simulation or execution of code generated from
the model. For more information, see “Rounding” in the Simulink®

Fixed Point™ User’s Guide.

Note that this option does not affect rounding of values of block
parameters, such as Table data. Simulink software rounds such
values to the nearest representable integer value. To control
the rounding of a block parameter, enter an expression using a
MATLAB rounding function into the parameter’s edit field on
the block dialog box.

The Internal Attributes pane of the Lookup Table (n-D) block dialog
appears as follows:

2-434

Lookup Table (n-D)

Fraction data type
Specify the fraction data type. You can set it to:

2-435

Lookup Table (n-D)

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Fraction data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Lookup Table, Lookup Table (2-D), Lookup Table Dynamic

2-436

Lookup Table Dynamic

Purpose Approximate one-dimensional function using dynamically specified
table

Library Lookup Tables

Description The Lookup Table Dynamic block computes an approximation to some
function y=f(x) given x, y data vectors. The lookup method can use
interpolation, extrapolation, or the original values of the input.

The x data vector must be strictly monotonically increasing (i.e., the
value of the next element in the vector is greater than the value of the
preceding element) after conversion to the input’s fixed-point data
type. Note that due to quantization, the x data vector may be strictly
monotonic in doubles format, but not so after conversion to a fixed-point
data type.

Note Unlike the Lookup Table block, the Lookup Table Dynamic block
allows you to change the table data without stopping the simulation.
For example, you may want to automatically incorporate new table data
if the physical system you are simulating changes.

You define the lookup table by inputting the x and y table data to the
block as 1-by-n vectors. To help reduce the ROM used by the code
generated for this block, you can use different data types for the x table
data and the y table data. However, these restrictions apply:

• The y table data and the output vector must have the same sign, the
same bias, and the same fractional slope.

• The x table data and the x data vector must have the same sign, the
same bias, and the same fractional slope. Additionally, the precision
and range for the x data vector must be greater than or equal to the
precision and range for the x table data.

The block generates output based on the input values using one of these
methods selected from the Lookup Method parameter list:

2-437

Lookup Table Dynamic

• Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

- If a value matches the block’s input, the output is the corresponding
element in the output vector.

- If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note Real-Time Workshop® software cannot generate code
for this block if its Lookup Method parameter specifies
Interpolation-Extrapolation.

• Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

• Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

• Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x below the current input, then the nearest
element is found.

• Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.
If there is no element in x above the current input, then the nearest
element is found.

2-438

Lookup Table Dynamic

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

Data Type
Support

The Lookup Table Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

The Main pane of the Lookup Table Dynamic block dialog appears as
follows:

Lookup Method
Specify the lookup method.

The Signal Attributes pane of the Lookup Table Dynamic block dialog
appears as follows:

2-439

Lookup Table Dynamic

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-440

Lookup Table Dynamic

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Examples For an example that illustrates the lookup methods supported by this
block, see the example included in the Lookup Table block reference
pages.

Characteristics Direct Feedthrough Yes

Scalar Expansion No

See Also Lookup Table, Lookup Table (2-D), Lookup Table (n-D)

2-441

Magnitude-Angle to Complex

Purpose Convert magnitude and/or a phase angle signal to complex signal

Library Math Operations

Description The Magnitude-Angle to Complex block converts magnitude and/or
phase angle inputs to a complex-valued output signal. The inputs must
be real-valued signals of type double or single. The angle input is
assumed to be in radians. The complex output signal has the same data
type as the block inputs.

The inputs can both be signals of equal dimensions, or one input can
be an array and the other a scalar. If the block has an array input, the
output is an array of complex signals. The elements of a magnitude
input vector are mapped to magnitudes of the corresponding complex
output elements. An angle input vector is similarly mapped to the
angles of the complex output signals. If one input is a scalar, it is
mapped to the corresponding component (magnitude or angle) of all
the complex output signals.

Data Type
Support

See the preceding block description.

2-442

Magnitude-Angle to Complex

Parameters
and
Dialog
Box

Input
Specifies the kind of input: a magnitude input, an angle input,
or both.

Angle (Magnitude)
If the input is an angle signal, specifies the constant magnitude
of the output signal. If the input is a magnitude, specifies the
constant phase angle in radians of the output signal.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-443

Magnitude-Angle to Complex

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-444

Manual Switch

Purpose Switch between two inputs

Library Signal Routing

Description The Manual Switch block is a toggle switch that selects one of its
two inputs to pass through to the output. To toggle between inputs,
double-click the block (there is no dialog box). The selected input is
propagated to the output, while the unselected input is discarded. You
can set the switch before the simulation is started or throw it while the
simulation is executing to interactively control the signal flow. The
Manual Switch block retains its current state when the model is saved.

Data Type
Support

The Manual Switch block accepts real or complex signals of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

None

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-445

Math Function

Purpose Perform mathematical function

Library Math Operations

Description The Math Function block performs numerous common mathematical
functions.

You can select one of the following functions from the Function
parameter list.

Function Description Mathematical
Expression

MATLAB®

Equivalent

exp Exponential eu exp

log Natural logarithm ln u log

10^u Array power of base
10

10u 10.^u
(see power)

log10 Common (base 10)
logarithm

log u log10

magnitude^2 Complex modulus |u|2 (abs(u)).^2
(see abs and power)

square Array power 2 u2 u.^2
(see power)

sqrt Square root u0.5 sqrt

pow Array power uv power

conj Complex conjugate ū conj

reciprocal Array reciprocal 1/u 1./u
(see rdivide)

hypot Square root of sum
squares

(u2+v2)0.5 hypot

rem Remainder after
division

— rem

2-446

Math Function

Function Description Mathematical
Expression

MATLAB®

Equivalent

mod Modulus after
division

— mod

transpose Array transpose uT u.'
(see arithmetic
operators)

hermitian Complex conjugate
transpose

uH u'
(see arithmetic
operators)

The block output is the result of the operation of the function on the
input or inputs.

The name of the function appears on the block. Simulink® software
automatically draws the appropriate number of input ports.

Use the Math Function block instead of the Fcn block when you want
vector or matrix output, because the Fcn block produces only scalar
output.

Data Type
Support

The following table shows which input data types are supported by each
of the functions of the Math Function block.

Function single double built-in
integer

fixed point

exp yes yes — —

log yes yes — —

10^u yes yes — —

log10 yes yes — —

magnitude^2 yes yes yes yes

square yes yes yes yes

sqrt yes yes yes yes

2-447

Math Function

Function single double built-in
integer

fixed point

pow yes yes — —

conj yes yes yes yes

reciprocal yes yes yes yes

hypot yes yes — —

rem yes yes yes —

mod yes yes yes —

transpose yes yes yes yes

hermitian yes yes yes yes

All supported modes accept both real and complex inputs, except for
reciprocal and sqrt, which do not accept complex fixed-point inputs.
Also, sqrt does not accept fixed-point inputs that are negative or that
have nontrivial slope and nonzero bias. The output signal type of the
block is real or complex, depending on the setting of the Output signal
type parameter.

2-448

Math Function

Parameters
and
Dialog
Box

The Main pane of the Math Function block dialog appears as follows:

Function
Specify the mathematical function. See Description for more
information about the options for this parameter.

Output signal type
Select the output signal type of the Math Function block as real,
complex, or auto.

2-449

Math Function

Input Output Signal Type

Function Signal Auto Real Complex

exp, log,
10u, log10,
square,
sqrt, pow,
reciprocal,
conjugate,
transpose,
hermitian

real

complex

real

complex

real

error

complex

complex

magnitude
squared

real

complex

real

real

real

real

complex

complex

hypot, rem,
mod

real

complex

real

error

real

error

complex

error

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Math Function block dialog appears
as follows:

2-450

Math Function

Note Some of the parameters on this pane are available only when
the function chosen in the Function parameter supports fixed-point
data types.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-451

Math Function

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
If selected, fixed-point overflows saturate.

2-452

Math Function

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Multidimensionalized Yes, for all functions except
hermitian and transpose

Zero Crossing No

2-453

MATLAB Fcn

Purpose Apply MATLAB® function or expression to input

Library User-Defined Functions

Description The MATLAB Fcn block applies the specified MATLAB function or
expression to the input. The output of the function must match the
output dimensions of the block or an error occurs.

Here are some sample valid expressions for this block.

sin
atan2(u(1), u(2))
u(1)^u(2)

Note This block is slower than the Fcn block because it calls the
MATLAB parser during each integration step. Consider using built-in
blocks (such as the Fcn block or the Math Function block) instead, or
writing the function as an M-file or MEX-file S-function, then accessing
it using the S-Function block.

Data Type
Support

The MATLAB Fcn block accepts one complex or real input of type
double and generates real or complex output of type double, depending
on the setting of the Output signal type parameter.

2-454

MATLAB Fcn

Parameters
and
Dialog
Box

MATLAB function
The function or expression. If you specify a function only, it is not
necessary to include the input argument in parentheses.

Output dimensions
Dimensions of the signal output by this block. If the output
dimensions are to be the same as the dimensions of the input
signal, specify -1. Otherwise, enter the dimensions of the output
signal, e.g., 2 for a two-element vector. In either case, the output
dimensions must match the dimensions of the value returned by
the function or expression in the MATLAB function field.

2-455

MATLAB Fcn

Output signal type
The dialog allows you to select the output signal type of the
MATLAB Fcn as real, complex, or auto. A value of auto sets the
block’s output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D
Outputs a 2-D array as a 1-D array containing the 2-D array’s
elements in column-major order.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-456

Matrix Concatenate, Vector Concatenate

Purpose Concatenate input signals of same data type to create contiguous
output signal

Library Math Operations

Description The Concatenate block concatenates the signals at its inputs to create
an output signal whose elements reside in contiguous locations in
memory. This block operates in either vector or multidimensional array
concatenation mode, depending on the setting of its Mode parameter.
In either case, the inputs are concatenated from the top to bottom, or
left to right, input ports.

Vector Mode

In vector mode, all input signals must be either vectors or row vectors
[1xM matrices] or column vectors [Mx1 matrices] or a combination of
vectors and either row or column vectors. The output is a vector if all
inputs are vectors.

The output is a row or column vector if any of the inputs are row or
column vectors, respectively.

Multidimensional Array Mode

Multidimensional array mode accepts vectors and arrays of any size.
It assumes that the trailing dimensions are all ones for input signals
with lower dimensionality. For example, if the output is 4-D and the
input is [2x3] (2-D) this block treats the input as [2x3x1x1]. The
output is always an array. The block’s Concatenate dimension
parameter allows you to specify the output dimension along which
the block concatenates its input arrays. If you set the Concatenate
dimension parameter to 2 and inputs are 2-D matrices, the block
performs horizontal matrix concatenation and places the input matrices
side-by-side to create the output matrix, e.g.,

2-457

Matrix Concatenate, Vector Concatenate

If you set the Concatenate dimension parameter to 1 and inputs are
2-D matrices, the block performs vertical matrix concatenation and
stacks the input matrices on top of each other to create the output
matrix, e.g.,

For horizontal concatenation, the input matrices must have the same
column dimension; for vertical concatenation, the same row dimension.
All input signals must have the same dimension for all dimensions
other than the concatenation dimensions.

If you set the Mode parameter to Multidimensional array, the
Concatenate dimension parameter to 3, and the inputs are 2-D
matrices, the block performs multidimensional matrix concatenation,
e.g.,

2-458

Matrix Concatenate, Vector Concatenate

Data Type
Support

Accepts signals of any data type supported by Simulink® software. All
inputs must be of the same data type. Outputs the same data type
as the input.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-459

Matrix Concatenate, Vector Concatenate

Parameters
and
Dialog
Box

Number of inputs
Number of inputs on this block.

Mode
Specifies the type of concatenation performed by this block.
Options are:

2-460

Matrix Concatenate, Vector Concatenate

• Vector (see “Vector Mode” on page 2-457)

• Multidimensional array (see “Multidimensional Array Mode”
on page 2-457)

Concatenate dimension
Specifies the output dimension along which to concatenate the
input arrays. For example, to concatenate the input arrays
vertically or horizontally, specify 1 or 2, respectively. This option
appears only if you select Multidimensional array for the Mode
parameter.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

See Also cat in the MATLAB® reference documentation

2-461

Memory

Purpose Output input from previous time step

Library Discrete

Description The Memory block outputs its input from the previous time step,
applying a one integration step sample-and-hold to its input signal.

This sample model demonstrates how to display the step size used in
a simulation. The Sum block subtracts the time at the previous step,
generated by the Memory block, from the current time, generated by
the clock.

Note Avoid using the Memory block when integrating with ode15s or
ode113, unless the input to the block does not change.

Data Type
Support

The Memory block accepts real or complex signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-462

Memory

Parameters
and
Dialog
Box

Initial condition
The output at the initial integration step. This must be set to 0 if
the input data type is user-defined. Simulink software does not
allow the initial output of this block to be inf or NaN.

Inherit sample time
Check this check box to cause the sample time to be inherited
from the driving block. If this option is not selected, the block’s
sample time depends on the type of solver used to simulate the
model. If the solver is a variable-step solver, the sample time is
continuous but fixed in minor time step ([0, 1]). If the solver is
a fixed-step solver, this [0, 1] sample time is converted to the
solver’s step size after sample time propagation.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

2-463

Memory

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Treat as a unit delay when linearizing with discrete sample time
Select this check box to linearize the Memory block to a unit delay
when the Memory block is driven by a signal with a discrete
sample time.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage and
Interfacing” in the Real-Time Workshop® Workshop documentation
for more information.

Bus
Support

The Memory block is a bus-capable block. The input can be a virtual or
nonvirtual bus signal subject to the following restrictions:

• Initial condition must be zero or a nonzero scalar.

• If Initial condition is zero and a State name is specified, the input
cannot be a virtual bus.

• If Initial condition is a nonzero scalar, no State name can be
specified.

2-464

Memory

Characteristics Bus-capable Yes, with restrictions as noted above

Direct Feedthrough No, except when Direct
feedthrough of input during
linearization is enabled

Sample Time Continuous, but inherited from
the driving block if you select the
Inherit sample time check box

Scalar Expansion Yes, of the Initial condition
parameter

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-465

Merge

Purpose Combine multiple signals into single signal

Library Signal Routing

Description The Merge block combines its inputs into a single output line whose
value at any time is equal to the most recently computed output of its
driving blocks. You can specify any number of inputs by setting the
block’s Number of inputs parameter.

Note Merge blocks assume that all driving signals share the same
signal memory. The shared signal memory should be accessed only in
mutually exclusive fashion. Therefore, always use alternately executing
subsystems to drive Merge blocks. See “Creating Alternately Executing
Subsystems” for an application example.

A Merge block does not accept signals whose elements have been
reordered or partially selected. For example, in the following diagram,
the Merge block does not accept the output of the first Selector block
because the Selector block interchanges the first and last elements of
the vector signal. It does not accept the output of the second Selector
block because the Selector block selects only the first three elements.

2-466

Merge

���
�����������������

���
�������������������������

If the Allow unequal port widths parameter is not selected, the block
accepts only inputs of equal dimensions and outputs a signal of the
same dimensions as the inputs. If you select the Allow unequal port
widths option, the block accepts scalars and vectors (but not matrices)
having differing numbers of elements. Further, the block allows you to
specify an offset for each input signal relative to the beginning of the
output signal. The width of the output signal is

max(w1+o1, w2+o2, ... wn+on)

2-467

Merge

where w1, ... wn are the widths of the input signals and o1, ... on
are the offsets for the input signals. For example, the Merge block in
the following diagram has a Merge block width of

max(2+0,2+1)=3

 ������������!�"	��	��#�$%�&'

���������	��	��#�$(�(�('
���	���������������#�$(�%'

 ������������!
"	��	��#�$)�*'

In this example, the offset of v1 is 0 and the offset of v2 is 1. The Merge
block maps the elements of v1 to the first two elements of v3 and the
elements of v2 to the last two elements of v3. Only the second element
of v3 is effectively merged, as seen from the scopes output.

You can specify an initial output value by setting the block’s Initial
output parameter. If you do not specify an initial output and one or
more of the driving blocks do, the Merge block’s initial output equals
the most recently evaluated initial output of the driving blocks.

2-468

Merge

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if
the memory used to store the S-Function block’s output is reusable.
Simulink® software displays an error message if you attempt to update
or simulate a model that connects a nonreusable port of an S-Function
block to a Merge block. See ssSetOutputPortOptimOpts for more
information.

Guidelines for Using Merge Block

When using the Merge block, consider the following:

• Do not connect an input of a Merge block to any other block. Doing
so causes an error.

• Always use conditionally executed subsystems to drive Merge blocks.

• Always set the Initial output parameter of the Merge block.

• Write your control logic to ensure that at most one of the driving
conditionally executed subsystems executes at any time step.

Note Where possible, use the If or Switch Case block to provide
control logic.

• For all conditionally executed subsystem Outport blocks that drive
Merge blocks:

- Set the Initial output parameter to empty matrix ([]).

- Set the Output when disabled parameter to held.

Data Type
Support

The Merge block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types. All
inputs must be of the same data type and numeric type.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-469

Merge

Parameters
and
Dialog
Box

Number of inputs
The number of input ports to merge.

Initial output
Initial value of output. If unspecified, the initial output equals
the initial output, if any, of one of the driving blocks. Simulink
software does not allow you to set the initial output of this block
to inf or NaN.

Allow unequal port widths
Allows the block to accept inputs having different numbers of
elements.

2-470

Merge

Input port offsets
Vector specifying the offset of each input signal relative to the
beginning of the output signal.

Bus
Support

The Merge block is a bus-capable block. The inputs can be virtual or
nonvirtual bus signals subject to the following restrictions:

• The number of inputs must be greater than one.

• Initial output must be zero or a nonzero scalar.

• Allow unequal port widths must be disabled.

• All inputs to the merge must be buses and must be equivalent (same
hierarchy with identical names and attributes for all elements).

Characteristics Bus-capable Yes, with restrictions as noted
above

Direct Feedthrough Yes

Sample Time Inherited from the driving block

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-471

MinMax

Purpose Output minimum or maximum input value

Library Math Operations

Description The MinMax block outputs either the minimum or the maximum
element or elements of the inputs. You can choose the function to apply
by selecting one of the choices from the Function parameter list.

If the block has one input port, the input must be a scalar or a vector.
The block outputs a scalar equal to the minimum or maximum element
of the input vector.

If the block has multiple input ports, the nonscalar inputs must all have
the same dimensions. The block expands any scalar inputs to have the
same dimensions as the nonscalar inputs. The block outputs a signal
having the same dimensions as the input. Each output element equals
the minimum or maximum of the corresponding input elements.

Data Type
Support

The MinMax block accepts and outputs real signals of any data type
supported by Simulink® software, except Boolean. The MinMax block
supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-472

MinMax

Parameters
and
Dialog
Box

The Main pane of the MinMax block dialog appears as follows:

Function
Specify whether to apply the function min or max to the input.

Number of input ports
Specify the number of inputs to the block.

Enable zero crossing detection
Select to enable zero crossing detection to detect minimum and
maximum values. For more information, see “Zero-Crossing
Detection” in the “How Simulink Works” chapter of the Simulink
documentation.

2-473

MinMax

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the MinMax block dialog appears as
follows:

Require all inputs to have the same data type
Select this parameter to require that all inputs must have the
same data type.

2-474

MinMax

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

2-475

MinMax

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of the inputs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing Yes, if enabled.

2-476

MinMax Running Resettable

Purpose Determine minimum or maximum of signal over time

Library Math Operations

Description The MinMax Running Resettable block outputs the minimum or
maximum of all past inputs u. You specify whether the block outputs
the minimum or the maximum with the Function parameter.

The block can reset its state based on an external reset signal R. When
the reset signal R is TRUE, the block resets the output to the value of
the Initial condition parameter.

The input can be a scalar, vector, or matrix signal. If you specify a
scalar Initial condition parameter, the block expands the parameter
to have the same dimensions as a nonscalar input. The block outputs a
signal having the same dimensions as the input. Each output element
equals the running minimum or maximum of the corresponding input
elements.

Data Type
Support

The MinMax Running Resettable block accepts and outputs real signals
of any data type supported by Simulink® software, except Boolean. The
MinMax Running Resettable block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-477

MinMax Running Resettable

Parameters
and
Dialog
Box

Function
Specify whether the block outputs the minimum or the maximum.

Initial condition
Initial condition.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-478

Model

Purpose Include model as block in another model

Library Ports & Subsystems

Description The Model block allows you to include a model as a block in another
model. The Model block displays input ports and output ports
corresponding to the included model’s top-level input and output ports.
This allows you to connect the included model to other blocks in the
containing model. See “Referencing a Model” for more information.

Data Type
Support

Determined by the root-level inputs and outputs of the model referenced
by the Model block.

Parameters
and
Dialog
Box

Model Name
Name of the model referenced by this block. This name must be a
valid MATLAB® identifier. The model must exist on the MATLAB

2-479

Model

path and the MATLAB path must contain no other model having
the same name. See “Creating a Model Reference” for details.

Model arguments
Names of model arguments accepted by the model referenced by
this block. See “Using Model Arguments” for details.

Model argument values (for this instance)
Values to be passed as model arguments to the model referenced
by this block each time the model is invoked during a simulation.
Enter the values in this field as a comma-separated list in the
same order as the corresponding argument names appear in
the Model arguments field. See “Using Model Arguments” for
details.

Simulation mode
The simulation mode for the model referenced by this block.

Accelerator
Simulink® software creates a MEX-file for the submodel,
then executes the submodel by running the S-function.

Normal
Simulink software executes the submodel interpretively, as
if the submodel were an atomic subsystem implemented
directly within the parent model.

See “Referenced Model Simulation Modes” for details.

Navigating
a Model
Block

Model blocks behave differently from other blocks when double-clicked.
This customized behavior provides the results most likely to be useful
given the current status of the Model block, as follows:

• Double-clicking the prototype Model block in the Ports & Subsystems
library opens its Block Parameters dialog box for inspection, but does
not allow you to specify parameter values.

2-480

Model

• Double-clicking an unresolved Model block opens its Block
Parameters dialog box. You can then resolve the block by specifying a
Model name.

• Double-clicking a resolved Model block opens the model that the
block references. You can also open the model by choosing Open
Model from the Context or Edit menu.

To display the Block Parameters dialog box for a resolved Model block,
choose Model Reference Parameters from the Context or Edit
menu.

Model
Blocks
and Direct
Feedthrough

When a Model block is part of a cycle, and the block is a direct
feedthrough block, an algebraic loop can result. An algebraic loop in
a model is not necessarily an error, but it may not give the expected
results. See:

• “Algebraic Loops” for information about direct feedthrough and
algebraic loops.

• “Highlighting Algebraic Loops” for information about seeing algebraic
loops graphically

• “Displaying Algebraic Loop Information” for information about
tracing algebraic loops in the debugger.

• The “Diagnostics Pane: Solver” pane “Algebraic loop” option for
information about detecting algebraic loops automatically.

Direct Model Block Feedthrough Caused by Submodel
Structure

A Model block may be a direct feedthrough block due to the structure of
the referenced model. Where direct feedthrough results from submodel
structure, and an unwanted algebraic loop results, you can:

• Automatically eliminate the algebraic loop using techniques
described in:

- “Minimize algebraic loop”

2-481

Model

- “Minimize algebraic loop occurrences”

- “Eliminating Algebraic Loops”

• Manually insert one or more Unit Delay blocks as needed to break
the algebraic loop.

Direct Model Block Feedthrough Caused by Model
Configuration

ERT-based targets provide the option Configuration Parameters >
Real-Time Workshop Pane > Interface > Single output/update
function. This option controls whether generated code has separate
output and update functions, or a combined output/update function. See:

• “Embedded Model Functions” for information about separate and
combined output and update functions.

• “Single output/update function” for information about specifying
whether code has separate or combined functions.

When Single output/update function is enabled (the default) a Model
block has a combined output/update function, which makes the block a
direct feedthrough block for all inports regardless of the structure of the
referenced model. Where an unwanted algebraic loop results, you can:

• Disable Single output/update function. The code for the Model
block then has separate output and update functions, eliminating the
direct feedthrough and hence the algebraic loop.

• Automatically eliminate the algebraic loop using techniques
described in:

- “Minimize algebraic loop”

- “Minimize algebraic loop occurrences”

- “Eliminating Algebraic Loops”

• Manually insert one or more Unit Delay blocks as needed to break
the algebraic loop.

2-482

Model

Characteristics Direct Feedthrough If “Single output/update function”
is enabled (the default), a Model
block is a direct feedthrough block
regardless of the structure of the
referenced model.

If “Single output/update function” is
disabled, a Model block may or may
not be a direct feedthrough block,
depending on the structure of the
referenced model.

Scalar Expansion Depends on model referenced by this
block.

Multidimensionalized Yes

2-483

Model Info

Purpose Display revision control information in model

Library Model-Wide Utilities

Description The Model Info block displays revision control information about a
model as an annotation block in the model’s block diagram. The
following diagram illustrates use of a Model Info block to display
information about the vdp model.

A Model Info block can show revision control information embedded in
the model itself and/or information maintained by an external revision
control or configuration management system. A Model Info block’s
dialog allows you to specify the content and format of the text displayed
by the block.

2-484

Model Info

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

The Model Info block dialog box includes the following fields:

Editable text

Enter the text to be displayed by the Model Info block in this field. You
can freely embed variables of the form %<propname>, where propname is
the name of a model or revision control system property, in the entered
text. The value of the property replaces the variable in the displayed
text. For example, suppose that the current version of the model is
1.1. Then the entered text

Version %<ModelVersion>

appears as

2-485

Model Info

Version 1.1

in the displayed text. The model and revision control system properties
that you can reference in this way are listed in the Model properties
and Configuration manager properties fields.

Model properties

Lists revision control properties stored in the model. Selecting a
property and then selecting the adjacent arrow button enters the
corresponding variable in the Editable text field. For example,
selecting CreatedBy enters %<CreatedBy%> in the Editable text field.
See “Version Control Properties” for a description of the usage of the
properties specified in this field.

Configuration manager properties

This field appears only if you previously specified an external
configuration manager for this model on the MATLAB® Preferences
dialog box for the model (see “Specifying the Source Control System on
UNIX® Platforms” in the online MATLAB documentation) or by setting
the model’s ConfigurationManager property. The field lists version
control information maintained by the external system that you can
include in the Model Info block. To include an item from the list, select
it and then click the adjacent arrow button.

Note The selected item does not appear in the Model Info block until
you check the model in or out of the repository maintained by the
configuration manager and you have closed and reopened the model.

2-486

Multiport Switch

Purpose Choose between multiple block inputs

Library Signal Routing

Description The Multiport Switch block chooses between a number of inputs. The
first input is called the control input, while the rest of the inputs are
called data inputs. The value of the control input determines which
data input is passed through to the output port. (See “Changing
the Orientation of a Block” in the Simulink® documentation for a
description of the port order for various block orientations.)

If the control input is an integer value, then the specified data input
is passed through to the output. For example, suppose the Use
zero-based indexing parameter is not selected. If the control input
is 1, then the first data input is passed through to the output. If the
control input is 2, then the second data input is passed through to
the output, and so on. If the control input is not an integer value, the
block first truncates the value to an integer by rounding to floor. If the
truncated control input is less than 1 or greater than the number of
input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the Number of inputs
parameter. The data inputs can be scalar or vector. The block output is
determined by these rules:

• If you specify only one data input and that input is a vector, the block
behaves as an “index selector,” and not as a multi-port switch. The
block output is the vector element that corresponds to the value of
the control input.

• If you specify more than one data input, the block behaves like
a multi-port switch. The block output is the data input that
corresponds to the value of the control input. If at least one of the
data inputs is a vector, the block output is a vector. Any scalar inputs
are expanded to vectors.

• If the inputs are scalar, the output is a scalar.

2-487

Multiport Switch

The Index Vector block, also in the Signal Routing library, is another
implementation of the Multiport Switch block that has different default
parameter settings.

Data type
support

The control and data inputs of a Multiport Switch block can be signals
of any data type supported by Simulink software, except Boolean. The
Multiport Switch block supports fixed-point data types.

The control inputs must be real. The data inputs can be real or complex.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-488

Multiport Switch

Parameters
and
Dialog
Box

The Main pane of the Multiport Switch block dialog appears as follows:

Number of inputs
Specify the number of data inputs to the block.

Use zero-based indexing
If selected, the block uses zero-based indexing. Otherwise, the
block uses one-based indexing.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-489

Multiport Switch

The Signal Attributes pane of the Multiport Switch block dialog
appears as follows:

Require all data port inputs to have the same data type
Select to require all data port inputs to have the same data type.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-490

Multiport Switch

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

2-491

Multiport Switch

Bus
Support

The Multiport Switch block is a bus-capable block. The inputs can be
virtual or nonvirtual bus signals subject to the following restrictions:

• The number of inputs must be greater than one.

• All inputs to the merge must be buses and must be equivalent (same
hierarchy with identical names and attributes for all elements).

Characteristics Bus-capable Yes, with restrictions as noted above

Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-492

Mux

Purpose Combine several input signals into vector

Library Signal Routing

Description The Mux block combines its inputs into a single vector output. An input
can be a scalar or vector signal. All inputs should be of the same data
type and numeric type. The elements of the vector output signal take
their order from the top to bottom, or left to right, input port signals.

Note The Mux block allows you to connect signals of differing data and
numeric types and matrix signals to its inputs. In this case, the Mux
block outputs a bus signal combining the inputs. In other words, the
Mux block behaves like a Bus Creator block. Nevertheless, you should
use Bus Creator blocks in such cases to ensure that your model will run
in future releases of Simulink® software, which may not support the use
of Mux blocks as Bus Creators. If your model currently uses Mux blocks
as Bus Creators, you may want to consider replacing the Mux blocks
with equivalent Bus Creator blocks (see “Mux blocks used to create
bus signals” for more information).

The Mux block’s Number of Inputs parameter allows you to specify
input signal names and sizes as well as the number of inputs. You can
use any of the following formats to specify this parameter:

• Scalar

Specifies the number of inputs to the Mux block. When this format is
used, the block accepts scalar or vector signals of any size. Simulink
software assigns each input the name signalN, where N is the input
port number.

• Vector

The length of the vector specifies the number of inputs. Each element
specifies the size of the corresponding input. A positive value specifies
that the corresponding port can accept only vectors of that size. For

2-493

Mux

example, [2 3] specifies two input ports of sizes 2 and 3, respectively.
If an input signal width does not match the expected width, Simulink
software displays an error message. A value of -1 specifies that the
corresponding port can accept scalars or vectors of any size.

• Cell array

The length of the cell array specifies the number of inputs. The value
of each cell specifies the size of the corresponding input. A scalar
value N specifies a vector of size N. A value of -1 means that the
corresponding port can accept scalar or vector signals of any size.

• Signal name list

You can enter a list of signal names separated by commas. Simulink
software assigns each name to the corresponding port and signal. For
example, if you enter position,velocity, the Mux block will have
two inputs, named position and velocity.

Note Simulink software hides the name of a Mux block when you copy
it from the Simulink block library to a model.

Data Type
Support

The Mux block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-494

Mux

Parameters
and
Dialog
Box

Number of inputs
The number and size of inputs. You can enter a comma-separated
list of signal names for this parameter field.

Display option
The appearance of the block in the model.

Display Option
Appearance of Block in
Model

none Mux appears inside the block

signals Displays signal names next to
each port

bar Displays the block in a solid
foreground color

2-495

Outport

Purpose Create output port for subsystem or external output

Library Ports & Subsystems, Sinks

Description Outport blocks are the links from a system to a destination outside
the system.

Simulink® software assigns Outport block port numbers according to
these rules:

• It automatically numbers the Outport blocks within a top-level
system or subsystem sequentially, starting with 1.

• If you add an Outport block, it is assigned the next available number.

• If you delete an Outport block, other port numbers are automatically
renumbered to ensure that the Outport blocks are in sequence and
that no numbers are omitted.

Outport Blocks in a Subsystem

Outport blocks in a subsystem represent outputs from the subsystem.
A signal arriving at an Outport block in a subsystem flows out of the
associated output port on that Subsystem block. The Outport block
associated with an output port on a Subsystem block is the block whose
Port number parameter matches the relative position of the output
port on the Subsystem block. For example, the Outport block whose
Port number parameter is 1 sends its signal to the block connected to
the topmost output port on the Subsystem block.

If you renumber the Port number of an Outport block, the block
becomes connected to a different output port, although the block
continues to send the signal to the same block outside the subsystem.

When you create a subsystem by selecting existing blocks, if more than
one Outport block is included in the grouped blocks, Simulink software
automatically renumbers the ports on the blocks.

The Outport block name appears in the Subsystem icon as a port label.
To suppress display of the label, select the Outport block and choose
Hide Name from the Format menu.

2-496

Outport

Outport Blocks in a Conditionally Executed Subsystem

When an Outport block is in an enabled subsystem, you can specify what
happens to its output when the subsystem is disabled: it can be reset
to an initial value or held at its most recent value. The Output when
disabled pop-up menu provides these options. The Initial output
parameter is the value of the output before the subsystem executes and,
if the reset option is chosen, while the subsystem is disabled.

Outport Blocks in a Top-Level System

Outport blocks in a top-level system have two uses: to supply external
outputs to the workspace, which you can do by using either the
Configuration Parameters dialog box or the sim command, and to
provide a means for analysis functions to obtain output from the system.

• To supply external outputs to the workspace, use the Configuration
Parameters dialog box (see Exporting Output Data to the MATLAB
Workspace) or the sim command (see sim). For example, if a system
has more than one Outport block and the save format is array, the
following command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different
Outport block. The column order matches the order of the port
numbers for the Outport blocks.

If you specify more than one variable name after the second (state)
argument, data from each Outport block is written to a different
variable. For example, if the system has two Outport blocks, to save
data from Outport block 1 to speed and the data from Outport block
2 to dist, you could specify this command:

[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to
obtain output from the system (see “Linearizing Models”)

2-497

Outport

Data Type
Support

The Outport block accepts complex or real signals of any data type
supported by Simulink software. An Outport block can also accept
fixed-point data types if it is not a root-level output port. The complexity
and data type of the block’s output are the same as those of its input.
For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

The elements of a signal array connected to an Outport block can
be of differing complexity and data types except in the following
circumstance: If the output port is in a conditionally executed
subsystem and the initial output is specified, all elements of an input
array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an output port’s
Initial output parameter. If the initial output value is in the range of
the block’s output data type, Simulink software converts the initial
output to the output data type. If the specified initial output is out
of the range of the output data type, Simulink software halts the
simulation and signals an error.

2-498

Outport

Parameters
and
Dialog
Box

The Main pane of the Outport block dialog appears as follows:

Port number
Specify the port number of the Outport block.

2-499

Outport

Icon Display
Specify the information to be displayed on the icon of this Outport
block. The options are:

Port number Displays port number of this Outport
block.

Signal name Displays the name of the signal
connected to this Outport block (or
signals if a bus is connected to this
block).

Port name and
signal name

Displays both the port number and the
name or names of the signals connected
to this Outport block.

Output when disabled
This option is enabled only if the Outport resides in an Enabled
Subsystem. It specifies what happens to the block output when
the system is disabled.

Initial output
For conditionally executed subsystems, specify the block output
before the subsystem executes and while it is disabled. You can
specify [] if your model does not depend on the initial output of
the conditionally executed subsystem. Simulink software does not
allow the initial output of this block to be inf or NaN.

The Signal Attributes pane of the Output block dialog appears as
follows:

2-500

Outport

Specify properties via bus object
Select this option to use a bus object (see “Working with Data
Objects” and Simulink.Bus class in the online documentation) to
define the properties of a bus connected to this Outport block.

2-501

Outport

Bus object for validating input bus
Specifies the name of the bus object that defines the structure
that a bus must have to be connected to this Outport block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink software checks whether the bus connected to
this block has the specified structure. If not, Simulink software
displays an error message.

Output as nonvirtual bus in parent model
Select this option if you want code generated from this model to
use a C structure to define the structure of the bus signal output
by this block.

Port dimensions (-1 for inherited)
Specifies the dimensions that a signal must have in order to be
connected to this Outport block. Valid values are:

-1 A signal of any dimensions can be connected
to this port.

N The signal connected to this port must be a
vector of size N.

[R C] The signal connected to this port must be a
matrix having R rows and C columns.

Sample time (-1 for inherited)
Specify the sample time of this Outport block. See “Specifying
Sample Time” in the online documentation for information on
specifying sample times. The output of this block changes at the
specified rate to reflect the value of its input.

Minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-502

Outport

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: auto

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specifies the numeric type of the signal output by this block. The
options are:

2-503

Outport

real This Outport block outputs a real-valued signal.
The signal connected to this block must be real.
If it is not, Simulink software displays an error
if you try to update the diagram or simulate the
model that contains this block.

complex This Outport block outputs a complex signal.
The signal connected to this block must be
complex. If it is not, Simulink software displays
an error if you try to update the diagram or
simulate the model that contains this block.

auto This block outputs the numeric type of the
signal that is connected to its input.

Sampling mode
Specify the sampling mode (Sample based or Frame based) that
the input signal must match. To accept any sampling mode, set
this parameter to auto. This parameter is intended to support
signal processing applications based on Simulink models. See
the documentation for the buffer function provided by Signal
Processing Toolbox™ software or “Frame-Based Signals” in the
Signal Processing Blockset™ documentation for information
about frame-based signals.

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Multidimensionalized Yes

2-504

Permute Dimensions

Purpose Rearrange dimensions of multidimensional array dimensions

Library Math Operations

Description The block reorders the elements of the input signal so that they are in
the order that you specify in the Order parameter.

Data Type
Support

Accepts signals of any data type supported by Simulink® software,
including fixed-point data types. Output must be the same data type
as the input.

Parameters
and
Dialog
Box

2-505

Permute Dimensions

Order
Specify the permutation order to apply to the dimensions of the
input signal. This parameter is a vector of elements, where the
number of elements in the vector is the number of dimensions
of the input signal.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

See Also Math Function (transpose), permute (in the MATLAB® reference
documentation)

2-506

Polynomial

Purpose Perform evaluation of polynomial coefficients on input values

Library Math Operations

Description The Polynomial block uses a coefficients parameter to evaluate a real
polynomial for the input value.

You define a set of polynomial coefficients in the form accepted by the
MATLAB® polyval command. The block then calculates P(u) at each
time step for the input u. Inputs and coefficients must be real.

Data Type
Support

The Polynomial block accepts real signals of types double or single.
The Polynomial coefficients parameter must be of the same type as
the inputs. The output data type is set to the input data type.

Parameters
and
Dialog
Box

Polynomial coefficients

Values are in coefficients of a polynomial in MATLAB polyval form,
with the first coefficient representing xN, then decreasing in order until
the last coefficient, which represents the constant for the polynomial.
See polyval in the MATLAB documentation for more information.

2-507

Polynomial

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-508

Prelookup

Purpose Compute index and fraction for Interpolation Using Prelookup block

Library Lookup Tables

Description The Prelookup block is intended for use with the Interpolation Using
Prelookup block. The Prelookup block calculates the index and interval
fraction that specifies how its input value relates to the breakpoint
data set. You feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional
table. This combination of blocks performs the equivalent operation that
a single instance of the Lookup Table (n-D) block performs. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can result in more efficient simulation performance.

To use this block, you must define a set of breakpoint values. In normal
use, this breakpoint data set corresponds to one dimension of the Table
data parameter in an Interpolation Using Prelookup block. The block
generates a pair of outputs for each input value by calculating the

• Index of the breakpoint set element that is less than or equal to the
input value

• Resulting fractional value that is a number 0 ≤ f < 1, representing
the input value’s normalized position between the index and the next
index value for in-range input

For example, if the breakpoint data set is

[0 5 10 20 50 100]

and the input value u is 55, the index is 4 and the fractional value is
0.1, denoted respectively as k and f on the block. Note that the index
value is zero-based.

2-509

Prelookup

Note The interval fraction can be negative or greater than 1 for
out-of-range input. See the documentation for the block’s Process out
of range input parameter for more information.

Data Type
Support

The Prelookup block accepts real signals of any data type supported by
Simulink® software, except Boolean. The Prelookup block supports
fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-510

Prelookup

Parameters
and
Dialog
Box

The Main pane of the Prelookup block dialog appears as follows:

Breakpoint data
The set of numbers to search. Specify a strictly monotonically
increasing vector that contains two or more elements.

2-511

Prelookup

Note At runtime, the Prelookup block converts the data type of
its Breakpoint data parameter to that of its input.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the Simulink documentation).

Index search method
Binary search, Evenly spaced points, or Linear search. Use
Linear search in combination with Begin index search using
previous index result for more efficient performance than
Binary search when the input values do not change much from
one time step to the next. For large breakpoint data sets, a linear
search can be very slow if the input value changes by more than a
few intervals from one time step to the next. Use Evenly spaced
points if the elements of the Breakpoint data parameter are
spaced apart evenly.

Begin index search using previous index result
Select this option if you want the block to start its search using
the index that was found at the previous time step. For inputs
that change slowly with respect to the interval size, you can
realize a large performance gain.

Output only the index
If this block is not being used to feed an Interpolation Using
Prelookup block, the interval fraction output can be dropped. In
this case, the block outputs only the resulting index value.

Process out of range input
Specifies how to handle out-of-range input. Options include:

• Clip to range

If the input is less than the first breakpoint, return the index of
the first breakpoint (i.e., 0) and 0 for the interval fraction. If
the input is greater than the last breakpoint, return the index
of the next-to-last breakpoint and 1 for the interval fraction.
For example, suppose the range is [1 2 3] and you select this

2-512

Prelookup

option. Then, if the input is 0.5, the index is 0 and the interval
fraction is 0; if the input is 3.5, the index is 1 and the interval
fraction is 1.

• Linear extrapolation

If the input is less than the first breakpoint, return the
index of the first breakpoint (i.e., 0) and an interval fraction
representing the linear distance from the input to the first
breakpoint. If the input is greater than the last breakpoint,
return the index of the next-to-last breakpoint and an
interval fraction that represents the linear distance from the
next-to-last breakpoint to the input. For example, suppose the
range is [1 2 3] and you select this option. Then, if the input
is 0.5, the index is 0 and the interval fraction is -0.5; if the
input is 3.5, the index is 1 and the interval fraction is 1.5.

The Prelookup block supports Linear extrapolation only if
all of the following conditions apply:

— The block input and its interval fraction specify the same
floating-point data type.

— The data type of its index specifies a built-in integer.

Use last breakpoint for input at or above upper limit
Specifies how to index inputs that are greater than or equal to the
last breakpoint. If enabled when the block input equals the last
breakpoint, the block returns the index of the last element in the
breakpoint data set and 0 for the interval fraction. If disabled
in this situation, the block returns the index of the next-to-last
breakpoint and 1 for the interval fraction. Note that the index
value is zero-based.

This parameter is visible only if Output only the index is
unchecked and Process out of range input is Clip to range.
However, if Output only the index is checked and Process out
of range input is Clip to range, the block behaves as if this
parameter is enabled even though it is invisible.

2-513

Prelookup

Note If you enable the Use last breakpoint for input at or
above upper limit parameter for a Prelookup block, you must
also enable the Valid index input may reach last index
parameter for the Interpolation Using Prelookup block to which
it connects. This allows the blocks to use the same indexing
convention when accessing the last elements of their Breakpoint
data and Table data parameters.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are

• None — the default, no warning or error message

• Warning — display a warning message in the MATLAB®

Command Window and continue the simulation

• Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Sample time
Specifies the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the Simulink documentation for more information.

The Signal Attributes pane of the Prelookup block dialog appears
as follows:

2-514

Prelookup

Index data type
Specify how the data type of the index is designated. You can
choose a built-in integer data type from the list, or you can specify
an integer data type using a fixed-point representation. The data
type that you specify must be capable of indexing all elements in
the Breakpoint data parameter.

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Index
data type parameter.

2-515

Prelookup

See “Using the Data Type Assistant” in Using Simulink for more
information.

Fraction data type
Specify how the data type of the interval fraction is designated.
You can choose a built-in data type from the list, specify that
the data type is inherited through an internal rule, or specify
a fixed-point data type using either the [Slope Bias] or the
binary-point-only scaling representation. If using the [Slope Bias]
representation, the scaling must be trivial — i.e., the slope is 1
and the bias is 0. If using the binary-point-only representation,
the fixed power-of-two exponent must be less than or equal to zero.

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Fraction data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Fraction data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Block parameters such as Breakpoint data are always rounded
to the nearest representable value. To control the rounding of a
block parameter, enter an expression using a MATLAB rounding
function into the mask field.

2-516

Prelookup

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing No

See Also Interpolation Using Prelookup

2-517

Product

Purpose Multiply or divide inputs

Library Math Operations

Description The Product block performs multiplication or division of its inputs.

This block produces outputs using either element-wise or matrix
multiplication, depending on the value of the Multiplication
parameter. You specify the operations with the Number of inputs
parameter. The Product block first performs the specified multiply or
divide operations on the inputs, and then converts the results to the
output data type using the specified rounding and overflow modes.

Data Type
Support

The Product block accepts real or complex signals of any data type
supported by Simulink® software including fixed-point data types.

Note The Product block does not support division for complex signals
with boolean or fixed-point data types. Otherwise, the block accepts
complex signals for inputs marked “/” only when the input and output
signals all specify the same built-in data type. In this case, however,
the block ignores its specified rounding mode.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-518

Product

Parameters
and
Dialog
Box

The Main pane of the Product dialog appears as follows:

Number of inputs
Enter the number of inputs or a combination of “*” and “/”
symbols. Multiply (*) and divide (/) characters indicate the
operations to be performed on the inputs:

• If there are two or more inputs, then the number of characters
must equal the number of inputs. For example, “*/*” requires
three inputs. For this example, if the Multiplication
parameter is set to Element-wise(.*), the block divides the
elements of the first input by the elements of the second input,

2-519

Product

and then multiplies by the elements of the third input. (See
“Changing the Orientation of a Block” in Using Simulink for
a description of the port order for various block orientations.)
In this case, all nonscalar inputs to this block must have the
same dimensions.

Note The Product block internally reorders its first two
inputs, u1 and u2, if all of the following conditions apply:

— Number of inputs parameter begins with “/*”.

— Multiplication parameter specifies Element-wise(.*).

— Any of the block input signals specify integer, fixed-point, or
a mixture of double and single data types.

In this case, the block computes the simplified expression

u2 / u1

instead of the default computation

(1 / u1) * u2

The reordered computation provides more accurate results and
is more efficient.

If, however, the Multiplication parameter is set to Matrix(*),
the block output is the matrix product of the inputs marked
“*” and the inverse of inputs marked “/”, with the order of
operations following the entry in the Number of inputs
parameter. The dimensions of the inputs must be such that
the matrix product is defined.

2-520

Product

Note To perform a dot product on input vectors, use the Dot
Product block.

• If only multiplication of inputs is required, then a numeric
parameter value equal to the number of inputs can be supplied
instead of “*” characters. This may be used with either
element-wise or matrix multiplication.

• If there is only one input port and the Multiplication
parameter is set to Element-wise(.*), a single “*” or “/”
collapses the input signal using the specified operation.
However, if the Multiplication parameter is set to Matrix(*),
a single “*” causes the block to output the matrix unchanged,
and a single “/” causes the block to output the matrix inverse.

Multiplication
Specify element-wise or matrix multiplication.

Note This block supports multidimensional signals only for
element-wise multiplication.

Multiply over (Product of Elements block)
Specify the collapse mode. Select All dimensions or Specified
dimension.

Dimension (Product of Elements block)
Specify the dimension over which the operation is to be performed.
This parameter appears only if you select Specified dimension
for the Multiply over parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-521

Product

The Signal Attributes pane of the Product dialog appears as follows:

Require all inputs to have the same data type
Select this parameter to require that all inputs have the same
data type.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

2-522

Product

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

If you select Inherit: Inherit via internal rule for this
parameter, Simulink software chooses a combination of output
scaling and data type that requires the smallest amount of
memory consistent with accommodating the output range and
maintaining the output precision (and avoiding underflow in
the case of division operations). If the Device type parameter
on the Hardware Implementation pane of the Configuration
Parameters dialog is set to Custom, Simulink software chooses the

2-523

Product

data type without regard to hardware constraints. Otherwise,
Simulink software chooses the smallest available hardware
data type capable of meeting range, precision, and underflow
constraints. For example, if the block multiplies inputs of type
int8 and int16 and Custom is specified as the device type, the
output data type is sfix24. If Unspecified (assume 32-bit
generic) is specified, the output data type is int32. If none of the
word lengths provided by the target hardware can accommodate
the output range, Simulink software displays an error message in
the Simulation Diagnostics Viewer.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes, only when the
Multiplication parameter specifies
Element-wise(.*)

Zero Crossing No

2-524

Product of Elements

Purpose Multiply or divide inputs

Library Math Operations

Description The Product of Elements block is an implementation of the Product
block. See Product for more information.

2-525

Probe

Purpose Output signal’s attributes, including width, dimensionality, sample
time, and/or complex signal flag

Library Signal Attributes

Description The Probe block outputs selected information about the signal on its
input. The block can output the input signal’s width, dimensionality,
sample time, and/or a flag indicating whether the input is a
complex-valued signal. The block has one input port. The number of
output ports depends on the information that you select for probing,
that is, signal dimensionality, sample time, and/or complex signal flag.
Each probed value is output as a separate signal on a separate output
port. The block accepts real or complex-valued signals of any built-in
data type. It outputs signals of type double. During simulation, the
block’s icon displays the probed data.

Data Type
Support

The Probe block accepts and outputs any data type supported by
Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-526

Probe

Parameters
and
Dialog
Box

The Main pane of the Probe block dialog appears as follows:

Probe width
Select to output the width, or number of elements, of the probed
signal.

Probe sample time
Select to output the sample time of the probed signal. The
output is a 2x1 vector that specifies the period and offset of the
sample time, respectively. See “Specifying Sample Time” for more
information.

Detect complex signal
Select to output 1 if the probed signal is complex; otherwise, 0.

Probe signal dimensions
Select to output the dimensions of the probed signal.

2-527

Probe

Detect framed signal
Select to output 1 if the probed signal is framed; otherwise, 0.

The Signal Attributes pane of the Probe block dialog appears as
follows:

Note The Probe block ignores the Data type override setting of the
Fixed-Point Tool.

Data type for width
Select the output data type for the width information.

Data type for sample time
Select the output data type for the sample time information.

2-528

Probe

Data type for signal complexity
Select the output data type for the complexity information.

Data type for signal dimensions
Select the output data type for the dimensions information.

Data type for signal frames
Select the output data type for the frames information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-529

Pulse Generator

Purpose Generate square wave pulses at regular intervals

Library Sources

Description The Pulse Generator block generates square wave pulses at regular
intervals. The block’s waveform parameters, Amplitude, Pulse
Width, Period, and Phase Delay, determine the shape of the output
waveform. The following diagram shows how each parameter affects
the waveform.

The Pulse Generator can emit scalar, vector, or matrix signals of any
real data type. To cause the block to emit a scalar signal, use scalars
to specify the waveform parameters. To cause the block to emit a
vector or matrix signal, use vectors or matrices, respectively, to specify
the waveform parameters. Each element of the waveform parameters
affects the corresponding element of the output signal. For example,
the first element of a vector amplitude parameter determines the
amplitude of the first element of a vector output pulse. All the waveform
parameters must have the same dimensions after scalar expansion. The
data type of the output is the same as the data type of the Amplitude
parameter.

The block’s Pulse type parameter allows you to specify whether the
block’s output is time-based or sample-based. If you select sample-based,
the block computes its outputs at fixed intervals that you specify. If you

2-530

Pulse Generator

select time-based, Simulink® software computes the block’s outputs
only at times when the output actually changes. This can result in
fewer computations being required to compute the block’s output over
the simulation time period.

Depending on the pulse’s waveform characteristics, the intervals
between changes in the block’s output can vary. For this reason, a
time-based Pulse Generator block is said to have a variable sample
time. Simulink software uses brown as the sample time color of such
blocks (see “Displaying Sample Time Colors” for more information).

Simulink software cannot use a fixed-step solver to compute the output
of a time-based pulse generator. If you specify a fixed-step solver for
models that contain time-based pulse generators, Simulink software
computes a fixed sample time for the time-based pulse generators. It
then simulates the time-based pulse generators as sample-based.

Note If you use a fixed-step solver and the Pulse type is time-based,
you must choose the step size such that the period, phase delay, and
pulse width (in seconds) are integer multiples of the step size. For
example, suppose that the period is 4 seconds, the pulse width is 75%
(i.e., 3 s), and the phase delay is 1 s. In this case, the computed sample
time is 1 s. Therefore, you must choose a fixed-step size that is 1 or that
divides 1 exactly (e.g., 0.25). You can guarantee this by setting the
fixed-step solver’s step size to auto on the Configuration Parameters
dialog box.

If you select time-based as the block’s pulse type, you must specify
the pulse’s phase delay and period in units of seconds. If you specify
sample-based, you must specify the block’s sample time in seconds,
using the Sample Time parameter, then specify the block’s phase
delay and period as integer multiples of the sample time. For example,
suppose that you specify a sample time of 0.5 second. And suppose you
want the pulse to repeat every two seconds. In this case, you would
specify 4 as the value of the block’s Period parameter.

2-531

Pulse Generator

Data Type
Support

The Pulse Generator block outputs real signals of any data type
supported by Simulink software, including fixed-point data types. The
data type of the output signal is the same as that of the Amplitude
parameter.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-532

Pulse Generator

Parameters
and
Dialog
Box

2-533

Pulse Generator

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink documentation for details.

Pulse type
The pulse type for this block: time-based or sample-based. The
default is time-based.

Time
Specifies whether to use simulation time or an external signal
as the source of values for the output signal’s time variable. If
you specify an external source, the block displays an input port
for connecting the source.

Amplitude
The pulse amplitude. The default is 1.

Period
The pulse period specified in seconds if the pulse type is
time-based or as number of sample times if the pulse type is
sample-based. The default is 2.

Pulse width
The duty cycle specified as the percentage of the pulse period that
the signal is on if time-based or as number of sample times if
sample-based. The default is 50 percent.

Phase delay
The delay before the pulse is generated specified in seconds if the
pulse type is time-based or as number of sample times if the pulse
type is sample-based. The default is 0 seconds.

Sample Time
The length of the sample time for this block in seconds. This
parameter appears only if the block’s pulse type is sample-based.
See “Specifying Sample Time” for more information.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs

2-534

Pulse Generator

a 1-D signal (vector). Otherwise the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Inherited

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-535

Quantizer

Purpose Discretize input at specified interval

Library Discontinuities

Description The Quantizer block passes its input signal through a stair-step function
so that many neighboring points on the input axis are mapped to one
point on the output axis. The effect is to quantize a smooth signal into a
stair-step output. The output is computed using the round-to-nearest
method, which produces an output that is symmetric about zero.

y = q * round(u/q)

where y is the output, u the input, and q the Quantization interval
parameter.

Data Type
Support

The Quantizer block accepts and outputs real or complex signals of
type single or double.

Parameters
and
Dialog
Box

2-536

Quantizer

Quantization interval
The interval around which the output is quantized. Permissible
output values for the Quantizer block are n*q, where n is an
integer and q the Quantization interval. The default is 0.5.

Treat as gain when linearizing
Simulink® software by default treats the Quantizer block as unity
gain when linearizing. This is the large signal linearization case.
If you clear this box, the linearization routines assume the small
signal case and set the gain to zero.

Sample time (-1 for inherited)
Specify the sample time of this Outport block. See “Specifying
Sample Time” in the online documentation for information on
specifying sample times. The output of this block changes at the
specified rate to reflect the value of its input.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of parameter

Dimensionalized Yes

Zero Crossing No

2-537

Ramp

Purpose Generate constantly increasing or decreasing signal

Library Sources

Description The Ramp block generates a signal that starts at a specified time
and value and changes by a specified rate. The block’s Slope, Start
time, and Initial output parameters determine the characteristics
of the output signal. All must have the same dimensions after scalar
expansion.

Data Type
Support

The Ramp block outputs signals of type double.

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

2-538

Ramp

Slope
The rate of change of the generated signal. The default is 1.

Start time
The time at which the signal begins to be generated. The default
is 0.

Initial output
The initial value of the signal. The default is 0.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs
a 1-D signal (vector). Otherwise, the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Inherited from driven block

Scalar Expansion Yes

Dimensionalized Yes

Zero Crossing Yes

2-539

Random Number

Purpose Generate normally distributed random numbers

Library Sources

Description The Random Number block generates normally distributed random
numbers. The seed is reset to the specified value each time a simulation
starts.

By default, the sequence produced has a mean of 0 and a variance of 1,
although you can vary these parameters. The sequence of numbers is
repeatable and can be produced by any Random Number block with the
same seed and parameters. To generate a vector of random numbers
with the same mean and variance, specify the Initial seed parameter
as a vector.

To generate uniformly distributed random numbers, use the Uniform
Random Number block.

Avoid integrating a random signal, because solvers are meant to
integrate relatively smooth signals. Instead, use the Band-Limited
White Noise block.

All the block’s numeric parameters must be of the same dimension after
scalar expansion.

Data Type
Support

The Random Number block accepts and outputs signals of type double.

2-540

Random Number

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

Mean
The mean of the random numbers. The default is 0.

Variance
The variance of the random numbers. The default is 1.

Initial seed
The starting seed for the random number generator. The seed
must be 0 or a positive integer. The default is 0.

2-541

Random Number

Sample time
The time interval between samples. The default is 0, causing the
block to have continuous sample time. See “Specifying Sample
Time” in the online documentation for more information.

Interpret vector parameters as 1-D
If you select this option and the other parameters are one-row or
one-column matrices, after scalar expansion, the block outputs
a 1-D signal (vector). Otherwise, the output dimensionality is
the same as that of the other parameters. See “Determining
the Output Dimensions of Source Blocks” in the “Working with
Signals” chapter of the Using Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-542

Rate Limiter

Purpose Limit rate of change of signal

Library Discontinuities

Description The Rate Limiter block limits the first derivative of the signal passing
through it. The output changes no faster than the specified limit. The
derivative is calculated using this equation.

u(i) and t(i) are the current block input and time, and y(i-1) and t(i-1)
are the output and time at the previous step. The output is determined
by comparing rate to the Rising slew rate and Falling slew rate
parameters:

• If rate is greater than the Rising slew rate parameter (R), the
output is calculated as

• If rate is less than the Falling slew rate parameter (F), the output
is calculated as

• If rate is between the bounds of R and F, the change in output is
equal to the change in input:

Data Type
Support

The Rate Limiter block accepts and outputs signals of any data type
supported by Simulink® software, except Boolean. The Rate Limiter
block supports fixed-point data types.

2-543

Rate Limiter

Parameters
and
Dialog
Box

Rising slew rate
Specify the limit of the derivative of an increasing input signal.
This parameter is tunable for fixed-point inputs.

Falling slew rate
Specify the limit of the derivative of a decreasing input signal.
This parameter is tunable for fixed-point inputs.

Sample time mode
Specify the sample time mode, continuous or inherited from
the driving block.

Initial condition
Set the initial output of the simulation. Simulink software does
not allow you to set the initial condition of this block to inf or NaN.

2-544

Rate Limiter

Treat as gain when linearizing
Linearization commands in Simulink software treat this block
as a gain in state space. Select this check box to cause the
linearization commands to treat the gain as 1; otherwise, the
commands treat the gain as 0.

Characteristics Direct Feedthrough Yes

Sample Time Continuous or inherited (specified in
the Sample time mode parameter)

Scalar Expansion Yes, of input and parameters

Dimensionalized Yes

Zero Crossing No

See Also Rate Limiter Dynamic

2-545

Rate Limiter Dynamic

Purpose Limit rising and falling rates of signal

Library Discontinuities

Description The Rate Limiter Dynamic block limits the rising and falling rates of
the signal.

The external signal up sets the upper limit on the rising rate of the
signal.

The external signal lo sets the lower limit on the falling rate of the
signal.

Note You cannot use a variable-step solver to simulate models that
contain this block. You must use a fixed-step solver.

Data Type
Support

The Rate Limiter Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Rate Limiter

2-546

Rate Transition

Purpose Handle transfer of data between blocks operating at different rates

Library Signal Attributes

Description The Rate Transition block transfers data from the output of a block
operating at one rate to the input of another block operating at a
different rate. The Rate Transition block’s parameters allow you to
specify options that trade data integrity and deterministic transfer for
faster response and/or lower memory requirements.

Note See “Data Transfer Problems” in the online Real-Time Workshop®

documentation for a discussion of data integrity and deterministic data
transfer.

In particular, the block supports the following options:

• Deterministic transfer of data with data integrity between blocks
operating at different speeds at the cost of maximum latency of data
transfer

This is the default option.

• Nondeterministic data transfer with minimum latency and assured
data integrity but increased memory requirements

To specify this option, check the Ensure data integrity during
data transfer parameter and uncheck the Ensure deterministic
data transfer parameter.

• Minimum latency and target size at the cost of nondeterministic data
transfer and possible loss of data integrity

To specify this option, uncheck the Ensure data integrity
during data transfer and Ensure deterministic data transfer
parameters.

2-547

Rate Transition

The behavior of the Rate Transition block depends on the sample
times of the ports between which it is connected, the priorities of the
tasks corresponding to the source and destination sample times (see
“Sample time properties”), and whether the model specifies a fixed- or
variable-step solver. Updating the diagram causes a label to appear on
the block that indicates its behavior during simulation as follows:

Label Block Behavior

ZOH Acts as a zero-order hold

1/z Acts as a unit delay

Buf Copies input to output under semaphore control

Db_buf Copies input to output, using double buffers

Copy Unprotected copy of input to output

NoOp Does nothing

The behavior label lets you see at a glance the method that the
Rate Transition block uses to ensure safe transfer of data between
tasks operating at different rates. You can use Simulink® software’s
sample-time colors feature (see “Displaying Sample Time Colors”) to
display the relative rates that the block bridges. Consider, for example,
the following diagram.

2-548

Rate Transition

2

Out 2
Sample Time:0.1

1

Out 1
Sample Time:0.2

1/z

Slow −> Fast
Sine Wave 2

Sample Time:0.2

Sine Wave 1
Sample Time:0.1

2

Gain 2
Sample Time:−1

2

Gain 1
Sample Time:−1

ZOH

Fast −> Slow

Sample-time colors and the block behavior label allow you to see at a
glance that the Rate Transition block at the top of the diagram acts
as a zero-order hold in a fast-to-slow transition and the bottom Rate
Transition block acts as a unit delay in a slow-to-fast transition.

See “Sample Rate Transitions” in the online Real-Time Workshop
documentation for more information.

Note The Zero-Order Hold and Unit Delay blocks also enable transfer
of data between blocks operating at different rates. However, you should
use the Rate Transition block for this purpose because it offers a wider
range of options and is easier to use.

Data Type
Support

The Rate Transition block accepts signals of any data type supported by
Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-549

Rate Transition

Parameters
and
Dialog
Box

Ensure data integrity during data transfer
Selecting this option results in generation of code that ensures
the integrity of data transferred by the Rate Transition block.
If you select this option and the transfer is nondeterministic
(see Ensure deterministic data transfer option below), the

2-550

Rate Transition

generated code uses double-buffering to prevent the fast block
from interrupting the data transfer. Otherwise the generated
code uses a copy operation to effect the data transfer. The copy
operation consumes less memory than double-buffering but is
also interruptible and hence can lead to loss of data during
nondeterministic data transfers. Thus, you should select this
option if you want the generated code to operate both with
maximum responsiveness (i.e., nondeterministically) and assured
data integrity. See “Rate Transition Block Options” in the online
Real-Time Workshop documentation for more information.

Ensure deterministic data transfer (maximum delay)
Selecting this option causes code generation to generate code
that transfers data at the sample rate of the slower block, i.e.,
deterministically. If this option is not selected, data transfers
occur as soon as new data is available from the source block and
the receiving block is ready to receive the data. This avoids the
need to delay transfers, thus ensuring that the system operates
with maximum responsiveness. However, it also means that
transfers can occur unpredictably, which is undesirable in some
applications. See “Rate Transition Block Options” in the online
Real-Time Workshop documentation for more information.

Initial conditions
This parameter applies only to slow-to-fast transitions. It
specifies the Rate Transition’s initial output at the beginning of a
transition when there is not yet any output from the slow block
connected to the Rate Transition block’s input. Simulink software
does not allow the initial output of this block to be inf or NaN.

Output port sample time options
Specifies a mode for setting the output port sample time. The
options are:

• Specify — Allows you to use the Output port sample
time parameter to specify the output rate to which the Rate
Transition block converts its input rate.

2-551

Rate Transition

• Inherit — Specifies that the Rate Transition block inherits an
output rate from the block to which its output port is connected.

• Multiple of input port sample time — Allows you to use
the Sample time multiple (>0) parameter to specify the Rate
Transition block’s output rate as a multiple of its input rate.

Output port sample time
This parameter is visible only if the Output port sample time
options parameter is set to Specify. Enter a value that specifies
the output rate to which the block converts its input rate. The
default value (-1) specifies that the output rate is inherited
from the block to which the Rate Transition block’s output port
is connected. See “Specifying Sample Time” in the Simulink
documentation for information on how to specify the output rate.

Sample time multiple (>0)
This parameter is visible only if the Output port sample time
options parameter specifies Multiple of input port sample
time. Enter a positive value that specifies the output rate as a
multiple of the input port sample time. The default value (1)
specifies that the output rate is the same as the input rate. A
value of 0.5 specifies that the output rate is half of the input
rate, while a value of 2 specifies that the output rate is twice the
input rate.

Bus
Support

The Rate Transition block is a bus-capable block. The input can be
a virtual or nonvirtual bus signal, with the restriction that Initial
conditions must be zero or a nonzero scalar.

Characteristics Bus-capable Yes, with restrictions as noted above

Direct Feedthrough No for slow-to-fast transitions that
are protected, i.e., for which you
have checked the Ensure data
integrity during data transfer
option. Otherwise, Yes.

2-552

Rate Transition

Sample Time This block supports
discrete-to-discrete transitions.

Scalar Expansion Yes, of input.

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-553

Real-Imag to Complex

Purpose Convert real and/or imaginary inputs to complex signal

Library Math Operations

Description The Real-Imag to Complex block converts real and/or imaginary inputs
to a complex-valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions,
or one input can be an array and the other a scalar. If the block has an
array input, the output is a complex array of the same dimensions.
The elements of the real input are mapped to the real parts of the
corresponding complex output elements. The imaginary input is
similarly mapped to the imaginary parts of the complex output signals.
If one input is a scalar, it is mapped to the corresponding component
(real or imaginary) of all the complex output signals.

The input signals and real or imaginary output parameter can be of
any data type supported by Simulink® software, except Boolean. The
Real-Imag to Complex block supports fixed-point data types. The
output is of the same type as the input or parameter that determines
the output.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Data Type
Support

See the preceding description.

2-554

Real-Imag to Complex

Parameters
and
Dialog
Box

Input
Specifies the kind of input: a real input, an imaginary input, or
both.

Real (Imag) part
If the input is a real-part signal, this parameter specifies the
constant imaginary part of the output signal. If the input is the
imaginary part, this parameter specifies the constant real part
of the output signal. Note that the title of this field changes to
reflect its usage.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

2-555

Real-Imag to Complex

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-556

Relational Operator

Purpose Perform specified relational operation on inputs

Library Logic and Bit Operations

Description The Relational Operator block performs the specified comparison of
its two inputs.

You select the relational operator connecting the two inputs with the
Relational Operator parameter. The block updates to display the
selected operator. The supported operations are given below. In each
case, the first input corresponds to the top input port and the second
input to the bottom input port. (See “Changing the Orientation of a
Block” in the Simulink® documentation for a description of the port
order for various block orientations.)

Operation Description

== TRUE if the first input is equal to the second input

~= TRUE if the first input is not equal to the second input

< TRUE if the first input is less than the second input

<= TRUE if the first input is less than or equal to the
second input

>= TRUE if the first input is greater than or equal to the
second input

> TRUE if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar
and an array:

• For scalar inputs, the output is a scalar.

• For array inputs, the output is an array of the same dimensions,
where each element is the result of an element-by-element
comparison of the input arrays.

2-557

Relational Operator

• For mixed scalar/array inputs, the output is an array, where each
element is the result of a comparison between the scalar and the
corresponding array element.

The input with the smaller positive range is converted to the data type
of the other input offline using round-to-nearest and saturation. This
conversion is performed prior to comparison.

The output data type is specified with the Output data type
parameter. The output equals 1 for TRUE and 0 for FALSE.

Note The output data type selected should represent zero exactly. Data
types that satisfy this condition include signed and unsigned integers
and any floating-point data type.

Data Type
Support

The Relational Operator block accepts real or complex signals of any
data type supported by Simulink software, including fixed-point data
types. One input can be real and the other complex if the operator is
== or !=.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

The Main pane of the Relational Operator block appears as follows:

2-558

Relational Operator

Relational operator
Designate the relational operator used to compare the two inputs.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Relational Operator block appears
as follows:

2-559

Relational Operator

Require all inputs to have the same data type
Select to require inputs to have the same data type.

2-560

Relational Operator

Output data type
Specify the output data type. You can set it to:

Option Description

boolean Specifies the output data type as boolean.

Inherit:
Logical

Use the Implement logic signals as
boolean data model configuration parameter
(see “Implement logic signals as boolean data
(vs. double)”) to specify the output data type.

Note This option is intended to support
models created before the boolean option
became available. Use one of the other options,
preferably boolean, for new models.

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of inputs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing Yes, if enabled.

2-561

Relay

Purpose Switch output between two constants

Library Discontinuities

Description The Relay block allows its output to switch between two specified
values. When the relay is on, it remains on until the input drops below
the value of the Switch off point parameter. When the relay is off, it
remains off until the input exceeds the value of the Switch on point
parameter. The block accepts one input and generates one output.

The Switch on point value must be greater than or equal to the
Switch off point. Specifying a Switch on point value greater than
the Switch off point value models hysteresis, whereas specifying
equal values models a switch with a threshold at that value.

Data Type
Support

The Relay block accepts real or complex signals of any data type
supported by Simulink® software. The Relay block supports fixed-point
data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-562

Relay

Parameters
and
Dialog
Box

The Main pane of the Relay block dialog appears as follows:

Switch on point
The “n” threshold for the relay. The Switch on point parameter
is converted to the input data type offline using round-to-nearest
and saturation.

2-563

Relay

Switch off point
The “off” threshold for the relay. The Switch off point parameter
is converted to the input data type offline using round-to-nearest
and saturation.

Output when on
The output when the relay is on.

Output when off
The output when the relay is off.

Enable zero crossing detection
Select to enable zero crossing detection to detect switch-on and
switch-off points. For more information, see “Zero-Crossing
Detection” in the “How Simulink Works” chapter of the Simulink
documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Relay block dialog appears as
follows:

2-564

Relay

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-565

Relay

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

2-566

Relay

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-567

Repeating Sequence

Purpose Generate arbitrarily shaped periodic signal

Library Sources

Description The Repeating Sequence block outputs a periodic scalar signal having
a waveform that you specify. You can specify any waveform, using
the block dialog’s Time values and Output values parameters.
The Times value parameter specifies a vector of sample times. The
Output values parameter specifies a vector of signal amplitudes
at the corresponding sample times. Together, the two parameters
specify a sampling of the output waveform at points measured from the
beginning of the interval over which the waveform repeats (i.e., the
signal’s period). For example, by default, the Time values and Output
values parameters are both set to [0 2]. This default setting specifies
a sawtooth waveform that repeats every 2 seconds from the start of
the simulation and has a maximum amplitude of 2. The Repeating
Sequence block uses linear interpolation to compute the value of the
waveform between the specified sample points.

Data Type
Support

The Repeating Sequence block outputs real signals of type double.

2-568

Repeating Sequence

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

Time values
A vector of monotonically increasing time values. The default is
[0 2].

Output values
A vector of output values. Each corresponds to the time value in
the same column. The default is [0 2].

Characteristics Sample Time Continuous

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-569

Repeating Sequence

See Also Repeating Sequence Interpolated, Repeating Sequence Stair

2-570

Repeating Sequence Interpolated

Purpose Output discrete-time sequence and repeat, interpolating between data
points

Library Sources

Description The Repeating Sequence Interpolated block outputs a discrete-time
sequence and then repeats it. Between data points, the block uses the
method specified by the Lookup Method parameter to determine the
output.

Data Type
Support

The Repeating Sequence Interpolated block accepts signals of any data
type supported by Simulink® software, including fixed-point data types.

2-571

Repeating Sequence Interpolated

Parameters
and
Dialog
Box

The Main pane of the Repeating Sequence Interpolated block dialog
appears as follows:

Vector of output values
Column vector containing output values of the discrete time
sequence.

Vector of time values
Column vector containing time values. The time values must be a
strictly increasing and the vector must have the same size as the
vector of output values.

Lookup Method
Specify the lookup method to determine the output between data
points.

2-572

Repeating Sequence Interpolated

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Repeating Sequence Interpolated
block dialog appears as follows:

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

2-573

Repeating Sequence Interpolated

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

2-574

Repeating Sequence Interpolated

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Repeating Sequence, Repeating Sequence Stair

2-575

Repeating Sequence Stair

Purpose Output and repeat discrete time sequence

Library Sources

Description The Repeating Sequence Stair block outputs and repeats a discrete
time sequence.

You can specify the stair sequence with the Vector of output values
parameter. For example, the vector can be specified as [3 1 2 4 1]',
producing the stair sequence shown in the plot.

Data Type
Support

The Repeating Sequence Stair block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-576

Repeating Sequence Stair

Parameters
and
Dialog
Box

The Main pane of the Repeating Sequence Stair block dialog appears
as follows:

Vector of output values
Vector containing values of the repeating stair sequence.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Repeating Sequence Stair block
dialog appears as follows:

2-577

Repeating Sequence Stair

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

2-578

Repeating Sequence Stair

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

See Also Repeating Sequence, Repeating Sequence Interpolated

2-579

Reshape

Purpose Change dimensionality of signal

Library Math Operations

Description The Reshape block changes the dimensionality of the input signal
to a dimensionality that you specify, using the block’s Output
dimensionality parameter. For example, you can use the block to
change an N-element vector to a 1-by-N or N-by-1 matrix signal, and
vice versa.

The Output dimensionality parameter lets you select any of the
following output options.

Output
Dimensionality Description

1-D array Converts a multidimensional array to a vector
(1-D array) array signal. The output vector
consists of the first column of the input matrix
followed by the second column, etc. (This
option leaves a vector input unchanged.)

Column vector Converts a vector, matrix, or multidimensional
input signal to a column matrix, i.e., an
M-by-1 matrix, where M is the number of
elements in the input signal. For matrices,
the conversion is done in column-major order.
For multidimensional arrays, the conversion
is done along the first dimension.

2-580

Reshape

Output
Dimensionality Description

Row vector Converts a vector, matrix, or multidimensional
input signal to a row matrix, i.e., a 1-by-N
matrix where N is the number of elements
in the input signal. For matrices, the
conversion is done in column-major order. For
multidimensional arrays, the conversion is
done along the first dimension.

Customize Converts the input signal to an output signal
whose dimensions you specify, using the
Output dimensions parameter. The value
of the Output dimensions parameter can
be a one- or multi-element vector. A value
of [N] outputs a vector of size N. A value
of [M N] outputs an M-by-N matrix. The
number of elements of the input signal must
match the number of elements specified by
the Output dimensions parameter. For
multidimensional arrays, the conversion is
done along the first dimension.

Data Type
Support

The Reshape block accepts and outputs signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-581

Reshape

Parameters
and
Dialog
Box

Output dimensionality
The dimensionality of the output signal.

Output dimensions
Specifies a custom output dimensionality. This option is
enabled only if you select Customize as the value of the Output
dimensionality parameter.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-582

Rounding Function

Purpose Apply rounding function to signal

Library Math Operations

Description The Rounding Function block applies a rounding function to the input
signal to produce the output signal.

You can select one of the following rounding functions from the
Function list:

• floor

Rounds each element of the input signal to the nearest integer value
towards minus infinity.

• ceil

Rounds each element of the input signal to the nearest integer
towards positive infinity.

• round

Rounds each element of the input signal to the nearest integer.

• fix

Rounds each element of the input signal to the nearest integer
towards zero.

The name of the selected function appears on the block.

The input signal can be a scalar, vector, or matrix signal having real-
or complex-valued elements of type double. The output signal has the
same dimensions, data type, and numeric type as the input. Each
element of the output signal is the result of applying the selected
rounding function to the corresponding element of the input signal.

Use the Rounding Function block instead of the Fcn block when you
want vector or matrix output, because the Fcn block can produce only
scalar output.

2-583

Rounding Function

Data Type
Support

The Rounding Function block accepts and outputs real signals of type
double or single.

Parameters
and
Dialog
Box

Function
The rounding function.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing No

2-584

Saturation

Purpose Limit range of signal

Library Discontinuities

Description The Saturation block imposes upper and lower bounds on a signal.
When the input signal is within the range specified by the Lower
limit and Upper limit parameters, the input signal passes through
unchanged. When the input signal is outside these bounds, the signal is
clipped to the upper or lower bound.

When the Lower limit and Upper limit parameters are set to the
same value, the block outputs that value.

Data Type
Support

The Saturation block accepts real signals of any data type supported
by Simulink® software, except Boolean. The Saturation block supports
fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-585

Saturation

Parameters
and
Dialog
Box

The Main pane of the Saturation block dialog appears as follows:

Upper limit
Specify the upper bound on the input signal. When the input
signal to the Saturation block is above this value, the output of
the block is clipped to this value.

The Upper limit parameter is converted to the output data type
offline using round-to-nearest and saturation.

Lower limit
Specify the lower bound on the input signal. When the input
signal to the Saturation block is below this value, the output of
the block is clipped to this value.

2-586

Saturation

The Lower limit parameter is converted to the output data type
offline using round-to-nearest and saturation.

Treat as gain when linearizing
Linearization commands in Simulink software treat this block
as a gain in state space. Select this parameter to cause the
linearization commands to treat the gain as 1; otherwise, the
commands treat the gain as 0.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Saturation block dialog appears
as follows:

2-587

Saturation

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Parameter range checking (see “Checking Parameter Values”)

2-588

Saturation

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time parameter

Scalar Expansion Yes, of parameters and input

2-589

Saturation

Dimensionalized Yes

Zero Crossing Yes, if enabled.

See Also Saturation Dynamic

2-590

Saturation Dynamic

Purpose Bound range of input

Library Discontinuities

Description The Saturation Dynamic block bounds the range of the input signal to
upper and lower saturation values. The input signal outside of these
limits saturates to one of the bounds where

• The input below the lower limit is set to the lower limit.

• The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the lo port.

Data Type
Support

The Saturation Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-591

Saturation Dynamic

Parameters
and
Dialog
Box

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-592

Saturation Dynamic

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same
as second input

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

See Also Saturation

2-593

Scope and Floating Scope

Purpose Display signals generated during simulation

Library Sinks

Description The Scope block displays its input with respect to simulation time.

The Scope block can have multiple axes (one per port) and all axes
have a common time range with independent y-axes. The Scope block
allows you to adjust the amount of time and the range of input values
displayed. You can move and resize the Scope window and you can
modify the Scope’s parameter values during the simulation.

The Scope Block described here is not the same as the Scope Viewer. For
help on the scope viewer, see “Things to Know When Using Viewers”.

When you start a simulation the Scope windows are not opened, but
data is written to connected Scopes. As a result, if you open a Scope
after a simulation, the Scope’s input signal or signals will be displayed.

If the signal is continuous, the Scope produces a point-to-point plot. If
the signal is discrete, the Scope produces a stair-step plot.

Note The Scope block only displays major time step values. Minor
(intermediate) time step values are not displayed.

The Scope provides toolbar buttons that enable you to zoom in on
displayed data, display all the data input to the Scope, preserve axis
settings from one simulation to the next, limit data displayed, and save
data to the workspace. The toolbar buttons are labeled in this figure,
which shows the Scope window as it appears when you open a Scope
block.

2-594

Scope and Floating Scope

Note Do not use Scope blocks inside library blocks that you create.
Instead, provide the library blocks with output ports to which scopes
can be connected to display internal data.

Color Coding Used When Displaying Multiple Signals

The scope block can display one signal per axes. When displaying a
vector or matrix signal on the same axis, the Scope block assigns colors
to each signal element, in this order:

1 Yellow

2 Magenta

3 Cyan

4 Red

5 Green

6 Dark Blue

2-595

Scope and Floating Scope

The Scope block cycles through the colors if a signal has more than
six elements.

Y-Axis Limits

You set y-limits by right-clicking an axis and choosing Axes Properties.
The following dialog box appears.

Y-min
Enter the minimum value for the y-axis.

Y-max
Enter the maximum value for the y-axis.

Title
Enter the title of the plot. You can include a signal label in
the title by typing %<SignalLabel> as part of the title string
(%<SignalLabel> is replaced by the signal label).

Note You cannot add a title to a floating scope.

Time Offset

This figure shows the Scope block displaying the output of the vdp
model. The simulation was run for 40 seconds. Note that this scope
shows the final 20 seconds of the simulation. The Time offset field
displays the time corresponding to 0 on the horizontal axis. Thus, you

2-596

Scope and Floating Scope

have to add the offset to the fixed time range values on the x-axis to
get the actual time.

Autoscaling the Scope Axes

This figure shows the same output after you click the Autoscale toolbar
button, which automatically scales both axes to display all stored
simulation data. In this case, the y-axis was not scaled because it was
already set to the appropriate limits.

2-597

Scope and Floating Scope

If you click the Autoscale button while the simulation is running, the
axes are autoscaled based on the data displayed on the current screen,
and the autoscale limits are saved as the defaults. This enables you to
use the same limits for another simulation.

Note Simulink® software does not buffer the data that it displays on a
floating Scope. It can therefore scale the contents of a floating Scope
only when data is being displayed, i.e., when a simulation is running.
When a simulation is not running, Simulink software disables (grays)
the Zoom button on the toolbar of a floating Scope to indicate that it
cannot scale its contents.

2-598

Scope and Floating Scope

Zooming

You can zoom in on data in both the x and y directions at the same time,
or in either direction separately. The zoom feature is not active while
the simulation is running.

To zoom in on data in both directions at the same time, make sure you
select the leftmost Zoom toolbar button. Then, define the zoom region
using a bounding box. When you release the mouse button, the Scope
displays the data in that area. You can also click a point in the area you
want to zoom in on.

If the scope has multiple y-axes, and you zoom in on one set of x-y axes,
the x-limits on all sets of x-y axes are changed so that they match,
because all x-y axes must share the same time base (x-axis).

This figure shows a region of the displayed data enclosed within a
bounding box.

2-599

Scope and Floating Scope

����������	
�����	����

This figure shows the zoomed region, which appears after you release
the mouse button.

2-600

Scope and Floating Scope

To zoom in on data in just the x direction, click the middle Zoom
toolbar button. Define the zoom region by positioning the pointer at one
end of the region, pressing and holding down the mouse button, then
moving the pointer to the other end of the region. This figure shows
the Scope after you define the zoom region, but before you release the
mouse button.

2-601

Scope and Floating Scope

When you release the mouse button, the Scope displays the magnified
region. You can also click a point in the area you want to zoom in on.

Zooming in the y direction works the same way except that you click the
rightmost Zoom toolbar button before defining the zoom region. Again,
you can also click a point in the area you want to zoom in on.

Note Simulink software does not buffer the data that it displays on a
floating scope. It therefore cannot zoom the contents of a floating scope.
To indicate this, Simulink software disables (grays) the Zoom button
on the toolbar of a floating scope.

2-602

Scope and Floating Scope

Saving the Axes Settings

The Save axes settings toolbar button enables you to store the current
x- and y-axis settings so you can apply them to the next simulation. If
you select the Save axes settings button on the toolbar of the Scope
block’s display

the block specifies its current y-limits as the values of the Y-min and
Y-max parameters (see “Y-Axis Limits” on page 2-596). Similarly, the
block specifies its current x-axis limits as the value of the Time range
parameter (see “General Parameters Pane” on page 2-604).

Scope Parameters

The Scope Parameters dialog box lets you change axis limits, set the
number of axes, time range, tick labels, sampling parameters, and
saving options. To display the dialog, select the Parameters button on
the toolbar of the Scope block’s display

or double-click the Scope viewer’s display.

2-603

Scope and Floating Scope

For information on the General pane, see “General Parameters Pane”
on page 2-604

For information on the Data history pane, see “Data History
Parameters Pane” on page 2-609

General Parameters Pane

You set the axis parameters, time range, tick labels and decimation or
sample time in the General pane.

Number of axes
Set the number of y-axes in this data field. With the exception
of the floating scope, there is no limit to the number of axes the
Scope block can contain. All axes share the same time base
(x-axis), but have independent y-axes. Note that the number of
axes is equal to the number of input ports.

Time range
Change the x-axis limits by entering a number or auto in the
Time range field. Entering a number of seconds causes each
screen to display the amount of data that corresponds to that

2-604

Scope and Floating Scope

number of seconds. Enter auto to set the x-axis to the duration of
the simulation. Do not enter variable names in these fields.

Tick labels
Specifies whether to label axes ticks. The options are:

all Label ticks on the outside of all axes

inside Place tick labels inside all axes (available
only on scope viewers)

bottom-axis only Place tick labels outside the bottom (or
only) axes

none Do not label ticks

Sampling
Use this control to select either a Decimation factor or Sample
time interval. Once the selection has been made, enter a number
in the data field.

Floating scope
Selecting this option turns a Scope block into a floating scope.

A floating scope is a Scope block that can display the signals
carried on one or more lines. You can create a Floating Scope block
in a model either by copying a Scope block from the Simulink
Sinks library into a model and selecting Floating scope, or by
copying the Floating Scope block from the Sinks library into the
model window.

To add signals to a floating scope during simulation, you can
either click on signals in your block diagram, or use the Signal
Selector (for more information on the signal selector, see “The
Signal Selector”) .

To add signals to a floating scope while the simulation is running
by clicking on signals:

• Open the scope

2-605

Scope and Floating Scope

• Select the line to display the signals it carries

It might be necessary to click the Autoscale data button on
the floating scope’s toolbar to display the signal

• You can add multiple lines by holding down the Shift key while
clicking another line

Note For you to add signals, the floating scope must have its
axes unlocked.

Click the Axes lock icon to lock and unlock the axes.

+,�������

The axes are highlighted in blue when they are unlocked.

To use the Signal Selector to add signals:

• Open the floating scope

• Right-click your mouse in the floating scope and select Signal
Selection from the pop-up menu

• From the displayed list, select the signals to be added to the
floating scope

It might be necessary to click the Autoscale data button on
the floating scope’s toolbar to display the signal

You can have more than one floating scope in a model, but
only one set of axes in one scope can be active at a given time.
Active floating scopes show the active axes by making them blue.
Selecting or deselecting lines affects the active floating scope only.

2-606

Scope and Floating Scope

Other floating scopes continue to display the signals that you
selected when they were active. In other words, inactive floating
scopes are locked, in that their signal displays cannot change.

To specify display of a signal on one of the axes of a multiaxis
floating scope, click the axis. Simulink software draws a blue
border around the axis.

Then click the signal you want to display in the block diagram or
the Signal Selector. When you run the model, the selected signal
appears in the selected axis.

2-607

Scope and Floating Scope

If you plan to use a floating scope during a simulation, you
should disable signal storage reuse. See "Signal storage reuse" in
“Optimization Pane” for more information.

2-608

Scope and Floating Scope

Data History Parameters Pane

This pane lets you control the amount of data that the Scope stores and
displays. You can also choose to save data to the workspace in this pane.
You apply the current parameters and options by clicking the Apply or
OK button. The values that appear in these fields are the values that
are used in the next simulation.

Limit data points to last
You can limit the number of data points saved to the workspace by
selecting the Limit data points to last check box and entering
a value in its data field. The Scope relies on its data history for
zooming and autoscaling operations. If the number of data points
is limited to 1,000 and the simulation generates 2,000 data points,
only the last 1,000 are available for regenerating the display.

Save data to workspace
You can automatically save the data collected by the Scope at the
end of the simulation by selecting the Save data to workspace

2-609

Scope and Floating Scope

check box. If you select this option, the Variable name and
Format fields become active.

Note When using a floating scope, Save data to workspace is
disabled to show that data logging is not supported.

Variable name
Enter a variable name in the Variable name field. The specified
name must be unique among all data logging variables being
used in the model. Other data logging variables are defined on
other Scope blocks, To Workspace blocks, and simulation return
variables such as time, states, and outputs. Being able to save
Scope data to the workspace means that it is not necessary to send
the same data stream to both a Scope block and a To Workspace
block.

Format
Data can be saved in one of three formats: Array, Structure, or
Structure with time. Use Array only for a Scope with one set of
axes. For Scopes with more than one set of axes, use Structure if
you do not want to store time data and use Structure with time
if you want to store time data.

Printing the Contents of a Scope Window

To print the contents of a Scope window, open the Print dialog box by
clicking the Print icon, the leftmost icon on the Scope toolbar.

Creating an Editable Figure from a Scope Block

To create a figure that looks identical to the Scope window but can be
annotated using the Plot Editing Tools, use the simplot command. Only
Scope blocks that save data to the MATLAB® workspace from the Data
history pane are compatible with this command. For example, on the

2-610

Scope and Floating Scope

Data history pane for the Scope block in vdp.mdl, check the Save
data to workspace option and select Structure with time from
the Format list. After running the simulation, a figure can be created
with the command

simplot(ScopeData)

Data Type
Support

The Scope block accepts real signals of any data type supported by
Simulink software, including fixed-point data types. The Scope block
accepts homogeneous vectors.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Characteristics Sample Time Inherited from driving block or can be set

States 0

Multidimensionalized Yes

2-611

Selector

Purpose Select input elements from vector, matrix, or multidimensional signal

Library Signal Routing

Description The Selector block generates as output selected or reordered elements
of an input vector, matrix, or multidimensional signal.

A Selector block accepts vector, matrix, or multidimensional signals as
input. The parameter dialog box and the block’s appearance change to
reflect the number of dimensions of the input.

Based on the value you enter for the Number of input dimensions
parameter, a table of indexing settings is displayed. Each row of the
table corresponds to one of the input dimensions in Number of input
dimensions. For each dimension, you define the elements of the
signal to work with. Specify a vector signal as a 1-D signal and a
matrix signal as a 2-D signal. When you configure the Selector block for
multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The
table of the Selector block dialog changes to include one row for each
dimension. If you define each dimension with the following entries:

• 1

Index Option, select Select all

• 2

Index Option, select Starting index (dialog)

Index, enter 2

Output Size, enter 5

• 3

Index Option, select Index vector (dialog)

Index, enter [1 3 5]

• 4

2-612

Selector

Index Option, select Starting index (port)

Output Size, enter 8

• 5

Index Option, select Index vector (port)

The output will be Y=U(1:end,2:6,[1 3 5],Idx4:Idx4+7,Idx5),
where Idx4 and Idx5 are the index ports for dimensions 4 and 5.

Data Type
Support

The data port of the Selector block accepts signals of any signal
type and any data type supported by Simulink® software, including
fixed-point data types. The data port accepts mixed-type signals. The
index port accepts only built-in data types, except boolean data types.
The elements of the output have the same type as the corresponding
selected input elements.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-613

Selector

Parameters
and
Dialog
Box

The parameter dialog box appears as follows when you set Index
Option to Starting index (port).

Number of input dimensions
Enter the number of dimensions of the input signal.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first element of
the input vector, 2, the second element, and so on. If Zero-based
is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be
indexed. From the list, choose:

• Select all

This is the default. No further configuration is required. All
elements are selected.

2-614

Selector

• Index vector (dialog)

Enables the Index column. Enter the vector of indices of the
elements.

• Index vector (port)

No further configuration is required.

• Starting index (dialog)

Enables the Index and Output Size columns. Enter the
starting index of the range of elements to be selected in the
Index column and the number of elements to be selected in the
Output Size column.

• Starting index (port)

Enables the Output Size column. Enter the number of
elements to be selected in the Output Size column.

The Index and Output Size columns are displayed as relevant.

Index
If the Index Option is Index vector (dialog), enter the index
of each element you are interested in.

If the Index Option is Starting index vector (dialog), enter
the starting index of the range of elements to be selected.

Output Size
Enter the width (number of elements from the starting point) of
the block output signal.

Input port size
Specify the width of the block input signal (-1 for inherited) —
1-D signals only.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-615

Selector

Note For 1–D signals, the Sample time parameter is applicable
only with the Index Option set to Starting index (port) or
Index vector (port). For all other Input Option settings, the
Selector block becomes a virtual block and the Sample time
parameter does not appear.

Characteristics Sample Time Specified in the Sample time parameter.

Dimensionalized Yes

Multidimensionalized Yes

Zero crossing No

2-616

S-Function

Purpose Include S-function in model

Library User-Defined Functions

Description The S-Function block provides access to S-functions from a block
diagram. The S-function named as the S-function name parameter
can be a Level-1 M-file or a Level-1 or Level-2 C MEX-file S-function
(see “Overview of S-Functions” in Writing S-Functions for information
on how to create S-functions).

Note Use the M-File S-Function block to include a Level-2 M-file
S-function in a block diagram.

The S-Function block allows additional parameters to be passed directly
to the named S-function. The function parameters can be specified
as MATLAB® expressions or as variables separated by commas. For
example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets,
the list of parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function
and the number of input and output ports specified by the S-function.
Signals connected to the inputs must have the dimensions specified
by the S-function for the inputs.

Data Type
Support

Depends on the implementation of the S-Function block.

2-617

S-Function

Parameters
and
Dialog
Box

S-function name
The S-function name.

S-function parameters
Additional S-function parameters. See the preceding block
description for information on how to specify the parameters.

S-function modules
This parameter applies only if this block represents a C MEX-file
S-function and you intend to use the Real-Time Workshop®

software to generate code from the model containing the block.
See “Specifying Additional Source Files for an S-Function” in
the Real-Time Workshop online documentation for information
on using this parameter.

2-618

S-Function

Characteristics Direct Feedthrough Depends on contents of S-function

Sample Time Depends on contents of S-function

Scalar Expansion Depends on contents of S-function

Dimensionalized Depends on contents of S-function

Multidimensionalized Yes

Zero Crossing No

2-619

S-Function Builder

Purpose Create S-function from C code that you provide

Library User-Defined Functions

Description The S-Function Builder block creates a C MEX-file S-function from
specifications and C source code that you provide. See “Building
S-Functions Automatically” for detailed instructions on using the
S-Function Builder block to generate an S-function.

Instances of the S-Function Builder block also serve as wrappers for
generated S-functions in Simulink® models. When simulating a model
containing instances of an S-Function Builder block, Simulink software
invokes the generated S-function associated with each instance to
compute the instance’s output at each time step.

Note The S-Function Builder block does not support masking.
However, you can mask a Subsystem block that contains an
S-Function Builder block. See “Creating Block Masks” in the Simulink
documentation for more information.

Data Type
Support

The S-Function Builder can accept and output complex, 1-D or 2-D
signals of any data type supported by Simulink software.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

See “S-Function Builder Dialog Box” in the online documentation for
information on using the S-Function Builder block’s parameter dialog
box.

2-620

Shift Arithmetic

Purpose Shift bits and/or binary point of signal

Library Logic and Bit Operations

Description The Shift Arithmetic block can be used to shift the bits or the binary
point of a signal, or both.

For example, the effects of binary point shifts two places to the right and
two places to the left on an input of data type sfix(8) are shown below.

Shift Operation Binary Value
Decimal
Value

No shift (original number) 11001.011 -6.625

Binary point shift right by two places 1100101.1 -26.5

Binary point shift left by two places 110.01011 -1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore,
the most significant bit is recycled for each bit shift. The effects of bit
shifts two places to the right and two places to the left on an input of
data type sfix(8) follow.

Shift Operation Binary Value
Decimal
Value

No shift (original number) 11001.011 -6.625

Bit shift right by two places 11110.010 -1.75

Bit shift left by two places 00101.100 5.5

Data Type
Support

The Shift Arithmetic block accepts signals of any data type supported
by Simulink® software, including fixed-point data types, except boolean
type.

2-621

Shift Arithmetic

Parameters
and
Dialog
Box

Number of bits to shift right
The number of places the bits of the input signal is shifted. A
positive value indicates a shift right, while a negative value
indicates a shift left.

Number of places by which binary point shifts right
The number of places the binary point of the input signal is
shifted. A positive value indicates a shift right, while a negative
value indicates a shift left.

Characteristics Direct Feedthrough Yes

Sample Time Inherited

Scalar Expansion Yes

2-622

Sign

Purpose Indicate sign of input

Library Math Operations

Description The Sign block indicates the sign of the input:

• The output is 1 when the input is greater than zero.

• The output is 0 when the input is equal to zero.

• The output is -1 when the input is less than zero.

Data Type
Support

The Sign block accepts real signals of any data type supported by
Simulink® software, including fixed-point data types. The output is a
signed data type with the same number of bits as the input, and with
nominal scaling (a slope of one and a bias of zero).

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

2-623

Sign

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion N/A

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-624

Signal Builder

Purpose Create and generate interchangeable groups of signals whose
waveforms are piecewise linear

Library Sources

Description The Signal Builder block allows you to create interchangeable groups of
piecewise linear signal sources and use them in a model. See “Working
with Signal Groups” in the “Working with Signals” chapter of the
Simulink® documentation.

Note Use the signalbuilder function to create and access Signal
Builder blocks programmatically.

Data Type
Support

The Signal Builder block outputs a scalar or array of real signals of
type double.

Parameters
and
Dialog
Box

The Signal Builder block has the same dialog box as that of a Subsystem
block. To display the dialog box, select Subsystem Parameters from
the block’s context menu.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes

2-625

Signal Conversion

Purpose Convert signal to new type without altering signal values

Library Signal Attributes

Description The Signal Conversion block converts a signal from one type to another.
The block’s Output parameter lets you select the type of conversion
to be performed.

Data Type
Support

The Signal Conversion block accepts virtual or nonvirtual signals of
any data type.

Parameters
and
Dialog
Box

Output
Specifies the type of conversion to be performed. The options are:

• Contiguous copy

2-626

Signal Conversion

Converts a muxed signal whose elements occupy discontiguous areas
of memory to a vector signal whose elements occupy contiguous areas
of memory. The block does this by allocating a contiguous area of
memory for the elements of the muxed signal and copying the values
from the discontiguous areas (represented by the block’s input) to the
contiguous areas (represented by the block’s output) at each time
step. You can also use this setting to connect a block with a constant
sample time to an output port of an enabled subsystem. (See Using
Blocks with Constant Sample Times in Enabled Subsystems) For an
example involving Real-Time Workshop® software, see “Reusable
Code and Referenced Models”.

• Bus copy

Outputs a copy of the bus connected to the block’s input. This setting
is useful when passing a bus signal whose components have different
data types to a nonvirtual Inport block in an Atomic Subsystem.
See “Using Composite Signals” in the Simulink® documentation for
more information.

• Virtual bus

Converts a nonvirtual bus to a virtual bus. In general, virtual buses
can save memory where nonvirtual buses are not required.

• Nonvirtual bus

Converts a virtual bus to a nonvirtual bus as in the following example.
This setting is useful when passing a virtual bus signal to a modeling
construct that requires a nonvirtual bus, such as a Model block.

Terminator
Signal

Conversion
1

Constant1

1

Constant

2-627

Signal Conversion

Note The virtual bus to be converted to a nonvirtual bus must be
defined by a bus object, i.e., an instance of Simulink.Bus class. See the
Bus Creator block for more information.

Override optimizations and always copy signal
This option is enabled only for Contiguous copy conversion.
Unless you select this option, Simulink software eliminates the
block from the compiled model as an optimization, if the elements
of the input signal occupy contiguous areas of memory.

Characteristics Sample Time Inherited

Scalar Expansion n/a

Dimensionalized n/a

Multidimensionalized Yes

Zero Crossing No

2-628

Signal Generator

Purpose Generate various waveforms

Library Sources

Description The Signal Generator block can produce one of four different waveforms:
sine wave, square wave, sawtooth wave, and random wave. The signal
parameters can be expressed in Hertz (the default) or radians per
second. This figure shows each signal displayed on a Scope using
default parameter values.

2-629

Signal Generator

A negative Amplitude parameter value causes a 180-degree phase
shift. You can generate a phase-shifted wave at other than 180 degrees

2-630

Signal Generator

in a variety of ways, including connecting a Clock block signal to a
MATLAB® Fcn block and writing the equation for the particular wave.

You can vary the output settings of the Signal Generator block while
a simulation is in progress. This is useful to determine quickly the
response of a system to different types of inputs.

The block’s Amplitude and Frequency parameters determine the
amplitude and frequency of the output signal. The parameters must
be of the same dimensions after scalar expansion. If the Interpret
vector parameters as 1-D option is off, the block outputs a signal of
the same dimensions as the Amplitude and Frequency parameters
(after scalar expansion). If the Interpret vector parameters as 1-D
option is on, the block outputs a vector (1-D) signal if the Amplitude
and Frequency parameters are row or column vectors, i.e. single row
or column 2-D arrays. Otherwise, the block outputs a signal of the same
dimensions as the parameters.

Data Type
Support

The Signal Generator block outputs a scalar or array of real signals
of type double.

2-631

Signal Generator

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

Wave form
The wave form: a sine wave, square wave, sawtooth wave, or
random wave. The default is a sine wave. This parameter cannot
be changed while a simulation is running.

Time
Specifies whether to use simulation time as the source of values
for the waveform’s time variable or an external signal. If you
specify an external time source, the block displays an input port
for the time source.

2-632

Signal Generator

Amplitude
The signal amplitude. The default is 1.

Frequency
The signal frequency. The default is 1.

Units
The signal units: Hertz or radians/sec. The default is Hertz.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Amplitude and
Frequency parameters result in a vector output signal (see
“Determining the Output Dimensions of Source Blocks” in the
“Working with Signals” chapter of the Simulink documentation).
This option is not available when an external signal specifies
time. In this case, if the Amplitude and Frequency parameters
are column or row matrix values, the output is a 1-D vector.

Characteristics Sample Time Continuous

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-633

Signal Specification

Purpose Specify desired dimensions, sample time, data type, numeric type, and
other attributes of signal

Library Signal Attributes

Description The Signal Specification block allows you to specify the attributes of the
signal connected to its input and output ports. If the specified attributes
conflict with the attributes specified by the blocks connected to its ports,
Simulink® software displays an error when it compiles the model, for
example, at the beginning of a simulation. If no conflict exists, Simulink
software eliminates the Signal Specification block from the compiled
model. In other words, the Signal Specification block is a virtual block.
It exists only to specify the attributes of a signal and plays no role in
the simulation of the model.

You can use the Signal Specification block to ensure that the actual
attributes of a signal meet desired attributes. For example, suppose
that you and a colleague are working on different parts of the same
model and you use Signal Specification blocks to connect your part of
the model with your colleague’s. Now, if your colleague changes the
attributes of a signal without informing you, the attributes entering the
corresponding Signal Specification block do not match and Simulink
software reports an appropriate error.

The Signal Specification block can also be used to ensure correct
propagation of signal attributes throughout a model. The capability
of allowing many attributes to be propagated from block to block in
Simulink software is very powerful. However, because blocks may not
specify some or all of the attributes of the signals they accept or output,
it is possible to create models that don’t have enough information to
correctly propagate attributes around the model. For these cases, the
Signal Specification block is a good way of providing the information
Simulink software needs. Using the Signal Specification block also helps
speed up model compilation when blocks are missing signal attributes.

2-634

Signal Specification

Data Type
Support

The Signal Specification block accepts real or complex signals of any
data type supported by Simulink software, including fixed-point data
types. The input data type must match the data type specified by the
Data type parameter.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Dimensions
Specify the dimension’s of the block’s input and output signals.
Valid values are

2-635

Signal Specification

• -1–Inherited from the block to which it is connected

• n–Vector signal of width n

• [m n]–Matrix signal having m rows and n columns

Sample Time
Specify the sample time at which the block is updated. Valid
values are

• -1–inherited from the block to which it is connected

• period >= 0

• [period, offset]

• [0, -1]

• [-1, -1]

where period is the sample rate and offset is the offset of the
sample period from time zero. See “Specifying Sample Time” in
the online documentation for more information.

Minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

2-636

Signal Specification

Data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: auto

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specify the numeric type (real or complex) of the input and
output signal. To let Simulink software determine the numeric
type, set this parameter to auto.

Sampling mode
Specify the sampling mode (sample-based or frame-based) of
this block. To let Simulink software determine the sampling
mode, set this parameter to auto.

Characteristics Direct Feedthrough Yes

Sample Time Specified by the block’s Sample time
parameter.

Scalar Expansion No

Dimensionalized Yes

2-637

Signal Specification

Multidimensionalized Yes

Zero Crossing No

2-638

Sine, Cosine

Purpose Implement sine and/or cosine wave in fixed point using lookup table
approach that exploits quarter wave symmetry

Library Lookup Tables (Sine block or Cosine block)

Description The Sine and Cosine block implements a sine and/or cosine wave in fixed
point using a lookup table method that exploits quarter wave symmetry.

The Sine and Cosine block can output the following functions of the
input signal, depending upon what you select for the Output formula
parameter:

•

•

•

• and

You define the number of lookup table points in the Number of data
points for lookup table parameter. The block implementation is most
efficient when you specify the lookup table data points to be (2^n)+1,
where n is an integer.

Use the Output word length parameter to specify the word length of
the fixed-point output data type. The fraction length of the output is
the output word length minus 2.

Data Type
Support

The Sine and Cosine block accepts signals of any data type supported by
Simulink® software, including fixed-point data types. The output of the
block is a fixed-point data type.

2-639

Sine, Cosine

Parameters
and
Dialog
Box

Output formula
Select the signal(s) to output.

Number of data points for lookup table
Specify the number of data points to retrieve from the lookup
table. The implementation is most efficient when you specify the
lookup table data points to be (2^n)+1, where n is an integer.

Output word length
Specify the word length for the fixed-point data type of the output
signal. The fraction length of the output is the output word length
minus 2.

2-640

Sine, Cosine

Characteristics Direct Feedthrough Yes

Scalar Expansion N/A

See Also Sine Wave, Trigonometric Function

2-641

Sine Wave

Purpose Generate sine wave

Library Sources

Description The Sine Wave block provides a sinusoid. The block can operate in
either time-based or sample-based mode.

Time-Based Mode

The output of the Sine Wave block is determined by

Time-based mode has two submodes: continuous mode or discrete mode.
The value of the Sample time parameter determines whether the block
operates in continuous mode or discrete mode:

• 0 (the default) causes the block to operate in continuous mode.

• >0 causes the block to operate in discrete mode.

See “Specifying Sample Time” in the online documentation for more
information.

Using the Sine Wave Block in Continuous Mode

A Sample time parameter value of 0 causes the block to operate in
continuous mode. When operating in continuous mode, the Sine Wave
block can become inaccurate due to loss of precision as time becomes
very large.

Using the Sine Wave Block in Discrete Mode

A Sample time parameter value greater than zero causes the block
to behave as if it were driving a Zero-Order Hold block whose sample
time is set to that value.

Using the Sine Wave block in this way allows you to build models with
sine wave sources that are purely discrete, rather than models that are
hybrid continuous/discrete systems. Hybrid systems are inherently
more complex and as a result take longer to simulate.

2-642

Sine Wave

The Sine Wave block in discrete mode uses an incremental algorithm
rather than one based on absolute time. As a result, the block can be
useful in models intended to run for an indefinite length of time, such
as in vibration or fatigue testing.

The incremental algorithm computes the sine based on the value
computed at the previous sample time. This method makes use of the
following identities:

These identities can be written in matrix form:

Since Δt is constant, the following expression is a constant:

Therefore the problem becomes one of a matrix multiplication of the
value of sin(t) by a constant matrix to obtain sin(t+Δt).

Discrete mode reduces but does not eliminate accumulation of roundoff
errors. This is because the computation of the block’s output at each
time step depends on the value of the output at the previous time step.

Sample-Based Mode

Sample-based mode uses the following formula to compute the output of
the Sine Wave block.

where

• A is the amplitude of the sine wave.

2-643

Sine Wave

• p is the number of time samples per sine wave period.

• k is a repeating integer value that ranges from 0 to p-1.

• o is the offset (phase shift) of the signal.

• b is the signal bias.

In this mode, Simulink® software sets k equal to 0 at the first time step
and computes the block’s output, using the preceding formula. At the
next time step, Simulink software increments k and recomputes the
output of the block. When k reaches p, Simulink software resets k to
0 before computing the block’s output. This process continues until
the end of the simulation.

The sample-based method of computing the block’s output does not
depend on the result of the previous time step to compute the result at
the current time step. It therefore avoids roundoff error accumulation.
However, it has one potential drawback. If the block is in a conditionally
executed subsystem and the conditionally executed subsystem pauses
and then resumes execution, the output of the Sine Wave block might no
longer be in sync with the rest of the simulation. Thus, if the accuracy
of your model requires that the output of conditionally executed Sine
Wave blocks remain in sync with the rest of the model, you should use
time-based mode for computing the output of the conditionally executed
blocks.

Parameter Dimensions

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or
column vectors (i.e., single row or column 2-D arrays), the block outputs
a vector (1-D array) signal; otherwise, the block outputs a signal of the
same dimensionality and dimensions as the parameters.

Data Type
Support

The Sine Wave block accepts and outputs real signals of type double.

2-644

Sine Wave

Parameters
and
Dialog
Box

2-645

Sine Wave

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink documentation for details.

Sine type
Type of sine wave generated by this block, either time- or
sample-based. Some of the other options presented by the Sine
Wave dialog box depend on whether you select time-based or
sample-based as the value of Sine type parameter.

Time
Specifies whether to use simulation time as the source of values
for the sine wave’s time variable or an external source. If you
specify an external time source, the block displays an input port
for the time source.

Amplitude
The amplitude of the signal. The default is 1.

Bias
Constant value added to the sine to produce the output of this
block.

Frequency
The frequency, in radians/second. The default is 1 rad/s. This
parameter appears only if you choose time-based as the Sine
type of the block.

Samples per period
Number of samples per period. This parameter appears only if
you choose sample-based as the Sine type of the block.

Phase
The phase shift, in radians. The default is 0 radians. This
parameter appears only if you choose time-based as the Sine
type of the block.

2-646

Sine Wave

Number of offset samples
The offset (discrete phase shift) in number of sample times. This
parameter appears only if you choose sample-based as the Sine
type of the block.

Sample time
The sample period. The default is 0. If the sine type is
sample-based, the sample time must be greater than 0. See
“Specifying Sample Time” in the online documentation for more
information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Sine Wave
block’s numeric parameters result in a vector output signal;
otherwise, the block outputs a signal of the same dimensionality
as the parameters. If this option is not selected, the block
always outputs a signal of the same dimensionality as the block’s
numeric parameters. See “Determining the Output Dimensions
of Source Blocks” in the “Working with Signals” chapter of the
Simulink documentation. This option is not available when an
external signal specifies time. In this case, if the block’s numeric
parameters are column or row matrix values, the output is a 1-D
vector.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing No

2-647

Sine Wave Function

Purpose Generate sine wave, using external signal as time source

Library Math Operations

Description This block is the same as the Sine Wave block with its Time parameter
set to Use external source. See the documentation for the Sine Wave
block for more information.

2-648

Slider Gain

Purpose Vary scalar gain using slider

Library Math Operations

Description The Slider Gain block allows you to vary a scalar gain during a
simulation using a slider. The block accepts one input and generates
one output.

Data Type
Support

Data type support for the Slider Gain block is the same as that for the
Gain block (see Gain).

Parameters
and
Dialog
Box

Low
The lower limit of the slider range. The default is 0.

High
The upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current
value, and the upper limit. You can change the gain in two ways: by
manipulating the slider, or by entering a new value in the current value
field. You can change the range of gain values by changing the lower
and upper limits. Close the dialog box by clicking the Close button.

If you click the slider’s left or right arrow, the current value changes
by about 1% of the slider’s range. If you click the rectangular area to
either side of the slider’s indicator, the current value changes by about
10% of the slider’s range.

2-649

Slider Gain

To apply a vector or matrix gain to the block input, consider using the
Gain block.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the gain

States 0

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-650

Squeeze

Purpose Remove singleton dimensions from multidimensional signal

Library Math Operations

Description The Squeeze block removes singleton dimensions from its
multidimensional input signal. A singleton dimension is any dimension
whose size is one.

Note The Squeeze block operates only on signals whose number of
dimensions is greater than two. Scalar, one-dimensional (vector), and
two-dimensional (matrix) signals pass through the Squeeze block
unchanged.

For example, the Squeeze block in the following diagram converts a
multidimensional array of size 3-by-1-by-2 into a 3-by-2 signal.

Data Type
Support

The Squeeze block accepts input signals of any dimension and of any
data type that Simulink® software supports, including fixed-point
data types. For a discussion on the data types supported by Simulink
software, see “Data Types Supported by Simulink”.

2-651

Squeeze

Parameters
and
Dialog
Box

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion N/A

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

See Also Reshape

2-652

State-Space

Purpose Implement linear state-space system

Library Continuous

Description The State-Space block implements a system whose behavior is defined
by

where x is the state vector, u is the input vector, and y is the output
vector. The matrix coefficients must have these characteristics, as
illustrated in the following diagram:

• A must be an n-by-n matrix, where n is the number of states.

• B must be an n-by-m matrix, where m is the number of inputs.

• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink® software converts a matrix containing zeros to a sparse
matrix for efficient multiplication.

Specifying the Absolute Tolerance for the Block’s States

By default Simulink software uses the absolute tolerance value
specified in the Configuration Parameters dialog box (see “Solver

2-653

State-Space

Pane”) to solve the states of the State-Space block. If this value does
not provide sufficient error control, specify a more appropriate value in
the Absolute tolerance field of the State-Space block’s dialog box. The
value that you specify is used to solve all the block’s states.

Data Type
Support

A State-Space block accepts and outputs real signals of type double.

2-654

State-Space

Parameters
and
Dialog
Box

A, B, C, D
The matrix coefficients.

Initial conditions
The initial state vector. Simulink software does not allow the
initial conditions of this block to be inf or NaN.

2-655

State-Space

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink software
determines the absolute tolerance (see “Solver Pane”). If you
enter a numeric value, Simulink software uses the specified value
to solve the block’s states. Note that a numeric value overrides
the setting for the absolute tolerance in the Configuration
Parameters dialog box.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'}. Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than the number of states,
but there cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in
the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

Characteristics Direct Feedthrough Only if D ≠ 0

Sample Time Continuous

Scalar Expansion Yes, of the initial conditions

2-656

State-Space

States Depends on the size of A

Dimensionalized Yes

Zero Crossing No

2-657

Step

Purpose Generate step function

Library Sources

Description The Step block provides a step between two definable levels at a
specified time. If the simulation time is less than the Step time
parameter value, the block’s output is the Initial value parameter
value. For simulation time greater than or equal to the Step time, the
output is the Final value parameter value.

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row or
column vectors (i.e., single row or column 2-D arrays), the block outputs
a vector (1-D array) signal; otherwise, the block outputs a signal of the
same dimensionality and dimensions as the parameters.

Data Type
Support

The Step block outputs real signals of type double.

2-658

Step

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

Step time
The time, in seconds, when the output jumps from the Initial
value parameter to the Final value parameter. The default is 1
second.

Initial value
The block output until the simulation time reaches the Step time
parameter. The default is 0.

2-659

Step

Final value
The block output when the simulation time reaches and exceeds
the Step time parameter. The default is 1.

Sample time
Sample rate of step. See “Specifying Sample Time” in the online
documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Step block’s
numeric parameters result in a vector output signal; otherwise,
the block outputs a signal of the same dimensionality as the
parameters. If this option is not selected, the block always
outputs a signal of the same dimensionality as the block’s numeric
parameters. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Simulink
documentation.

Enable zero crossing detection
Select to enable zero crossing detection to detect step times. For
more information, see “Zero-Crossing Detection” in the “How
Simulink Works” chapter of the Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of parameters

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-660

Stop Simulation

Purpose Stop simulation when input is nonzero

Library Sinks

Description The Stop Simulation block stops the simulation when the input is
nonzero.

The simulation completes the current time step before terminating.
If the block input is a vector, any nonzero vector element causes the
simulation to stop.

You can use this block in conjunction with the Relational Operator block
to control when the simulation stops. For example, this model stops the
simulation when the input signal reaches 10.

The Stop block cannot be used to pause the simulation. To create a
block that pauses the simulation, see “Creating Pause Blocks”in the
Simulink® documentation for more information.

Data Type
Support

The Stop Simulation block accepts real signals of type double or
Boolean.

2-661

Stop Simulation

Parameters
and
Dialog
Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

2-662

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Purpose Represent system within another system

Library Ports & Subsystems

Description A Subsystem block represents a subsystem of the system that contains
it. The Subsystem block can represent a virtual subsystem or a true
(atomic) subsystem, depending on the value of its Treat as atomic
unit parameter. An Atomic Subsystem block is a Subsystem block that
has its Treat as atomic unit parameter selected by default.

You create a subsystem in these ways:

• Copy the Subsystem (or Atomic Subsystem) block from the Ports
& Subsystems library into your model. You can then add blocks to
the subsystem by opening the Subsystem block and copying blocks
into its window.

• Select the blocks and lines that are to make up the subsystem using
a bounding box, then choose Create Subsystem from the Edit
menu. Simulink® software replaces the blocks with a Subsystem
block. When you open the block, the window displays the blocks you
selected, adding Inport and Outport blocks to reflect signals entering
and leaving the subsystem.

The number of input ports drawn on the Subsystem block’s icon
corresponds to the number of Inport blocks in the subsystem. Similarly,
the number of output ports drawn on the block corresponds to the
number of Outport blocks in the subsystem.

See “Creating Subsystems” for more information about subsystems.

Data Type
Support

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

See Inport for information on the data types accepted by a subsystem’s
input ports. See Outport for information on the data types output by a
subsystem’s output ports.

2-663

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Parameters
and
Dialog
Box

Show port labels
Causes Simulink software to display labels for the subsystem’s
ports on the subsystem’s icon. Options include:

Option Description

none Do not display port labels on the subsystem
block.

2-664

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Option Description

FromPortIcon If the corresponding port icon displays a
signal name, display the signal name on the
subsystem block. Otherwise, display the port
block’s name.

FromPortBlockNameDisplay the name of the corresponding port
block on the subsystem block.

Signal Name Display the name of the signal connected to the
port on the subsystem block, if a name exists,
otherwise, the name of the corresponding port
block.

Read/Write permissions
Controls user access to the contents of the subsystem. You can
select any of the following values.

Permissions Description

ReadWrite User can open and modify the contents of
the subsystem.

ReadOnly User can open but not modify the
subsystem. If the subsystem resides in a
block library, a user can create and open
links to the subsystem and can make
and modify local copies of the subsystem
but cannot change the permissions or
modify the contents of the original library
instance.

NoReadOrWrite User cannot open or modify the subsystem.
If the subsystem resides in a library, a
user can create links to the subsystem in
a model but cannot open, modify, change
permissions, or create local copies of the
subsystem.

2-665

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Name of error callback function
Name of a function to be called if an error occurs while Simulink
software is executing the subsystem. Simulink software passes
two arguments to the function: the handle of the subsystem and
a string that specifies the error type. If no function is specified,
Simulink software displays a generic error message if executing
the subsystem causes an error.

Permit hierarchical resolution
Specifies whether to resolve names of workspace variables
referenced by this subsystem. The options are

• All

Resolve all names of workspace variables used by this subsystem,
including those used to specify block parameter values and Simulink
data objects (for example, Simulink.Signal objects).

• ExplicitOnly

Resolve only names of workspace variables used to specify block
parameter values, data store memory (where no block exists), signals,
and states marked as “must resolve”.

• None

Do not resolve any workspace variable names.

See “Resolving Symbols” and “Hierarchical Symbol Resolution” for more
information.

Treat as atomic unit
Causes Simulink software to treat the subsystem as a unit when
determining the execution order of block methods. For example,
when it needs to compute the output of the subsystem, Simulink
software invokes the output methods of all the blocks in the
subsystem before invoking the output methods of other blocks
at the same level as the subsystem block. If this option is not
selected, Simulink software treats all blocks in the subsystem as
being at the same level in the model hierarchy as the subsystem

2-666

Subsystem, Atomic Subsystem, CodeReuse Subsystem

when determining block method execution order. This can cause
execution of methods of blocks in the subsystem to be interleaved
with execution of methods of blocks outside the subsystem.

Minimize algebraic loop occurrences
This option appears only if the subsystem is atomic. If selected,
this option tries to eliminate any algebraic loops that include
the subsystem (see “Eliminating Algebraic Loops” in the online
Simulink documentation for more information).

Propagate execution context across subsystem boundary
This option appears only if the subsystem is conditionally
executed.

If selected, this option enables execution context propagation
across this subsystem’s boundary (see “Propagating Execution
Contexts” in the online Simulink documentation). Simulink
software disables this option by default.

Warn if function-call inputs are context-specific
This option appears only if the subsystem is a function-call
subsystem.

The option is effective only if the Context-dependent inputs
diagnostic on the Configuration Parameters > Connectivity
dialog box is set to Use local settings. In this case, if this
option is checked, Simulink software displays a warning if it
has to compute any of this function-call subsystem’s inputs

2-667

Subsystem, Atomic Subsystem, CodeReuse Subsystem

directly or indirectly during execution of a function-call (see the
"Function-call systems" examples in the Simulink "Subsystem
Semantics" library for examples of such function-call subsystems.

Sample time
Specifies the sample time of this subsystem if it is atomic, i.e., its
Treat as atomic unit option is selected. The sample time that
you specify must be one of the following:

• Inherited Sample Time (-1), the default

• Constant Sample Time (inf)

• Periodic ([Ts 0])

Use this parameter to specify whether all blocks in this subsystem
must run at the same rate or can run at different rates. If the
blocks in the subsystem can run at different rates, specify the
subsystem’s sample time as inherited (-1). If all blocks must run
at the same rate, specify the sample time corresponding to this
rate as the value of the subsystem’s Sample time parameter.
If any of the blocks in the subsystem specify a different sample
time (other than -1 or inf), Simulink software displays an error
message when you update or simulate the model. For example,
suppose all the blocks in the subsystem must run 5 times a second.
To ensure this, specify the sample time of the subsystem as 0.2.
In this example, if any of the blocks in the subsystem specify a
sample time other than 0.2, -1, or inf, Simulink software displays
an error when you update or simulate the model.

Real-Time Workshop system code (Real-Time Workshop® license
required)

Specifies the code format to be generated for an atomic
(nonvirtual) subsystem.

2-668

Subsystem, Atomic Subsystem, CodeReuse Subsystem

If You Want Real-Time
Workshop Software to...

Select...

Choose the optimal format
for you based on the type and
number of instances of the
subsystem that exist in the
model

Auto

Inline the subsystem
unconditionally

Inline

Generate a separate,
non-reentrant function with
no arguments, and optionally
place the subsystem code in a
separate file

Function

Generates a function with
arguments that allows the
subsystem’s code to be shared
by other instances of it in the
model

Reusable function

When this option is set to Function or Reusable function, two
additional options appear — Real-Time Workshop function
name options and Real-Time Workshop file name options.

For more information on using these options, see “Nonvirtual
Subsystem Code Generation Options” in the Real-Time Workshop
documentation.

Real-Time Workshop function name options (Real-Time Workshop
license required)

Specifies how Real-Time Workshop software is to name the
function it generates for the subsystem.

2-669

Subsystem, Atomic Subsystem, CodeReuse Subsystem

If You Want Real-Time Workshop
Software to...

Select...

Assign a unique function name
using the default naming convention,
model_subsystem(), where model is the
name of the model and subsystem is the
name of the subsystem (or that of an
identical one when code is being reused)

Auto

Use the subsystem name as the function
name

Use subsystem
name

Assign a unique, valid C or C++ function
name that you specify

User specified

If you specify Use subsystem name and the subsystem is a library
block, Real-Time Workshop software names the function (and
filename) with the name of the library block, regardless of the
names used for that subsystem in the model.

If you select User specified, a Real-Time Workshop function
name option appears.

Real-Time Workshop function name (Real-Time Workshop license
required)

Specifies a unique, valid C or C++ function name for subsystem
code.

Real-Time Workshop file name options (Real-Time Workshop
license required)

Specifies how Real-Time Workshop software is to name the
separate file for the function it generates for the subsystem.

2-670

Subsystem, Atomic Subsystem, CodeReuse Subsystem

If You Want Real-Time Workshop
Software to...

Select...

Generate the function code within the
module generated from the subsystem’s
parent system, or, if the subsystem’s
parent is the model itself, within the file
model.c or model.cpp

Auto

Generate a separate file and name it
with the name of the subsystem or
library block

Use subsystem
name

Generate a separate file and name it
with the function name you specify for
Real-Time Workshop function name
options

Use function name

Assign a unique, valid C or C++ function
name that you specify

User specified

If you specify Use subsystem name, the subsystem filename is
mangled if the model contains Model blocks, or if a model reference
target is being generated for the model. In these situations,
the filename for the subsystem consists of the subsystem name
prefixed by the model name.

If you select User specified, the option Real-Time Workshop
filename (no extension) option appears.

Real-Time Workshop file name (no extension) (Real-Time
Workshop license required)

Specifies how Real-Time Workshop software is to name the file
for the function it generates for the subsystem. The filename
that you specify does not have to be unique. However, avoid
giving non-unique names that result in cyclic dependencies (for
example, sys_a.h includes sys_b.h, sys_b.h includes sys_c.h,
and sys_c.h includes sys_a.h).

2-671

Subsystem, Atomic Subsystem, CodeReuse Subsystem

Function with separate data (Real-Time Workshop® Embedded
Coder™ license required)

Appears if you select Function for the Real-Time Workshop
system code option. If checked, Real-Time Workshop Embedded
Coder software generates subsystem function code in which the
internal data for an atomic subsystem is separated from its parent
model and is owned by the subsystem. As a result, the generated
code for the atomic subsystem is easier to trace and test. The
data separation also tends to reduce the size of data structures
throughout the model.

When you select this option, three memory section options for
data appear: Memory section for constants, Memory section
for internal data, and Memory section for parameters.

For details on how to generate modular function code for an
atomic subsystem, see “Nonvirtual Subsystem Modular Function
Code Generation” in the Real-Time Workshop Embedded Coder
documentation.

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Memory sections for initialize/terminate functions (Real-Time
Workshop Embedded Coder license required)
Memory sections for execution functions

Appear if you select Function for the Real-Time Workshop
system code option. The value you specify for each of these
options indicates how the Real-Time Workshop Embedded
Coder software is to apply memory sections to the subsystem’s
initialization, termination, and execution functions. These options
can be useful for overriding the model’s memory section settings
for the given subsystem.

The possible values vary depending on what (if any) package
of memory sections you have set for the model’s configuration.

2-672

Subsystem, Atomic Subsystem, CodeReuse Subsystem

See “Memory Sections”, “Configuring Memory Sections”, and
“Real-Time Workshop Pane: Memory Sections” in the Real-Time
Workshop Embedded Coder documentation.

If you have not configured the model with a package, Inherit
from model is the only value that appears. Otherwise, the list
includes Default and all memory sections the model’s package
contains.

If You Want Real-Time Workshop
Embedded Coder Software to...

Select...

Apply the root model’s memory
sections to the subsystem’s function
code

Inherit from model

Not apply memory sections to the
subsystem’s system code, overriding
any model-level specification

Default

Apply one of the model’s memory
sections to the subsystem

The memory section of
interest

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Memory sections for constants (Real-Time Workshop Embedded
Coder license required)
Memory sections for internal data
Memory sections for parameters

Appear if you select Function for the Real-Time Workshop
system code option. The value you specify for each of these
options indicates how the Real-Time Workshop Embedded Coder
software is to apply memory sections to the subsystem’s data.
These options can be useful for overriding the model’s memory
section settings for the given subsystem.

2-673

Subsystem, Atomic Subsystem, CodeReuse Subsystem

The list of possible values varies depending on if and what package
of memory sections you have set for the model’s configuration
(see “Configuring Memory Sections” in the Real-Time Workshop
Embedded Coder documentation). If you have not configured the
model with a package, Inherit from model is the only value that
appears. Otherwise, the list includes Default and all memory
sections the model’s package contains.

If You Want Real-Time Workshop
Embedded Coder Software to...

Select...

Apply the root model’s memory
sections to the subsystem’s data

Inherit from model

Not apply memory sections to the
subsystem’s data, overriding any
model-level specification

Default

Apply one of the model’s memory
sections to the subsystem

The memory section of
interest

For details on how to apply memory sections to atomic subsystems,
see “Applying Memory Sections to Atomic Subsystems” in the
Real-Time Workshop Embedded Coder documentation.

Characteristics Sample Time Depends on the blocks in the subsystem

Dimensionalized Depends on the blocks in the subsystem

Multidimensionalized Depends on the blocks in the subsystem

Zero Crossing Yes, for enable and trigger ports if
present

2-674

Sum, Add, Subtract, Sum of Elements

Purpose Add or subtract inputs

Library Math Operations

Description The Sum block performs addition or subtraction on its inputs. This
block can add or subtract scalar, vector, or matrix inputs. It can also
collapse the elements of a signal.

You specify the operations of the block with the List of signs parameter.
Plus (+), minus (-), and spacer (|) characters indicate the operations to
be performed on the inputs:

• If there are two or more inputs, then the number of + and - characters
must equal the number of inputs. For example, “+-+” requires three
inputs and configures the block to subtract the second (middle) input
from the first (top) input, and then add the third (bottom) input.

All nonscalar inputs must have the same dimensions. Scalar inputs
will be expanded to have the same dimensions as the other inputs.

• A spacer character creates extra space between ports on the block’s
icon.

• If only addition of all inputs is required, then a numeric parameter
value equal to the number of inputs can be supplied instead of “+”
characters.

• If only one input port, a single “+” or “-” will collapse the element
using the specified operation.

If input or output signals of a Sum block specify integer or fixed-point
data types, the block first converts the input data type(s) to its
accumulator data type, and then performs the specified operations. The
block converts the result to its output data type using the specified
rounding and overflow modes.

2-675

Sum, Add, Subtract, Sum of Elements

Data Type
Support

The Sum block accepts real or complex signals of any data type
supported by Simulink® software, including fixed-point data types. The
inputs may be of different data types unless you select the Require all
inputs to have the same data type parameter.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

The Main pane of the Sum block dialog appears as follows:

2-676

Sum, Add, Subtract, Sum of Elements

Icon shape
Designate the icon shape of the block.

List of signs
Enter as many plus (+) and minus (-) characters as there are
inputs. Addition is the default operation, so if you only want to
add the inputs, enter the number of input ports. For a single
vector input, “+” or “-” will collapse the vector using the specified
operation.

You can manipulate the positions of the input ports on the block
by inserting spacers (|) between the signs in the List of signs
parameter. For example, “++|--” creates an extra space between
the second and third input ports.

Sum over (Sum of Elements block)
This becomes visible on the Main pane when List of signs
contains only one element.

Select All dimensions to sum all input elements, yielding a
scaler.

Select Specified dimension to display the Dimension
parameter, where you specify the dimension over which the
operation is to be performed.

Dimension (Sum of Elements block)
Specify the dimension over which the operation is to be performed.

The block follows the same summation rules as the MATLAB®

sum function.

For example, for a 2 x 3 matrix U, setting Specified dimension
to 1 results in the output Y being computed as:

Y U i j
i

= =∑ (,)
1

2

2-677

Sum, Add, Subtract, Sum of Elements

Setting Specified dimension to 2 results in Y being computed as:

Y U i j
j

= =∑ (,)
1

3

If the specified dimension is greater than the dimension of the
input, Simulink software reports an error.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Sum block dialog appears as follows:

2-678

Sum, Add, Subtract, Sum of Elements

Require all inputs to have the same data type
Select this parameter to require that all inputs must have the
same data type.

Accumulator data type
Specify the accumulator data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• The name of a built-in data type, for example, single

2-679

Sum, Add, Subtract, Sum of Elements

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

2-680

Sum, Add, Subtract, Sum of Elements

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

States 0

Dimensionalized Yes

Multidimensionalized Yes, only along the specified dimension

Zero Crossing No

2-681

Switch

Purpose Switch output between first input and third input based on value of
second input

Library Signal Routing

Description The Switch block passes through the first input or the third input
based on the value of the second input. The first and third inputs are
called data inputs. The second input is called the control input. (See
“Changing the Orientation of a Block” in the Simulink® documentation
for a description of the port order for various block orientations.)

You select the conditions under which the first input is passed with
the Criteria for passing first input parameter. You can make the
block check whether the control input is greater than or equal to the
threshold value, purely greater than the threshold value, or nonzero. If
the control input meets the condition set in the Criteria for passing
first input parameter, the first input is passed. Otherwise, the third
input is passed.

Note If the data inputs to the switch are buses, the element names of
both buses must be the same to ensure that the output bus has the same
element names no matter which input bus is selected. You can ensure
that your model meets this requirement by using a bus object to define
the buses with the model’s Element name mismatch diagnostic set to
error. See “Connectivity Diagnostics Overview” for more information.

Data Type
Support

The control and data inputs of a Switch block can be signals of any
data type supported by Simulink software, including fixed-point data
types. However, the control input must be real; the data inputs can
be real or complex.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-682

Switch

Parameters
and
Dialog
Box

The Main pane of the Switch block dialog appears as follows:

Criteria for passing first input
Select the conditions under which the first input is passed. You
can make the block check whether the control input is greater
than or equal to the threshold value, purely greater than the
threshold value, or nonzero. If the control input meets the
condition set in this parameter, then the first input is passed.
Otherwise, the third input is passed.

Threshold
Assign the switch threshold that determines which input is
passed to the output.

2-683

Switch

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
Zero Crossing Detection in the “How Simulink Works” chapter of
the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Switch block dialog appears as
follows:

2-684

Switch

Require all data port inputs to have the same data type
Select to require all data inputs to have the same data type.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to -Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

• Simulation range checking (see “Checking Signal Ranges”)

• Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a built-in data type, for example, single

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-685

Switch

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Bus
Support

The Switch block is a bus-capable block. The inputs can be virtual or
nonvirtual bus signals subject to the following restrictions:

• The number of inputs must be greater than one.

• All inputs to the merge must be buses and must be equivalent (same
hierarchy with identical names and attributes for all elements).

Characteristics Bus-capable Yes, with restrictions as noted above

Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing Yes, if enabled

See Also Multiport Switch

2-686

Switch Case

Purpose Implement C-like switch control flow statement

Library Ports & Subsystems

Description The following shows a completed Simulink® C-like switch control flow
statement in the subsystem of the Switch Case block.

A Switch Case block receives a single input, which it uses to form case
conditions that determine which subsystem to execute. Each output
port case condition is attached to a Switch Case Action subsystem. The
cases are evaluated top down starting with the top case. If a case value
(in brackets) corresponds to the actual value of the input, its Switch
Case Action subsystem is executed.

The preceding switch control flow statement can be represented by
the following pseudocode:

switch (u1) {
case [u1=1]:
body_1;
break;

2-687

Switch Case

case [u1=2 or u1=3]:
body_23;
break;

default:
bodydefault;

}

You construct a Simulink switch control flow statement like the
example shown as follows:

1 Place a Switch Case block in the current system and attach the input
port labeled u1 to the source of the data you are evaluating.

2 Open the Block Parameters dialog of the Switch Case block and
enter as follows:

a Enter the Case conditions field with the individual cases.

Each case can be an integer or set of integers specified with
MATLAB® cell notation. See the Case conditions field in the
"Parameters and Dialog Box" section of this reference.

b Select the Show default case check box to show a default case
output port on the Switch Case block.

If all other cases are false, the default case is taken.

3 Create a Switch Case Action subsystem for each case port you added
to the Switch Case block.

These consist of subsystems with Action Port blocks inside them.
When you place the Action Port block inside a subsystem, the
subsystem becomes an atomic subsystem with an input port labeled
Action.

4 Connect each case output port and the default output port of the
Switch Case block to the Action port of an Action subsystem.

2-688

Switch Case

Each connected subsystem becomes a case body. This is indicated by
the change in label for the Switch Case Action subsystem block and
the Action Port block inside of it to the name case{}.

During simulation of a switch control flow statement, the Action
signals from the Switch Case block to each Switch Case Action
subsystem turn from solid to dashed.

5 In each Switch Case Action subsystem, enter the Simulink logic
appropriate to the case it handles. All blocks in a Switch Case Action
Subsystem must run at the same rate as the driving Switch Case
block. You can achieve this by setting each block’s sample time
parameter to be either inherited (-1) or the same value as the Switch
Case block’s sample time.

Note As demonstrated in the preceding pseudocode example, cases for
the Switch Case block contain an implied break after their Switch Case
Action subsystems are executed. There is no fall-through behavior for
the Simulink switch control flow statement as found in standard C
switch statements.

Data Type
Support

Input to the port labeled u1 of a Switch Case block can be a scalar value
of any data type supported by Simulink software except Boolean. The
input to u1 can also be a fixed-point data type. Noninteger inputs are
truncated. For a discussion on the data types supported by Simulink
software, see “Data Types Supported by Simulink” in the Simulink
documentation.

Data outputs are action signals to Switch Case Action subsystems that
are created with Action Port blocks and subsystems.

2-689

Switch Case

Parameters
and
Dialog
Box

Case conditions
Case conditions are specified using MATLAB cell notation where
each cell is a case condition consisting of integers or arrays of
integers. In the preceding dialog example, entering {1,[7,9,4]}
specifies that output port case[1] is run when the input value is 1,
and output port case[7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of case conditions.
For example, entering {[1:5]} specifies that output port case[1 2
3 4 5] is run when the input value is 1, 2, 3, 4, or 5.

Depending on block size, cases with long lists of conditions are
displayed in shortened form in the Switch Case block, using a
terminating ellipsis (...).

2-690

Switch Case

Show default case
If you select this check box, the default output port appears as
the last case on the Switch Case block. This case is run when
the input value does not match any of the case values specified
in the Case conditions field.

Enable zero crossing detection
Select to enable use of zero crossing detection. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing Yes, if enabled

2-691

Switch Case Action Subsystem

Purpose Represent subsystem whose execution is triggered by Switch Case block

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as a
starting point for creating a subsystem whose execution is triggered by
a Switch Case block.

Note All blocks in a Switch Case Action Subsystem must run at the
same rate as the driving Switch Case block. You can achieve this by
setting each block’s sample time parameter to be either inherited (-1) or
the same value as the Switch Case block’s sample time.

For more information, see the Switch Case block and “Modeling Control
Flow Logic” in the “Creating a Model” chapter of the Simulink®

documentation.

2-692

Tapped Delay

Purpose Delay scalar signal multiple sample periods and output all delayed
versions

Library Discrete

Description The Tapped Delay block delays its input by the specified number of
sample periods, and outputs all the delayed versions.

This block provides a mechanism for discretizing a signal in time, or
resampling the signal at a different rate. You specify the time between
samples with the Sample time parameter. You specify the number of
delays with the Number of delays parameter. A value of -1 instructs
the block to inherit the number of delays by backpropagation. Each
delay is equivalent to the z-1 discrete-time operator, which is represented
by the Unit Delay block.

The block accepts one scalar input and generates an output for each
delay. The input must be a scalar. You specify the order of the output
vector with the Order output vector starting with parameter list.
Oldest orders the output vector starting with the oldest delay version
and ending with the newest delay version. Newest orders the output
vector starting with the newest delay version and ending with the
oldest delay version.

The block output for the first sampling period is specified by the Initial
condition parameter. Careful selection of this parameter can minimize
unwanted output behavior.

Data Type
Support

The Tapped Delay block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

2-693

Tapped Delay

Parameters
and
Dialog
Box

Initial condition
Specify the initial output of the simulation. The Initial condition
parameter is converted from a double to the input data type offline
using round-to-nearest and saturation. Simulink software does
not allow you to set the initial condition of this block to inf or NaN.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Number of delays
Specify the number of discrete-time operators.

2-694

Tapped Delay

Order output vector starting with
Specify whether the oldest delay version is output first, or the
newest delay version is output first.

Include current input in output vector
Select to include the current input in the output vector.

Characteristics Direct Feedthrough Yes, when Include current input in
output vector parameter is checked.
No otherwise.

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of initial conditions

2-695

Terminator

Purpose Terminate unconnected output port

Library Sinks

Description The Terminator block can be used to cap blocks whose output ports are
not connected to other blocks. If you run a simulation with blocks having
unconnected output ports, Simulink® software issues warning messages.
Using Terminator blocks to cap those blocks avoids warning messages.

Data Type
Support

The Terminator block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Characteristics Sample Time Inherited from driving block

Dimensionalized Yes

Multidimensionalized Yes

2-696

Time-Based Linearization

Purpose Generate linear models in base workspace at specific times

Library Model-Wide Utilities

Description This block calls linmod or dlinmod to create a linear model for the
system when the simulation clock reaches the time specified by the
Linearization time parameter. No trimming is performed. The
linear model is stored in the base workspace as a structure, along with
information about the operating point at which the snapshot was taken.
Multiple snapshots are appended to form an array of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of
the model appended by _Timed_Based_Linearization, for example,
vdp_Timed_Based_Linearization. The structure has the follow fields:

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

2-697

Time-Based Linearization

Field Description

OperPoint A structure that specifies the operating point
of the linearization. The structure specifies the
operating point time (OperPoint.t). The states
(OperPoint.x) and inputs (OperPoint.u) fields
are not used.

Ts The sample time of the linearization for a discrete
linearization

Use the Trigger-Based Linearization block if you need to generate linear
models conditionally.

You can use state and simulation time logging to extract the model
states and inputs at operating points. For example, suppose that you
want to get the states of the f14 demo model at linearization times of
2 seconds and 5 seconds.

1 Open the model and drag an instance of this block from the
Model-Wide Utilities library and drop the instance into the model.

2 Open the block’s parameter dialog box and set the Linearization
time to 2 and 5.

3 Open the model’s Configuration Parameters dialog box.

4 Select the Data Import/Export pane.

5 Check States and Time on the Save to Workspace control panel

6 Select OK to confirm the selections and close the dialog box.

7 Simulate the model.

At the end of the simulation, the following variables appear in the
MATLAB® workspace: f14_Timed_Based_Linearization, tout,
and xout.

2-698

Time-Based Linearization

8 Get the indices to the operating point times by entering the following
at the MATLAB command line:

ind1 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

ind2 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vectors at the operating points.

x1 = xout(ind1,:);
x2 = xout(ind2,:);

Data Type
Support

Not applicable.

Parameters
and
Dialog
Box

Linearization time
Time at which you want the block to generate a linear model.
Enter a vector of times if you want the block to generate linear
models at more than one time step.

2-699

Time-Based Linearization

Sample time (of linearized model)
Specify a sample time to create discrete-time linearizations of the
model (see “Discrete-Time System Linearization” on page 4-101).

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized No

See Also Trigger-Based Linearization

2-700

To File

Purpose Write data to file

Library Sinks

Description The To File block inputs scalar or vector data of type double and writes
it to a MAT-file. The block’s icon shows the name of the output file.
If the output file exists at the time the simulation starts, the block
overwrites the file. The block writes to the output file incrementally,
so memory overhead during simulation is low. The file closes when
simulation is complete.

The To File block writes data as a matrix of two or more rows. The block
writes one column to the MAT-file for each recorded time step. The first
element of the column gives the simulation time. The remainder of the
column contains scalar or vector data for the time shown at the top of
the column, one element for each data point in the input. The stored
matrix has this form:

To avoid the overhead of compressing data in real time, the To File
block writes an uncompressed MAT-file. To compress the file, open and
save it in MATLAB®. The resaved file will be smaller because MATLAB
software automatically compresses MAT-files.

For variable-step solvers, the Output options found on the “Data
Import/Export Pane” of the Configuration Parameters dialog box
determine the amount of data available to the To File block. For
example, if you need to ensure that data is written at identical time
points over multiple simulations, select the Produce specified
output only option in the Configuration Parameters dialog box and
enter the desired time vector. Parameters of the To File block then
control when and how much of this data the To File block actually

2-701

To File

writes. See “Importing Data from a Workspace” for guidelines on
choosing time vectors for discrete systems.

Saving Data for Use by a From File Block

The From File block can use data written by a To File block without any
modifications to the data or other special provisions.

Saving Data for Use by a From Workspace Block

The From Workspace block requires data that is the transposition of the
data written by the To File block. To provide the required format, use
MATLAB commands to open, transpose, and resave the MAT-file. You
will then be able to use a From Workspace block to access the data after
loading the file to the workspace.

Data Type
Support

The To File block accepts only vector and scalar data, and all data must
be of type double. The To File block does not accept matrix signals or
complex data. To save other kinds of data, use a To Workspace block
to save the data to the MATLAB workspace. You can then write the
saved data to a file.

2-702

To File

Parameters
and
Dialog
Box

Filename
The fully qualified pathname or filename of the MAT-file in which
to store the output. On UNIX® systems, the pathname can start
with a tilde (~) character signifying your home directory. The
default filename is untitled.mat. If you specify an unqualified
filename, Simulink® software stores the file in the MATLAB
working directory. (To determine the working directory, type
pwd at the MATLAB command line.) If the file already exists,
Simulink software overwrites it.

Variable name
The name of the matrix contained in the named file. The default
name is ans.

2-703

To File

Decimation
Specifies writing data at every nth sample, where n is the
decimation factor. The default decimation is 1, which writes data
at every time step.

Sample time
Specifies the sample period and offset at which to collect points.
This parameter is useful when you are using a variable-step solver
where the interval between time steps might not be constant.
The default is-1, which inherits the sample time from the driving
block when determining the points to write. See “Specifying
Sample Time” for more information.

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized Yes

See Also From File, From Workspace, To Workspace

2-704

To Workspace

Purpose Write data to MATLAB® workspace

Library Sinks

Description The To Workspace block writes its input to the MATLAB workspace.
The block writes its output to an array or structure that has the name
specified by the block’s Variable name parameter. The Save format
parameter determines the output format.

Array

Selecting this option causes the To Workspace block to save the
input as an N-dimensional array where N is one more than the
number of dimensions of the input signal. For example, if the input
signal is a 1-D array (i.e., a vector), the resulting workspace array is
two-dimensional. If the input signal is a 2-D array (i.e., a matrix), the
array is three-dimensional.

The way samples are stored in the array depends on whether the input
signal is a scalar or vector or a matrix. If the input is a scalar or a vector,
each input sample is output as a row of the array. For example, suppose
that the name of the output array is simout. Then, simout(1,:)
corresponds to the first sample, simout(2,:) corresponds to the second
sample, etc. If the input signal is a matrix, the third dimension of
the workspace array corresponds to the values of the input signal at
specified sampling point. For example, suppose again that simout is
the name of the resulting workspace array. Then, simout(:,:,1) is the
value of the input signal at the first sample point; simout(:,:,2) is the
value of the input signal at the second sample point; etc.

For variable-step solvers, the Output options found on the Data
Import/Export pane of the Configuration Parameters dialog box
determine the amount of data available to the To Workspace block.
For example, if you need to ensure that data is written at identical
time points over multiple simulations, select the Produce specified
output only option in the Configuration Parameters dialog box and
enter the desired time vector.

2-705

To Workspace

Block parameters then control when and how much of this data the
To Workspace block writes:

• The Limit data points to last parameter indicates how many
sample points to save. If the simulation generates more data points
than the specified maximum, the simulation saves only the most
recently generated samples. To capture all the data, set this value
to inf.

• The Decimation parameter allows you to write data at every nth
sample, where n is the decimation factor. The default decimation, 1,
writes data at every time step.

• The Sample time parameter allows you to specify a sampling
interval at which to collect points. This parameter is useful when
you are using a variable-step solver where the interval between
time steps might not be the same. The default value of -1 causes
the block to inherit the sample time from the driving block when
determining the points to write. See “Specifying Sample Time” in the
online documentation for more information.

During the simulation, the block writes data to an internal buffer.
When the simulation is completed or paused, that data is written to
the workspace. Its icon shows the name of the array to which the data
is written.

Structure

This format consists of a structure with three fields: time, signals, and
blockName. The time field is empty. The blockName field contains the
name of the To Workspace block. The signals field contains a structure
with three fields: values, dimensions, and label. The values field
contains the array of signal values. The dimensions field specifies the
dimensions of the values array. The label field contains the label of
the input line.

Structure with Time

This format is the same as Structure except that the time field contains
a vector of simulation time steps.

2-706

To Workspace

Note This format does not support frame-based signals. Use Array or
Structure format instead.

Examples

In a simulation where the start time is 0, the Limit data points to
last is 100, the Decimation is 1, and the Sample time is 0.5. The To
Workspace block collects a maximum of 100 points, at time values of 0,
0.5, 1.0, 1.5, ..., seconds. Specifying a Decimation value of 1 directs the
block to write data at each step.

In a similar example, the Limit data points to last is 100 and the
Sample time is 0.5, but the Decimation is 5. In this example, the
block collects up to 100 points, at time values of 0, 2.5, 5.0, 7.5, ...,
seconds. Specifying a Decimation value of 5 directs the block to write
data at every fifth sample. The sample time ensures that data is written
at these points.

In another example, all parameters are as defined in the first example
except that the Limit data points to last is 3. In this case, only the
last three sample points collected are written to the workspace. If the
simulation stop time is 100, data corresponds to times 99.0, 99.5, and
100.0 seconds (three points).

Saving Data for Use by a From File Block

The From File block can read data written by a To Workspace block
subject to the following requirements:

• The data must include the simulation times. The easiest way to
include time data in the simulation output is to specify a variable
for time on the Data Import/Export pane of the Configuration
Parameters dialog box. See “Data Import/Export Pane” for more
information.

• The data must be the transposition of the data saved to the workspace
by the To Workspace block. Before saving the data to a MAT-file,
transpose it to the form expected by the From File block.

2-707

To Workspace

• The data in the file must be scalar or vector data of type double.

Saving Data for Use by a From Workspace Block

In a To Workspace block, use the Structure with Time format to save
sample-based data if you intend to use a From Workspace block to play
back the data in another simulation.

Data Type
Support

The To Workspace block can save real or complex inputs of any data
type supported by Simulink® software, including fixed-point data types,
to the MATLAB workspace.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-708

To Workspace

Parameters
and
Dialog
Box

Variable name
The name of the array that holds the data.

Limit data points to last
The maximum number of input samples to be saved. The default
is inf samples.

Decimation
A decimation factor. The default is 1.

2-709

To Workspace

Sample time
The sample time at which to collect points. See “Specifying
Sample Time” in the online documentation for more information.

Save format
Format in which to save simulation output to the workspace. The
default is structure.

Log fixed-point data as a fi object
Select to log fixed-point data to the MATLAB workspace as a
Simulink Fixed-Point fi object. Otherwise, fixed-point data is
logged to the workspace as double.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes

Multidimensionalized Yes

See Also From File, From Workspace, To File

2-710

Transfer Fcn

Purpose Model linear system by transfer function

Library Continuous

Description The Transfer Fcn block models a linear system by a transfer function of
the Laplace-domain variable s. The block can model both single-input
single-output (SISO) and single-input multiple output (SIMO) systems.

This block assumes that the transfer function has the following form

where u and y are the system’s input and outputs, respectively, nn
and nd are the number of numerator and denominator coefficients,
respectively. num and den contain the coefficients of the numerator and
denominator in descending powers of s. The order of the denominator
must be greater than or equal to the order of the numerator. This block
also assumes that the transfer functions for the outputs of a multiple
output system have the same denominator and that the numerators of
the transfer functions have the same order.

To model a single-output system, enter a vector containing the system
transfer function’s numeric coefficients in the Numerator coefficient
field in the block’s parameter dialog box. Enter a vector containing
the transfer function’s denominator coefficients in the Denominator
coefficient field. In this case, the input and output of the block are
scalar time-domain signals.

To model a multiple-output system, enter a matrix in the Numerator
coefficient field where each row of the matrix contains the numerator
coefficients of a transfer function that determines one of the block’s
outputs. Enter a vector containing the denominator coefficients common
to the system’s transfer functions in the Denominator coefficient
field. In this case, the block’s input is a scalar and the block’s output
is a vector each of whose elements is an output of the system modeled
by the block.

2-711

Transfer Fcn

Initial conditions are preset to zero. If you need to specify initial
conditions, convert to state-space form using tf2ss and use the
State-Space block. The tf2ss utility provides the A, B, C, and D
matrices for the system. For more information, type help tf2ss or
consult the Control System Toolbox™ documentation.

Transfer Fcn Display

The numerator and denominator are displayed on the Transfer Fcn
block depending on how they are specified:

• If each is specified as an expression, a vector, or a variable enclosed in
parentheses, the icon shows the transfer function with the specified
coefficients and powers of s. If you specify a variable in parentheses,
the variable is evaluated. For example, if you specify Numerator as
[3,2,1] and Denominator as (den) where den is [7,5,3,1], the
block looks like this:

• If each is specified as a variable, the block shows the variable name
followed by (s). For example, if you specify Numerator as num and
Denominator as den, the block looks like this:

Specifying the Absolute Tolerance for the Block’s States

By default Simulink® software uses the absolute tolerance value
specified in the Configuration Parameters dialog box (see “Absolute
tolerance”) to solve the states of the Transfer Fcn block. If this value
does not provide sufficient error control, specify a more appropriate
value in the Absolute tolerance field of the Transfer Fcn block’s dialog
box. The value that you specify is used to solve all the block’s states.

2-712

Transfer Fcn

Data Type
Support

The Transfer Fcn block accepts and outputs signals of type double.

Parameters
and
Dialog
Box

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1 1].

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink software

2-713

Transfer Fcn

determines the absolute tolerance (see “Specifying Variable-Step
Solver Error Tolerances”). If you enter a numeric value, Simulink
software uses the specified value to solve the block’s states.
Note that a numeric value overrides the setting for the absolute
tolerance in the Configuration Parameters dialog box.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'}. Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than the number of states,
but there cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in
the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

Characteristics Direct Feedthrough Only if the lengths of the Numerator
and Denominator parameters are
equal

Sample Time Continuous

Scalar Expansion No

2-714

Transfer Fcn

States Length of Denominator -1

Dimensionalized Yes, in the sense that the block expands
scalar input into vector output when the
transfer function numerator is a matrix.
See the preceding block description.

Zero Crossing No

2-715

Transfer Fcn Direct Form II

Purpose Implement Direct Form II realization of transfer function

Library Additional Math & Discrete / Additional Discrete

Description

The Transfer Fcn Direct Form II block implements a Direct Form
II realization of the transfer function specified by the Numerator
coefficients and the Denominator coefficients excluding lead
parameters. The block only supports single input-single output transfer
functions.

The block automatically selects the data types and scalings of the
output, the coefficients, and any temporary variables.

Data Type
Support

The Transfer Fcn Direct Form II block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-716

Transfer Fcn Direct Form II

Parameters
and
Dialog
Box

2-717

Transfer Fcn Direct Form II

Numerator coefficients
Specify the numerator coefficients.

Denominator coefficients excluding lead
Specify the denominator coefficients, excluding the leading
coefficient, which must be 1.0.

Initial condition
Set the initial condition.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

See Also Transfer Fcn Direct Form II Time Varying

2-718

Transfer Fcn Direct Form II Time Varying

Purpose Implement time varying Direct Form II realization of transfer function

Library Additional Math & Discrete / Additional Discrete

Description

The Transfer Fcn Direct Form II Time Varying block implements a
Direct Form II realization of the specified transfer function. The block
only supports single input-single output transfer functions.

The signal entering the input port labeled Den No Lead contains the
denominator coefficients of the transfer function. The full denominator
should have a leading coefficient of one, however it should be excluded
from the input signal. For example, a denominator of [1 -1.7 0.72]
would be represented by a signal with the value [-1.7 0.72]. The signal
entering the input port labeled Num contains the numerator coefficients.
The data types of the numerator and denominator coefficients can be
different, however, the length of the numerator vector and the full
denominator vector must be the same. Pad the numerator vector with
zeros, if needed.

The block automatically selects the data types and scalings of the
output, the coefficients, and any temporary variables.

Data Type
Support

The Transfer Fcn Direct Form II Time Varying block accepts signals of
any data type supported by Simulink® software, including fixed-point
data types.

2-719

Transfer Fcn Direct Form II Time Varying

Parameters
and
Dialog
Box

Initial condition
Set the initial condition.

2-720

Transfer Fcn Direct Form II Time Varying

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

See Also Transfer Fcn Direct Form II

2-721

Transfer Fcn First Order

Purpose Implement discrete-time first order transfer function

Library Discrete

Description The Transfer Fcn First Order block implements a discrete-time first
order transfer function of the input. The transfer function has a unity
DC gain.

Data Type
Support

The Transfer Fcn First Order block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Pole (in Z plane)
Set the pole.

2-722

Transfer Fcn First Order

Initial condition for previous output
Set the initial condition for the previous output.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-723

Transfer Fcn Lead or Lag

Purpose Implement discrete-time lead or lag compensator

Library Discrete

Description The Transfer Fcn Lead or Lag block implements a discrete-time
lead or lag compensator of the input. The instantaneous gain of the
compensator is one, and the DC gain is equal to (1-z)/(1-p), where z is
the zero and p is the pole of the compensator.

The block implements a lead compensator when 0 < z < p < 1, and
implements a lag compensator when 0 < p < z < 1.

Data Type
Support

The Transfer Fcn Lead or Lag block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-724

Transfer Fcn Lead or Lag

Parameters
and
Dialog
Box

Pole of compensator (in Z plane)
Set the pole.

Zero of compensator (in Z plane)
Set the zero.

Initial condition for previous output
Set the initial condition for the previous output.

2-725

Transfer Fcn Lead or Lag

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-726

Transfer Fcn Real Zero

Purpose Implement discrete-time transfer function that has real zero and no pole

Library Discrete

Description The Transfer Fcn Real Zero block implements a discrete-time transfer
function that has a real zero and effectively has no pole.

Data Type
Support

The Transfer Fcn Real Zero block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Zero (in Z plane)
Set the zero.

2-727

Transfer Fcn Real Zero

Initial condition for previous input
Set the initial condition for the previous input.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-728

Transport Delay

Purpose Delay input by given amount of time

Library Continuous

Description The Transport Delay block delays the input by a specified amount of
time. It can be used to simulate a time delay.

At the start of the simulation, the block outputs the Initial output
parameter until the simulation time exceeds the Time delay
parameter, when the block begins generating the delayed input. The
Time delay parameter must be nonnegative.

The block stores input points and simulation times during a simulation
in a buffer whose initial size is defined by the Initial buffer size
parameter. If the number of points exceeds the buffer size, the block
allocates additional memory and Simulink® software displays a
message after the simulation that indicates the total buffer size needed.
Because allocating memory slows down the simulation, define this
parameter value carefully if simulation speed is an issue. For long time
delays, this block might use a large amount of memory, particularly
for dimensionalized input.

When output is required at a time that does not correspond to the
times of the stored input values, the block interpolates linearly
between points. When the delay is smaller than the step size, the block
extrapolates from the last output point, which can produce inaccurate
results. Because the block does not have direct feedthrough, it cannot
use the current input to calculate its output value. To illustrate this
point, consider a fixed-step simulation with a step size of 1 and the
current time at t = 5. If the delay is 0.5, the block needs to generate a
point at t = 4.5. Because the most recent stored time value is at t = 4,
the block performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals.
Instead, it returns the discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the
output on sample hits only.

2-729

Transport Delay

Using linmod to linearize a model that contains a Transport Delay
block can be troublesome. For more information about ways to avoid
the problem, see “Linearizing Models” in the “Analyzing Simulation
Results” chapter of the Simulink documentation.

Data Type
Support

The Transport Delay block accepts and outputs real signals of type
double.

Parameters
and
Dialog
Box

2-730

Transport Delay

Time delay
The amount of simulation time that the input signal is delayed
before being propagated to the output. The value must be
nonnegative.

Initial output
Specifies the output of the block at simulation time 0.

Initial buffer size
The initial memory allocation for the number of points to store.

Use fixed buffer size
Specifies use of a fixed-size buffer to save input data from previous
time steps. The Initial buffer size parameter specifies the
buffer’s size. If the buffer is full, new data replaces data already
in the buffer. Simulink software uses linear extrapolation to
estimate the output value if it is not in the buffer. This option can
save memory if the input data is linear. If the input is not linear,
this option may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if
you do not select this check box.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

2-731

Transport Delay

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Pade order (for linearization)
The order of the Pade approximation for linearization routines.
The default value is 0, which results in a unity gain with no
dynamic states. Setting the order to a positive integer n adds n
states to your model, but results in a more accurate linear model
of the transport delay.

Characteristics Direct Feedthrough No

Sample Time Continuous

Scalar Expansion Yes, of input and all parameters except
Initial buffer size

Dimensionalized Yes

Zero Crossing No

2-732

Trigger

Purpose Add trigger port to subsystem or function-call model

Library Ports & Subsystems

Description Adding a Trigger block to a subsystem or a model allows its execution
to be triggered by an external signal. You can configure the Trigger
block to enable a change in the value of the external signal (described
below) to trigger execution of a subsystem once on each integration
step when the value of the signal that passes through the trigger port
changes in a specifiable way (see“Triggered Subsystems”). You can also
configure the Trigger block to accept a function-call trigger. This allows
a Function-Call Generator block or S-function to trigger execution of
a subsystem or model multiple times during a time step. A subsystem
or model can contain only one Trigger block. For more information, see
“Defining Function-Call Models” and “Function-Call Subsystems”.

The Trigger type parameter allows you to choose the type of event that
triggers execution of the subsystem:

• rising triggers execution of the subsystem when the control signal
rises from a negative or zero value to a positive value (or zero if the
initial value is negative).

• falling triggers execution of the subsystem when the control signal
falls from a positive or a zero value to a negative value (or zero if the
initial value is positive).

• either triggers execution of the subsystem when the signal is either
rising or falling.

• function-call allows a Function-Call Generator or S-function to
control execution of the subsystem or model.

Note The Trigger type must be function-call for Trigger ports
at the root-level of a model. In other words, only function-call signals
can trigger execution of a model.

2-733

Trigger

You can output the trigger signal by selecting the Show output port
check box. Selecting this option allows the system to determine what
caused the trigger. The width of the signal is the width of the triggering
signal. The signal value is

• 1 for a signal that causes a rising trigger

• -1 for a signal that causes a falling trigger

• 2 for a function-call trigger

• 0 otherwise

Data Type
Support

The Trigger block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-734

Trigger

Parameters
and
Dialog
Box

Trigger type
The type of event that triggers execution of the subsystem.

States when enabling
This option is enabled only if you select function-call as the
block’s trigger type and the setting applies only if the function-call
subsystem is explicitly enabled and disabled. For example:

• The function-call subsystem resides inside of an enabled
subsystem. In this case, the function-call subsystem is enabled
and disabled along with the parent subsystem.

• The function-call initiator that controls the function-call
subsystem resides in an enabled subsystem. In this case, the

2-735

Trigger

function-call subsystem is enabled and disabled along with the
enabled subsystem containing the function-call initiator.

• The function-call initiator is a Stateflow® event that is bound
to a particular state. See “Using Bind Actions to Control
Function-Call Subsystems” in the Stateflow documentation.

• The function-call initiator is an S-function that explicitly
enables and disables the function-call subsystem. See
ssEnableSystemWithTid for an example.

Selecting held (the default) causes Simulink software to leave the
states at their current values.

Selecting reset for this option causes Simulink software to reset
the states.

Selecting inherit causes the trigger’s held/reset setting to be
the same as that of the function-call initiator’s parent subsystem,
for example, an enabled subsystem, or the model’s root system if
the function-call initiator is at the model’s root level. If the parent
of the initiator is the model root, the inherited setting is held. If
the trigger has multiple initiators and its States when enabling
setting is inherit, the parents of all initiators must have the
same held/reset setting, i.e., either all held or all reset.

Show output port
If selected and this block is in a subsystem, Simulink software
displays the Trigger block output port and outputs the trigger
signal.

Note This option is disabled for function-call Trigger blocks
residing at the root-level of a model.

2-736

Trigger

Output data type
Specifies the data type (double or int8) of the trigger output. If
you select auto, Simulink software sets the data type to be the
same as that of the port to which the output is connected. If the
port’s data type is not double or int8, Simulink software signals
an error.

Note The Trigger block ignores the Data type override setting
of the Fixed-Point Tool.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time type
This parameter is active only when Trigger type is set to
function-call. Its value may be triggered or periodic. Select
periodic if the caller of the parent function-call subsystem, for
example, a Stateflow chart, calls the subsystem once per time
step when the subsystem is active (enabled). Otherwise, select
triggered. See "Using Bind Actions to Control Function-Call
Subsystems" in the Using Stateflow documentation and the
"Function-Call Subsystems" section of Writing S-functions for
more information.

Sample time
This parameter is active only when the Trigger type is
function-call and the Sample time type is periodic. Set this
parameter to the sample time at which you expect the function-call
subsystem that contains this block to be called. See “Specifying
Sample Time” in the online documentation for information on
how to the value of this parameter. Simulink software displays
an error if the actual rate at which the subsystem is called differs
from the rate that this parameter specifies.

2-737

Trigger

Characteristics Sample Time Determined by the sample time
parameter if the trigger type is
function-call and the sample time type
is periodic; otherwise, by the signal at
the trigger port.

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-738

Trigger-Based Linearization

Purpose Generate linear models in base workspace when triggered

Library Model-Wide Utilities

Description When triggered, this block calls linmod or dlinmod to create a linear
model for the system at the current operating point. No trimming
is performed. The linear model is stored in the base workspace as a
structure, along with information about the operating point at which
the snapshot was taken. Multiple snapshots are appended to form an
array of structures.

The block sets the following model parameters to the indicated values:

• BufferReuse = 'off'

• RTWInlineParameters = 'on'

• BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of
the model appended by _Trigger_Based_Linearization, for example,
vdp_Trigger_Based_Linearization. The structure has the follow
fields:

Field Description

a The A matrix of the linearization

b The B matrix of the linearization

c The C matrix of the linearization

d The D matrix of the linearization

StateName Names of the model’s states

OutputName Names of the model’s output ports

InputName Names of the model’s input ports

2-739

Trigger-Based Linearization

Field Description

OperPoint A structure that specifies the operating point of
the linearization. The structure specifies the
value of the model’s states (OperPoint.x) and
inputs (OperPoint.u) at the operating point time
(OperPoint.t).

Ts The sample time of the linearization for a
discrete linearization

Use the Time-Based Linearization block to generate linear models at
predetermined times.

You can use state and simulation time logging to extract the model
states at operating points. For example, suppose that you want to
get the states of the vdp demo model when the signal x1 triggers the
Trigger-Based Linearization block on a rising edge.

1 Open the model and drag an instance of this block from the
Model-Wide Utilities library and drop the instance into the model.

2 Connect the block’s trigger port to the signal labeled x1.

3 Open the model’s Configuration Parameters dialog box.

4 Select the Data Import/Export pane.

5 Check States and Time on the Save to Workspace control panel

6 Select OK to confirm the selections and close the dialog box.

7 Simulate the model.

At the end of the simulation, the following variables appear in the
MATLAB® workspace: vdp_Trigger_Based_Linearization, tout,
and xout.

8 Get the index to the first operating point time by entering the
following at the MATLAB command line:

2-740

Trigger-Based Linearization

ind1 = find(vdp_Trigger_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vector at this operating point.

x1 = xout(ind1,:);

Data Type
Support

The trigger port accepts signals of any data type supported by
Simulink® software.

Parameters
and
Dialog
Box

Trigger type
Type of event on the trigger input signal that triggers generation
of a linear model. See the Trigger type parameter of the Trigger
block for an explanation of the various trigger types that you can
select.

Sample time (of linearized model)
Specify a sample time to create a discrete-time linearization of the
model (see “Discrete-Time System Linearization” on page 4-101).

2-741

Trigger-Based Linearization

Characteristics Sample Time Specified in the Sample time
parameter

Dimensionalized No

See Also Time-Based Linearization

2-742

Triggered Subsystem

Purpose Represent subsystem whose execution is triggered by external input

Library Ports & Subsystems

Description This block is a Subsystem block that is preconfigured to serve as
the starting point for creating a triggered subsystem (see “Triggered
Subsystems”).

2-743

Trigonometric Function

Purpose Perform trigonometric function

Library Math Operations

Description The Trigonometric Function block performs numerous common
trigonometric functions.

You can select one of these functions from the Function list: sin, cos,
tan, asin, acos, atan, atan2, sinh, cosh, tanh, asinh, acosh, and
atanh. The block output is the result of the operation of the function on
one or more inputs.

The name of the function appears on the block. If you select the atan2
function, the block displays two inputs. The first input is the y-axis or
complex part of the function argument. The second input is the x-axis
or real part of the function argument. (See “Changing the Orientation
of a Block” in Using Simulink® for a description of the port order for
various block orientations.)

Use the Trigonometric Function block instead of the Fcn block when
you want dimensionalized output, because the Fcn block can produce
only scalar output.

Data Type
Support

The Trigonometric Function block accepts and outputs real or complex
signals of type double.

2-744

Trigonometric Function

Parameters
and
Dialog
Box

Function
The trigonometric function.

Output signal type
Type of signal (complex or real) to output.

Note The Trigonometric Function block cannot output complex
signals in the code that Real-Time Workshop® generates.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
Using Simulink for more information.

2-745

Trigonometric Function

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion Yes, of the input when the function
requires two inputs

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-746

Unary Minus

Purpose Negate input

Library Math Operations

Description The Unary Minus block negates the input. The block accepts only
signed data types.

For signed data types, you cannot accurately negate the most negative
value since the result is not representable by the data type. In this
case, the behavior of the block is controlled by the Saturate to max or
min when overflows occur check box. If selected, the most negative
value of the data type wraps to the most positive value. If not selected,
the operation has no effect. If an overflow occurs, then a warning is
returned to the MATLAB® command line.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the negation of -128 is
not representable. If you select the Saturate to max or min when
overflows occur check box, then the negation of -128 is 127. If it is not
selected, then the negation of -128 remains at -128.

Data Type
Support

The Unary Minus block accepts signals of any data type supported by
Simulink® software except unsigned integers, including fixed-point
data types.

2-747

Unary Minus

Parameters
and
Dialog
Box

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics Direct Feedthrough No

Scalar Expansion Yes, of input or initial conditions

Multidimensionalized Yes

2-748

Uniform Random Number

Purpose Generate uniformly distributed random numbers

Library Sources

Description The Uniform Random Number block generates uniformly distributed
random numbers over a specifiable interval with a specifiable starting
seed. The seed is reset each time a simulation starts. The generated
sequence is repeatable and can be produced by any Uniform Random
Number block with the same seed and parameters. To generate
normally distributed random numbers, use the Random Number block.

Avoid integrating a random signal, because solvers are meant to
integrate relatively smooth signals. Instead, use the Band-Limited
White Noise block.

The block’s numeric parameters must be of the same dimensions
after scalar expansion. If the Interpret vector parameters as
1-D option is off, the block outputs a signal of the same dimensions
and dimensionality as the parameters. If the Interpret vector
parameters as 1-D option is on and the numeric parameters are row
or column vectors (i.e., single row or column 2-D arrays), the block
outputs a vector (1-D array) signal.

Data Type
Support

The Uniform Random Number block outputs a real signal of type
double.

2-749

Uniform Random Number

Parameters
and
Dialog
Box

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the online
Simulink® documentation for details.

Minimum
The minimum of the interval. The default is -1.

Maximum
The maximum of the interval. The default is 1.

Initial seed
The starting seed for the random number generator. The default
is 0.

2-750

Uniform Random Number

Sample time
The sample period. The default is 0. See “Specifying Sample
Time” in the online documentation for more information.

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Uniform
Random Number block’s numeric parameters result in a vector
output signal; otherwise, the block outputs a signal of the same
dimensionality as the parameters. If this option is not selected,
the block always outputs a signal of the same dimensionality as
the block’s numeric parameters. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Simulink documentation.

Characteristics Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-751

Unit Delay

Purpose Delay signal one sample period

Library Discrete

Description The Unit Delay block delays its input by the specified sample period.
This block is equivalent to the z-1 discrete-time operator. The block
accepts one input and generates one output, which can be either both
scalar or both vector. If the input is a vector, all elements of the vector
are delayed by the same sample period.

You specify the block output for the first sampling period with the
Initial conditions parameter. Careful selection of this parameter can
minimize unwanted output behavior. The time between samples is
specified with the Sample time parameter. A setting of -1 means the
sample time is inherited.

Note The Unit Delay block accepts continuous signals. When it has
a continuous sample time, the block is equivalent to the Simulink®

Memory block.

The Unit Delay block provides a mechanism for discretizing one or more
signals in time.

Note Do not use the Unit Delay block to create a slow-to-fast transition
between blocks operating at different sample rates. Instead, use the
Rate Transition block.

Data Type
Support

The Unit Delay block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types. If
the data type of the input signal is user-defined, the initial condition
must be zero.

2-752

Unit Delay

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Initial conditions
The output of the simulation for the first sampling period, during
which the output of the Unit Delay block is otherwise undefined.
The Initial conditions parameter is converted from a double to
the input data type offline using round-to-nearest and saturation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage and

2-753

Unit Delay

Interfacing” in the Real-Time Workshop® documentation for more
information.

Bus
Support

The Unit Delay block is a bus-capable block. The input can be a virtual
or nonvirtual bus signal subject to the following restrictions:

• Initial conditions must be zero or a non-zero scalar.

• If Initial conditions is zero and a State name is specified, the
input cannot be a virtual bus.

• If Initial conditions is a non-zero scalar, no State name can be
specified.

Characteristics Bus-capable Yes, with restrictions as noted above

Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes, of input or initial conditions

States Yes–inherited from driving block for
nonfixed-point data types.

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

See Also Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay
Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit
Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable, Unit
Delay With Preview Resettable External RV

2-754

Unit Delay Enabled

Purpose Delay signal one sample period, if external enable signal is on

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled block delays a signal by one sample period
when the external enable signal E is on. While the enable is off, the block
is disabled. It holds the current state at the same value and outputs
that value. The enable signal is on when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value
of the Initial condition parameter.

The output data type is the same as the input u data type. The data
type of the input u and the enable E can be any data type.

You input the sample time with the Sample time parameter. A setting
of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

2-755

Unit Delay Enabled

Parameters
and
Dialog
Box

Initial condition
Initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled
Resettable, Unit Delay Enabled Resettable External IC, Unit Delay
External IC, Unit Delay Resettable, Unit Delay Resettable External IC,
Unit Delay With Preview Enabled, Unit Delay With Preview Enabled

2-756

Unit Delay Enabled

Resettable, Unit Delay With Preview Enabled Resettable External
RV, Unit Delay With Preview Resettable, Unit Delay With Preview
Resettable External RV

2-757

Unit Delay Enabled External IC

Purpose Delay signal one sample period, if external enable signal is on, with
external initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled External IC block delays a signal by one
sample period when the enable signal E is on. While the enable is off,
the block holds the current state at the same value and outputs that
value. The enable E is on when E is not 0, and off when E is 0.

The initial condition of this block is given by the signal IC.

The input u and IC data types must be the same, and are any data
type. The output data type is the same as u and IC. The enable E is
any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled External IC block accepts signals of any data
type supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

2-758

Unit Delay Enabled External IC

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, of the reset input port

No, of the enable input port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-759

Unit Delay Enabled Resettable

Purpose Delay signal one sample period, if external enable signal is on, with
external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled Resettable block combines the features of the
Unit Delay Enabled and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When
the enable signal E is on and the reset signal R is false, the block outputs
the input signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block
resets the current state to the initial condition, specified by the Initial
condition parameter, and outputs that state delayed by one sample
period.

When the enable signal is off, the block is disabled, and the state and
output do not change except for resets. The enable signal is on when E
is not 0, and off when E is 0.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled Resettable block accepts signals of any data
type supported by Simulink® software, including fixed-point data types.

2-760

Unit Delay Enabled Resettable

Parameters
and
Dialog
Box

Initial condition
The initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-761

Unit Delay Enabled Resettable

Characteristics Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the reset port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable External IC, Unit Delay External IC, Unit
Delay Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-762

Unit Delay Enabled Resettable External IC

Purpose Delay signal one sample period, if external enable signal is on, with
external Boolean reset and initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Enabled Resettable External IC block combines the
features of the Unit Delay Enabled, Unit Delay External IC, and Unit
Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When
the enable signal E is on and the reset signal R is false, the block outputs
the input signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block
resets the current state to the initial condition given by the signal IC,
and outputs that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and
output do not change except for resets. The enable signal is on when E
is not 0, and off when E is 0.

The output data type is the same as the input u and the initial
condition IC data type, which can be any data type, but must be the
same. The enable E and reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Enabled Resettable External IC block accepts signals of
any data type supported by Simulink® software, including fixed-point
data types.

2-763

Unit Delay Enabled Resettable External IC

Parameters
and
Dialog
Box

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

No, of the enable port

Yes, of the enable port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay External IC, Unit Delay

2-764

Unit Delay Enabled Resettable External IC

Resettable, Unit Delay Resettable External IC, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-765

Unit Delay External IC

Purpose Delay signal one sample period, with external initial condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay External IC block delays its input by one sample period.
This block is equivalent to the z-1 discrete-time operator. The block
accepts one input and generates one output, both of which can be scalar
or vector. If the input is a vector, all elements of the vector are delayed
by the same sample period.

The block’s output for the first sample period is equal to the signal IC.

The input u and initial condition IC data types must be the same, and
are any data type.

You specify the time between samples with the Sample time parameter.
A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay External IC block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

2-766

Unit Delay External IC

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Enabled Resettable External RV, Unit Delay
With Preview Resettable, Unit Delay With Preview Resettable External
RV

2-767

Unit Delay Resettable

Purpose Delay signal one sample period, with external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Resettable block delays a signal one sample period.

The block can reset its state based on an external reset signal R. The
block has two input ports, one for the input signal u and the other for
the external reset signal R. When the reset signal is false, the block
outputs the input signal delayed by one time step. When the reset
signal is true, the block resets the current state to the initial condition,
specified by the Initial condition parameter, and outputs that state
delayed by one time step.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Resettable block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

2-768

Unit Delay Resettable

Initial condition
Specify the initial output of the simulation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the reset port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable External IC, Unit Delay
With Preview Enabled, Unit Delay With Preview Enabled Resettable,
Unit Delay With Preview Enabled Resettable External RV, Unit Delay
With Preview Resettable, Unit Delay With Preview Resettable External
RV

2-769

Unit Delay Resettable External IC

Purpose Delay signal one sample period, with external Boolean reset and initial
condition

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay Resettable External IC block delays a signal one sample
period.

The block can reset its state based on an external reset signal R. The
block has two input ports, one for the input signal u and the other for
the reset signal R. When the reset signal is false, the block outputs the
input signal delayed by one time step. When the reset signal is true, the
block resets the current state to the initial condition given by the signal
IC and outputs that state delayed by one time step.

The input u and initial condition IC must be the same data type, but
can be any data type. The output is the same data type as the inputs u
and IC. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay Resettable External IC block accepts signals of any data
type supported by Simulink® software, including fixed-point data types.

2-770

Unit Delay Resettable External IC

Parameters
and
Dialog
Box

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough No, of the input port

Yes, of the reset port

Yes, of the external IC port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External
IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay With
Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit
Delay With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-771

Unit Delay With Preview Enabled

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled block supports calculations that
have feedback and depend on the current input.

The block has two output ports. When the external enable signal E is
on, the upper port outputs the signal and the lower port outputs the
signal delayed by one sample period. The block has two input ports, one
for the input signal u and the other for the enable signal E.

When the enable signal E is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

You specify the block output for the first sampling period with the value
of the Initial condition parameter.

The input u can be any data type. The output is the same data type
as the input u.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled block accepts signals of any data
type supported by Simulink® software, including fixed-point data types.

2-772

Unit Delay With Preview Enabled

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-773

Unit Delay With Preview Enabled

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled Resettable, Unit Delay
With Preview Enabled Resettable External RV, Unit Delay With
Preview Resettable, Unit Delay With Preview Resettable External RV

2-774

Unit Delay With Preview Enabled Resettable

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on, with external Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled Resettable block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external enable signal E is on and
the reset R is false, the upper port outputs the signal and the lower port
outputs the signal delayed by one sample period. The block has three
input ports, one for the input signal u, one for the enable signal E, and
one for the reset signal R.

When the enable signal E is on and the reset R is true, the block resets
the current state to the initial condition given by the Initial condition
parameter. The block outputs that state delayed by one sample time
through the lower output port, and outputs the state without a delay
through the upper output port.

When the Enable signal is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled Resettable block accepts signals
of any data type supported by Simulink® software, including fixed-point
data types.

2-775

Unit Delay With Preview Enabled Resettable

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

2-776

Unit Delay With Preview Enabled Resettable

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable External RV, Unit Delay With Preview
Resettable, Unit Delay With Preview Resettable External RV

2-777

Unit Delay With Preview Enabled Resettable External RV

Purpose Output signal and signal delayed by one sample period, if external
enable signal is on, with external RV reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Enabled Resettable External RV block
supports calculations that have feedback and depend on the current
input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external enable signal E is on and
the reset R is false, the upper port outputs the signal and the lower port
outputs the signal delayed by one sample period. The block has four
input ports, one for the input signal u, one for the enable signal E, one
for the reset signal R, and one for the external reset signal, RV.

When the enable signal E is on and the reset R is true, the upper output
signal is forced to equal the external reset signal RV. The lower output
signal is not affected until one time step later, at which time it is equal
to the external reset signal RV at the previous time step. The block uses
the internal Initial condition only when the model starts or when a
parent enabled subsystem is used. The internal Initial condition
only affects the lower output signal. The first output is only affected
through feedback.

When the Enable signal is off, the block is disabled, and the state and
output values do not change, except for resets. The enable signal is on
when E is not 0, and off when E is 0.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Enabled Resettable External RV block
accepts signals of any data type supported by Simulink® software,
including fixed-point data types.

2-778

Unit Delay With Preview Enabled Resettable External
RV

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

2-779

Unit Delay With Preview Enabled Resettable External RV

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit
Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,
Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable
External IC, Unit Delay With Preview Enabled, Unit Delay With
Preview Enabled Resettable, Unit Delay With Preview Resettable, Unit
Delay With Preview Resettable External RV

2-780

Unit Delay With Preview Resettable

Purpose Output signal and signal delayed by one sample period, with external
Boolean reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Resettable block supports calculations
that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the reset R is false, the upper port
outputs the signal and the lower port outputs the signal delayed by
one sample period.

When the reset R is true, the block resets the current state to the initial
condition given by the Initial condition parameter. The block outputs
that state delayed by one sample time through the lower output port,
and outputs the state without a delay through the upper output port.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Resettable block accepts signals of any
data type supported by Simulink® software, including fixed-point data
types.

2-781

Unit Delay With Preview Resettable

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-782

Unit Delay With Preview Resettable

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay Enabled Resettable
External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay
Resettable External IC, Unit Delay With Preview Enabled, Unit Delay
With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable External
RV

2-783

Unit Delay With Preview Resettable External RV

Purpose Output signal and signal delayed by one sample period, with external
RV reset

Library Additional Math & Discrete / Additional Discrete

Description The Unit Delay With Preview Resettable External RV block supports
calculations that have feedback and depend on the current input.

The block can reset its state based on an external reset signal R. The
block has two output ports. When the external reset R is false, the upper
port outputs the signal and the lower port outputs the signal delayed by
one sample period.

When the external reset R is true, the upper output signal is forced
to equal the external reset signal RV. The lower output signal is not
affected until one time step later, at which time it is equal to the external
reset signal RV at the previous time step. The block uses the internal
Initial condition only when the model starts or when a parent enabled
subsystem is used. The internal Initial condition only affects the
lower output signal. The first output is only affected through feedback.

The input u can be any data type. The output is the same data type as
the input u. The reset R can be any data type.

You specify the time between samples with the Sample time
parameter. A setting of -1 means the Sample time is inherited.

Data Type
Support

The Unit Delay With Preview Resettable External RV block accepts
signals of any data type supported by Simulink® software, including
fixed-point data types.

2-784

Unit Delay With Preview Resettable External RV

Parameters
and
Dialog
Box

Initial condition
Specify the initial condition.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-785

Unit Delay With Preview Resettable External RV

Characteristics Direct Feedthrough Yes, to upper output port

No, to lower output port

Sample Time Specified in the Sample time
parameter

Scalar Expansion Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC,
Unit Delay Enabled Resettable, Unit Delay Enabled Resettable
External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay
Resettable External IC, Unit Delay With Preview Enabled, Unit Delay
With Preview Enabled Resettable, Unit Delay With Preview Enabled
Resettable External RV, Unit Delay With Preview Resettable

2-786

Variable Time Delay, Variable Transport Delay

Purpose Delay input by variable amount of time

Library Continuous

Description The Variable Transport Delay and Variable Time Delay appear as two
blocks in the Simulink® block library. However, they are actually the
same built-in Simulink block with different settings of a Select delay
type parameter. This parameter allows you to specify that the block
operate in either of the following modes.

Variable Time Delay

In this mode, the block has a data input a time delay input, and a data
output. (See “Changing the Orientation of a Block” in the Simulink
documentation for a description of the port order for various block
orientations.) The block’s output at the current time step equals the
value of its data input at a previous time equal to the current simulation
time minus a delay time specified by the block’s time delay input.

y t u t t u t t() () (())= − = −0 τ

u(t)

τ(t)
y(t) = u(t − τ(t))

To

Variable
Time Delay

−C−

−C−

The block’s Maximum delay parameter defines the largest value the
time delay input can have. The block clips values of the delay that
exceed this value. The Maximum delay must be greater than or equal
to zero. If the time delay becomes negative, the block clips it to zero and
issues a warning message.

During the simulation, the block stores time and input value pairs in
an internal buffer. At the start of the simulation, the block outputs
the value of the Initial output parameter until the simulation time
exceeds the time delay input. Then, at each simulation step, the

2-787

Variable Time Delay, Variable Transport Delay

block outputs the signal at the time that corresponds to the current
simulation time minus the delay time.

When output is required at a time that does not correspond to the times
of the stored input values and the solver is a continuous solver, the block
interpolates linearly between points. If the time delay is smaller than
the step size, the block extrapolates an output point from a previous
point. For example, consider a fixed-step simulation with a step size of
1 and the current time at t = 5. If the delay is 0.5, the block needs to
generate a point at t = 4.5. Because the most recent stored time value is
at t = 4, the block extrapolates the input at 4.5 from the input at 4 and
uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less
accurate result than extrapolating back from the current time step.
However, the block cannot use the current input to calculate its output
value because the input port does not have direct feedthrough.

If the model specifies a discrete solver, the block does not interpolate
between time steps. Instead, it returns the nearest stored value that
precedes the required value.

Variable Transport Delay

In this mode, the block’s output at the current time step is equal to
the value of its data (top, or left) input at an earlier time equal to the
current time minus a transportation delay

y t u t t td() (())= −

Simulink software finds the transportation delay, t td () , by solving the
following equation

1
1

t
d

it t t

t

d (() τ
τ

)
=

−∫

This equation involves an instantaneous time delay, t ti () , given by the
block’s time delay (bottom, or right) input.

2-788

Variable Time Delay, Variable Transport Delay

u(t)

t
i
(t)

y(t) = u(t − t
d
(t))

Ti

Variable
Transport Delay

−C−

1

For example, suppose you want to use this block to model the flow of a
fluid through a pipe where the speed of the flow varies with time. In
this case, the time delay input to the block would be

t t
L

v ti
i

()
()

=

where L is the length of the pipe and v ti () is the speed of the fluid.

Data Type
Support

The Variable Time Delay and Variable Transport Delay blocks accept
and output real signals of type double.

Parameters
and
Dialog
Box

The block’s parameters and dialog box differ, depending on whether it
is operating in variable time or variable transport delay mode. Most
parameters exist in both modes. The following sections note parameters
that exist only in one mode.

Variable Time Delay Parameters and Dialog Box

The dialog box for the Variable Time Delay block appears as follows.

2-789

Variable Time Delay, Variable Transport Delay

Select delay type
The delay type of the block. The Variable Time Delay block
in the Simulink library has a preset value of Variable time
delay. The Variable Transport Delay block has a preset value of
Variable transport delay.

2-790

Variable Time Delay, Variable Transport Delay

Maximum delay
The maximum value of the time delay input. The value cannot
be negative. The default is 10.

Initial output
The output generated by the block until the simulation time first
exceeds the time delay input. The default is 0. Simulink software
does not allow the initial output of this block to be inf or NaN.

Initial buffer size
Initial size of the buffer used to store previous input values. The
default is 1024.

Use fixed buffer size
Specifies use of a fixed-size buffer to save input data from previous
time steps. The Initial buffer size parameter specifies the
buffer’s size. If the buffer is full, new data replaces data already
in the buffer. Simulink software uses linear extrapolation to
estimate the output value if it is not in the buffer. This option can
save memory if the input data is linear. If the input is not linear,
this option may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if
you do not select this check box.

Handle zero delay
For Variable time delay mode. Turns this block into a direct
feedthrough block.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of
states in the model when using the functions linmod, dlinmod,
or trim. To extract this new state ordering, use the following
commands.

2-791

Variable Time Delay, Variable Transport Delay

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the linmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Pade order (for linearization)
The order of the Pade approximation for linearization routines.
The default value is 0, which results in a unity gain with no
dynamic states. Setting the order to a positive integer n adds n
states to your model, but results in a more accurate linear model
of the transport delay.

Variable Transport Delay Parameters and Dialog Box

The block’s dialog box in Variable Transport Delay mode appears as
follows.

2-792

Variable Time Delay, Variable Transport Delay

This mode adds the following parameter.

2-793

Variable Time Delay, Variable Transport Delay

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink software
determines the absolute tolerance (see “Absolute tolerance”).
If you enter a numeric value, Simulink software uses the
specified value to solve the block’s states. Note that a numeric
value overrides the setting for the absolute tolerance in the
Configuration Parameters dialog box.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'}. Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than the number of states,
but there cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in
the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

Characteristics Direct Feedthrough Yes, of the time delay (second) input

Sample Time Continuous

2-794

Variable Time Delay, Variable Transport Delay

Scalar Expansion Yes, of input and all parameters except
Initial buffer size

Dimensionalized Yes

Zero Crossing No

2-795

Weighted Moving Average (Obsolete)

Purpose Implement weighted moving average

Library Discrete

Description
Note The Weighted Moving Average block is still supported, but The
MathWorks plans to remove this block in a future release. Use the
Discrete FIR Filter block instead.

The Weighted Moving Average block samples and holds the N most
recent inputs, multiplies each input by a specified value (given by the
Weights parameter), and stacks them in a vector. This block supports
both single-input/single-output (SISO) and single-input/multi-output
(SIMO) modes.

For the SISO mode, the Weights parameter is specified as a row vector.
For the SIMO mode, the weights are specified as a matrix where each
row corresponds to a separate output. You can choose whether or not
to specify the data type and scaling of the weights in the dialog with
the Gain data type parameter.

The Initial condition parameter provides the initial values for all
times preceding the start time. You specify the time interval between
samples with the Sample time parameter.

The Weighted Moving Average block first multiplies its inputs by the
Weights parameter, converts those results to the output data type
using the specified rounding and overflow modes, and then carries out
the summation.

Data Type
Support

The Weighted Moving Average block supports all data types supported
by Simulink® software, including fixed-point data types.

2-796

Weighted Moving Average (Obsolete)

Parameters
and
Dialog
Box

The Main pane of the Weighted Moving Average block dialog appears
as follows:

Weights
Specify the weights of the moving average; one row per output.
The Weights parameter is converted from doubles to the specified
data type offline using round-to-nearest and saturation.

Initial condition
Specify the initial values for all times preceding the start time.
The Initial condition parameter is converted from doubles to
the input data type offline using round-to-nearest and saturation.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-797

Weighted Moving Average (Obsolete)

The Signal Attributes pane of the Weighted Moving Average block
dialog appears as follows:

Output data type
Specify the output data type. You can set it to:

• A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the
Output data type parameter.

2-798

Weighted Moving Average (Obsolete)

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Output data type parameter.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

The Parameter Attributes pane of the Weighted Moving Average
block dialog appears as follows:

Gain data type
Specify the data type of the Weights parameter. You can set it to:

2-799

Weighted Moving Average (Obsolete)

• A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

• The name of a data type object, for example, a
Simulink.NumericType object

• An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Gain
data type parameter. (See “Using the Data Type Assistant” in
Using Simulink.)

Examples Suppose you want to configure this block for two outputs (SIMO mode)
where the first output is given by

the second output is given by

and the initial values of u(k - 1) and u(k - 2) are given by ic1 and ic2,
respectively. To configure the Weighted Moving Average block for this
situation, you must specify the Weights parameter as [a1 b1 c1; a2
b2 c2] where c2 = 0, and the Initial condition parameter as [ic1
ic2].

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes, of initial conditions

2-800

Weighted Sample Time

Purpose Support calculations involving sample time

Library Signal Attributes

Description The Weighted Sample Time block is an implementation of the Weighted
Sample Time Math block. See Weighted Sample Time Math for more
information.

2-801

Weighted Sample Time Math

Purpose Support calculations involving sample time

Library Math Operations

Description The Weighted Sample Time Math block adds, subtracts, multiplies, or
divides its input signal, u, by a weighted sample time Ts. If the input
signal is continuous, Ts is the sample time of the Simulink® model.
Otherwise, Ts is the sample time of the discrete input signal.

You specify the math operation with the Operation parameter.
Additionally, you can specify to use only the weight with either the
sample time or its inverse.

Enter the weighting factor in the Weight value parameter. If the
weight, w, is 1, Simulink software refrains from displaying it in the
equation on the block icon.

The block computes its output using the precedence rules for MATLAB®

operators (see “Operator Precedence” in the MATLAB documentation).
For example, if the Operation parameter specifies +, the block
calculates its output using the equation

u + (Ts * w)

In contrast, if the Operation parameter specifies /, the block calculates
its output using the equation

(u / Ts) / w

Data Type
Support

The Weighted Sample Time Math block accepts signals of any data type
supported by Simulink software, including fixed-point data types.

2-802

Weighted Sample Time Math

Parameters
and
Dialog
Box

The Main pane of the Weighted Sample Time Math block dialog
appears as follows:

Operation
Specify operation to use: +, -, *, /, Ts Only, or 1/Ts Only.

Weight value
Enter weight of sample time.

Implement using
Specify online calculations or offline scaling adjustment. This
parameter is visible only if you specify * or / as the Operation
parameter.

The Signal Data Types pane of the Weighted Sample Time Math block
dialog appears as follows:

2-803

Weighted Sample Time Math

Output data type and scaling
Specify whether the output data type and scaling are inherited
by an internal rule or by backpropagation.

Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide. This parameter is visible only if:

• The Operation parameter specifies + or -.

• The Operation parameter specifies * or / and the Implement
using parameter specifies Online Calculations.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate. This parameter is
visible only if

• The Operation parameter specifies + or -.

• The Operation parameter specifies * or / and the Implement
using parameter specifies Online Calculations.

2-804

Weighted Sample Time Math

Characteristics Direct Feedthrough For all math operations options except
Ts and 1/Ts

Scalar Expansion No, the weight is always a scalar

2-805

While Iterator

Purpose Repeatedly execute contents of subsystem at current time step while
condition is satisfied

Library Ports & Subsystems / While Iterator Subsystem

Description The While Iterator block, when placed in a subsystem, repeatedly
executes the contents of the subsystem at the current time step while a
specified condition is true.

Note Placing a While Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

The output of a While Iterator subsystem can not be a function-call
signal. Simulink® software will display an error message if the
simulation is run or the diagram updated.

You can use this block to implement the block-diagram equivalent of
a C program while or do-while loop. In particular, the block’s While
loop style parameter allows you to choose either of the following while
loop modes:

• do-while

In this mode, the While Iterator block has one input, the while
condition input, whose source must reside in the subsystem. At each
time step, the block runs all the blocks in the subsystem once and
then checks whether the while condition input is true. If the input is
true, the iterator block runs the blocks in the subsystem again. This
process continues as long as the while condition input is true and
the number of iterations is less than or equal to the iterator block’s
Maximum number of iterations parameter.

• while

In this mode, the iterator block has two inputs: a while condition
input and an initial condition (IC) input. The source of the initial
condition signal must be external to the while subsystem. At the

2-806

While Iterator

beginning of the time step, if the IC input is true, the iterator block
executes the contents of the subsystem and then checks the while
condition input. If the while condition input is true, the iterator
executes the subsystem again. This process continues as long as the
while condition input is true and the number of iterations is less than
or equal to the iterator block’s Maximum number of iterations
parameter. If the IC input is false at the beginning of a time step,
the iterator does not execute the contents of the subsystem during
the time step.

Note Unless you are certain that the while condition will become
false at some point in the simulation, you should specify a maximum
number of iterations to avoid endless loops, which can be broken
only by terminating MATLAB®.

The While Iterator block can optionally output the current iteration
number, starting at 1. The following example uses this capability to
compute N, where N is the first N integers whose sum is less than 100.

2-807

While Iterator

This example is the diagrammatic equivalent to the following
pseudocode.

max_sum = 100;
sum = 0;
iteration_number = 0;
cond = (max_sum > 0);
while (cond != 0) {
iteration_number = iteration_number + 1;
sum = sum + iteration_number;
if (sum > max_sum OR iteration_number > max_iterations)
cond = 0;

}

2-808

While Iterator

Data Type
Support

Acceptable data inputs for the condition ports are any type supported
by Simulink software, as well as any fixed-point type, that includes
a 0 value. For a discussion on the data types supported by Simulink
software, see “Data Types Supported by Simulink” in the Simulink
documentation.

The While Iterator block’s optional output port can output any of the
following data types: double, int32, int16, or int8.

Parameters
and
Dialog
Box

Maximum number of iterations
The maximum number of iterations allowed. A value of -1 allows
any number of iterations as long as the while condition input is
true. Note that if you specify -1 and the while condition never

2-809

While Iterator

becomes false, the simulation will run forever. In this case, the
only way to stop the simulation is to terminate the MATLAB
process. Therefore, you should not specify -1 as the value of this
parameter unless you are certain that the while condition will
become false at some point in the simulation.

While loop style
Specifies the type of while loop implemented by this block. See
the preceding block description for more information.

States when starting
Set this field to reset if you want the iterator block to reset the
states of the blocks in the while subsystem to their initial values
at the beginning of each time step (i.e., before executing the first
loop iteration in the current time step). To cause the states of
blocks in the subsystem to persist across time steps, set this field
to held (the default).

Show iteration number port
If you select this check box, the While Iterator block outputs its
iteration value. This value starts at 1 and is incremented by 1
for each succeeding iteration. By default, this check box is not
selected.

Output data type
If you select the Show iteration number port check box (the
default), this field is enabled. Use it to set the data type of the
iteration number output to int32, int16, int8, or double.

Characteristics Direct Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized No

Zero Crossing No

2-810

While Iterator Subsystem

Purpose Represent subsystem that executes repeatedly while condition is
satisfied during simulation time step

Library Ports & Subsystems

Description The While Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem that
executes repeatedly while a condition is satisfied during a simulation
time step. See the While Iterator block and “Modeling Control Flow
Logic” for more information.

2-811

Width

Purpose Output width of input vector

Library Signal Attributes

Description The Width block generates as output the width of its input vector.

Data Type
Support

The Width block accepts real or complex signals of any data type
supported by Simulink® software, including fixed-point data types. The
Width block supports mixed-type signal vectors.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Parameters
and
Dialog
Box

Note The Width block ignores the Data type override setting of the
Fixed-Point Tool.

Output data type mode
Specify the output data type to be the same as the input, or inherit
the data type by backpropagation. You can also choose to specify

2-812

Width

a built-in data type from the drop-down list in the Output data
type parameter.

Output data type
This parameter is visible when Choose intrinsic data type is
selected from the Output data type mode parameter. Choose a
built in data type from the drop down list.

Characteristics Sample Time Constant

Dimensionalized Yes

Multidimensionalized Yes

2-813

Wrap To Zero

Purpose Set output to zero if input is above threshold

Library Discontinuities

Description The Wrap To Zero block sets the output to zero if the input is above the
value set by the Threshold parameter, and outputs the input if the
input is less than or equal to the Threshold.

Data Type
Support

The Wrap To Zero block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

Parameters
and
Dialog
Box

Threshold
When the input exceeds the threshold, the output is set to zero.

Characteristics Direct Feedthrough Yes

Scalar Expansion Yes

2-814

XY Graph

Purpose Display X-Y plot of signals using MATLAB® figure window

Library Sinks

Description The XY Graph block displays an X-Y plot of its inputs in a MATLAB
figure window.

The block has two scalar inputs. The block plots data in the first input
(the x direction) against data in the second input (the y direction).
(See “Changing the Orientation of a Block” in Using Simulink® for a
description of the port order for various block orientations.) This block
is useful for examining limit cycles and other two-state data. Data
outside the specified range is not displayed.

Simulink software opens a figure window for each XY Graph block in
the model at the start of the simulation.

Data Type
Support

The XY Graph block accepts real signals of type double.

2-815

XY Graph

Parameters
and
Dialog
Box

x-min
The minimum x-axis value. The default is -1.

x-max
The maximum x-axis value. The default is 1.

y-min
The minimum y-axis value. The default is -1.

y-max
The maximum y-axis value. The default is 1.

2-816

XY Graph

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the Simulink documentation for more information.

2-817

XY Graph

Examples The following model computes the points that define a circle of radius
4, centered at the origin of the x-y plane. The XY Graph block displays
the circle.

2-818

XY Graph

Characteristics Sample Time Specified in the Sample time
parameter

States 0

2-819

Zero-Order Hold

Purpose Implement zero-order hold of one sample period

Library Discrete

Description The Zero-Order Hold block samples and holds its input for the specified
sample period. The block accepts one input and generates one output,
both of which can be scalar or vector. If the input is a vector, all
elements of the vector are held for the same sample period.

You specify the time between samples with the Sample time parameter.
A setting of -1 means the Sample time is inherited.

This block provides a mechanism for discretizing one or more signals
in time.

Note Do not use the Zero-Order Hold block to create a fast-to-slow
transition between blocks operating at different sample rates. Instead,
use the Rate Transition block.

Data Type
Support

The Zero-Order Hold block accepts real or complex signals of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-820

Zero-Order Hold

Parameters
and
Dialog
Box

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Bus
Support

The Zero-Order Hold block is a bus-capable block. The input can be a
virtual or nonvirtual bus signal. No block-specific restrictions exist.

•

Characteristics Bus-capable Yes

Direct Feedthrough Yes

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

Dimensionalized Yes

Zero Crossing No

2-821

Zero-Pole

Purpose Model system by zero-pole-gain transfer function

Library Continuous

Description The Zero-Pole block models a system specified by the zeros, poles,
and gain of a Laplace-domain transfer function that defines the
relationship between the system’s input and its outputs. You can use
this block to model either a single-input-single output (SISO) or a
single-input-multiple-output (SIMO) system.

Use the Zeros, Poles, and Gain parameters on the block’s parameter
dialog box to enter the values of the transfer function’s zeros, poles, and
gain, respectively. The dialog box assumes the following form for the
transfer function that models the system

where Z represents the zeros, P the poles, and K the gain of the transfer
function. The number of poles must be greater than or equal to the
number of zeros. If the poles and zeros are complex, they must be
complex conjugate pairs.

For a single-output system, Z and P are vectors and K is a scalar. The
input and the output of the block are time-domain scalar signals. For a
multiple output system, Z is a matrix each of whose columns represents
the zeros of a transfer function relating the system’s input to one of its
outputs. All of the system’s transfer functions are assumed to have
the same poles represented by the vector P. K is a vector each of whose
elements represents a gain of the corresponding transfer function
defined by Z. In this case, the output of the block is a vector each of
whose elements represents the output of the transfer function defined
by the corresponding column of Z, i.e., the block’s output is a vector
whose width is equal to the number of columns in Z

2-822

Zero-Pole

Note You cannot use a single Zero-Pole block to model multiple-output
systems whose transfer functions have a differing number of zeros or a
single zero each. Use multiple Zero-Pole blocks to model such systems.

Transfer Function Display on Block

The Zero-Pole block displays the transfer function depending on how
the parameters are specified:

• If each is specified as an expression or a vector, the icon shows the
transfer function with the specified zeros, poles, and gain. If you
specify a variable in parentheses, the variable is evaluated.

For example, if you specify Zeros as [3,2,1], Poles as (poles),
where poles is defined in the workspace as [7,5,3,1], and Gain
as gain, the icon looks like this:

• If each is specified as a variable, the icon shows the variable name
followed by (s) if appropriate. For example, if you specify Zeros as
zeros, Poles as poles, and Gain as gain, the icon looks like this.

Specifying the Absolute Tolerance for the Block’s States

By default, Simulink® software uses the absolute tolerance value
specified in the Configuration Parameters dialog box (see “Specifying
Variable-Step Solver Error Tolerances”) to solve the states of the
Zero-Pole block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of

2-823

Zero-Pole

the Zero-Pole block’s dialog box. The value that you specify is used to
solve all the block’s states.

Data Type
Support

The Zero-Pole block accepts real signals of type double.

Parameters
and
Dialog
Box

Zeros
The matrix of zeros. The default is [1].

2-824

Zero-Pole

Poles
The vector of poles. The default is [0 -1].

Gain
The vector of gains. The default is [1].

Absolute tolerance
Absolute tolerance used to solve the block’s states. You can enter
auto or a numeric value. If you enter auto, Simulink software
determines the absolute tolerance (see “Specifying Variable-Step
Solver Error Tolerances”). If you enter a numeric value, Simulink
software uses the specified value to solve the block’s states.
Note that a numeric value overrides the setting for the absolute
tolerance in the Configuration Parameters dialog box.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'}. Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than the number of states,
but there cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in
the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

2-825

Zero-Pole

Characteristics Direct Feedthrough Only if the lengths of the Poles and
Zeros parameters are equal

Sample Time Continuous

Scalar Expansion No

States Length of Poles vector

Dimensionalized No

Zero Crossing No

2-826

3

Function Reference

Model Construction (p. 3-2) Model construction functions

Simulation (p. 3-6) Simulation functions

Linearization and Trimming (p. 3-7) Linearization and trimming
functions

Data Type (p. 3-8) Data type functions

3 Function Reference

Model Construction
addterms Add terminators to unconnected

ports in model

add_block Add block to Simulink® system

add_line Add line to Simulink system

add_param Add parameter to Simulink system

attachConfigSet Associate configuration set or
configuration reference with model

attachConfigSetCopy Copy configuration set or
configuration reference and
associate it with model

bdclose Close any or all Simulink system
windows unconditionally

bdIsLoaded Whether block diagram is in memory

bdroot Return name of top-level Simulink
system

closeDialog Close configuration parameters
dialog

close_system Close Simulink system window or
block dialog box

delete_block Delete block from Simulink system

delete_line Delete line from Simulink system

delete_param Delete system parameter added via
add_param command

detachConfigSet Dissociate configuration set or
configuration reference from model

disableimplicitsignalresolution Convert model to use only explicit
signal resolution

docblock Get or set editor invoked by Simulink
DocBlock

3-2

Model Construction

find_mdlrefs Find Model blocks in model. Find
models that Model blocks reference

find_system Find systems, blocks, lines, ports,
and annotations

gcb Get pathname of current block

gcbh Get handle of current block

gcs Get pathname of current system

getActiveConfigSet Get model’s active configuration set
or configuration reference

getCallbackAnnotation Get information about annotation

getConfigSet Get one of model’s configuration sets
or configuration references

getConfigSets Get names of all of model’s
configuration sets or configuration
references

getfullname Get pathname of block or line

get_param Get system and block parameter
values

legacy_code Use Legacy Code Tool

libinfo Get information about library blocks
referenced by model

load_system Invisibly load Simulink model

modeladvisor Open Model Advisor

new_system Create empty Simulink system

openDialog Open configuration parameters
dialog

open_system Open Simulink system window or
block dialog box

replace_block Replace blocks in Simulink model

save_system Save Simulink system

3-3

3 Function Reference

setActiveConfigSet Specify model’s active configuration
set or configuration reference

set_param Set Simulink system and block
parameters

signalbuilder Create and access Signal Builder
blocks

simulink Open Simulink block library

Simulink.BlockDiagram.addBus-
ToVector

Add Bus to Vector blocks to convert
bus signals used as muxes/vectors
to vectors

Simulink.BlockDiagram.copy-
ContentsToSubSystem

Copy contents of block diagram to
empty subsystem

Simulink.BlockDiagram.delete-
Contents

Delete contents of block diagram

Simulink.Bus.cellToObject Convert cell array containing bus
information to bus objects

Simulink.Bus.createObject Create bus objects for blocks

Simulink.Bus.objectToCell Convert bus objects to cell array
containing bus information

Simulink.Bus.save Save bus objects in M-file

Simulink.SubSystem.convert-
ToModelReference

Convert atomic subsystem or
function call subsystem to model
reference

Simulink.SubSystem.copyContents-
ToBlockDiagram

Copy contents of subsystem to empty
block diagram

Simulink.SubSystem.deleteContentsDelete contents of subsystem

slCharacterEncoding Change MATLAB® character set
encoding

sldiscmdl Discretize Simulink model
containing continuous blocks

slIsFileChangedOnDisk Determine whether model has
changed since it was loaded

3-4

Model Construction

slmdldiscui Open Model Discretizer GUI

slreplace_mux Replace Mux blocks used to create
buses with Bus Creator blocks

slupdate Replace blocks from previous
releases with latest versions

view_mdlrefs Display graph of model reference
dependencies

3-5

3 Function Reference

Simulation
add_exec_event_listener Register listener for block method

execution event

model Execute particular phase of
simulation of model

sim Simulate dynamic system

simget Get settings of model’s simulation
parameters

simplot Plot simulation data in figure
window

simset Specify simulation options for
simulations run via sim command

Simulink.BlockDiagram.get-
InitialState

Return initial state structure of
block diagram

Simulink.BlockDiagram.getChecksumReturn checksum of model

Simulink.SubSystem.getChecksum Return checksum of subsystem

slbuild Build standalone and model
reference targets

sldebug Start simulation in debug mode

sldiagnostics Display diagnostic information about
Simulink® system

unpack Extract signal logging objects from
signal logs and write them into
MATLAB® workspace

who List contents of signal log

whos List names and types of simulink
data logging objects contained
by Simulink.ModelDataLogs or
Simulink.SubsysDataLogs object

3-6

Linearization and Trimming

Linearization and Trimming
linmod, dlinmod, linmod2,
linmodv5

Extract continuous- or discrete-time
linear state-space model of system
around operating point

trim Find trim point of dynamic system

3-7

3 Function Reference

Data Type
fixdt Create Simulink.NumericType

object describing fixed-point or
floating-point data type

fixptbestexp Determine exponent that gives best
precision fixed-point representation
of value

fixptbestprec Determine maximum precision
available for fixed-point
representation of value

fixpt_evenspace_cleanup Modify lookup table input data to be
evenly spaced

fixpt_interp1 Implement 1-D lookup table

fixpt_look1_func_approx Optimize for fixed-point function,
x values, or breakpoints that are
generated for lookup table

fixpt_look1_func_plot Plot function with x values generated
by fixpt_look1_func_approx
function

fixpt_set_all Set property for every fixed-point
block in subsystem

float Create MATLAB® structure
describing floating-point data type

fxptdlg Invoke Fixed-Point Tool

num2fixpt Convert number to nearest
value representable by specified
fixed-point data type

sfix Create MATLAB structure
describing signed generalized
fixed-point data type

sfrac Create MATLAB structure
describing signed fractional
data type

3-8

Data Type

sint Create MATLAB structure
describing signed integer data
type

tunablevars2parameterobjects Create Simulink parameter objects
from tunable parameters

ufix Create MATLAB structure
describing unsigned generalized
fixed-point data type

ufrac Create MATLAB structure
describing unsigned fractional
data type

uint Create MATLAB structure
describing unsigned integer
data type

3-9

3 Function Reference

3-10

4

Functions — Alphabetical
List

add_block

Purpose Add block to Simulink® system

Syntax add_block(’src’, ’dest’)
add_block(’src’, ’dest', ’param1’, value1, ...)
add_block(’src’, ’dest’, 'MakeNameUnique', 'on', ’param1’,
value1,...)
add_block(’src_inport’, ’dest_inport’, 'copyoption', 'duplicate',
’param1’, value1,...)

Description add_block(’src’, ’dest’) copies the block with the full pathname
’src’ to a new block with the full pathname ’dest’. The block
parameters of the new block are identical to those of the original. You
can use 'built-in/blocktype' as a source block path for Simulink
built-in blocks (blocks available in Simulink block libraries that are not
masked blocks), where blocktype is the built-in block’s type, i.e., the
value of its BlockType parameter (see “Common Block Parameters”
on page 8-66).

add_block(’src’, ’dest’, ’param1’, value1, ...) creates a copy
as above, in which the named parameters have the specified values.
Any additional arguments must occur in parameter/value pairs.

add_block(’src’, ’dest’, 'MakeNameUnique', 'on',
’parameter1’, value1,...) creates a copy of src. If a block having
the full pathname ’dest’ already exists, the command creates a
unique name for the new block based on ’dest’.

add_block(’src_inport’, ’dest_inport’, 'copyoption',
'duplicate', ’param1’, value1,...) applies only to Inport blocks.
It creates a copy with the same port number as the ’src_inport’ block.

Before you add a block, you need to first open the library that contains
the block with the load_system (library opens invisibly) or open_system
(library opens visibly) command.

Examples This command copies the Scope block from the Sinks subsystem of the
simulink system to a block named Scope1 in the timing subsystem of
the engine system.

4-2

add_block

add_block('simulink/Sinks/Scope', 'engine/timing/Scope1')

This command creates a new subsystem named controller in the F14
system.

add_block('built-in/SubSystem', 'F14/controller')

This command copies the built-in Gain block to a block named Volume
in the mymodel system and assigns the Gain parameter a value of 4.

add_block('built-in/Gain', 'mymodel/Volume', 'Gain', '4')

The following command

block = add_block('vdp/Mu', 'vdp/Mu', 'MakeNameUnique', 'on')

copies the block named Mu in vdp and create a copy. Since Mu already
exists, the command names the new block Mu1.

See Also delete_block, set_param

4-3

add_exec_event_listener

Purpose Register listener for block method execution event

Syntax h = add_exec_event_listener(blk, event, listener);

Description h = add_exec_event_listener(blk, event, listener) registers a
listener for a block method execution event where the listener is an
M-file program that performs some task, such as logging runtime data
for a block, when the event occurs (see “Listening for Method Execution
Events” in Using Simulink® for more information). Simulink software
invokes the registered listener whenever the specified event occurs
during simulation of the model.

Note Simulink software can register a listener only while a simulation
is running. Invoking this function when no simulation is running
results in an error message. To ensure that a listener catches all
relevant events triggered by a model’s simulation, you should register
the listener in the model’s StartFcn callback function (see “Model
Callback Functions”).

Arguments blk
Specifies the block whose method execution event the listener is
intended to handle. May be one of the following:

• Full pathname of a block

• A block handle

• A block runtime object (see “Accessing Block Data During
Simulation” in Using Simulink.)

event
Specifies the type of event for which the listener listens. It may
be any of the following:

4-4

add_exec_event_listener

Event Occurs...

'PreDerivatives' Before a block’s Derivatives
method executes

'PostDerivatives' After a block’s Derivatives
method executes

'PreOutputs' Before a block’s Outputs
method executes.

'PostOutputs' After a block’s Outputs method
executes

'PreUpdate' Before a block’s Update
method executes

'PostUpdate' After a block’s Update method
executes

listener
Specifies the listener to be registered. It may be either a string
specifying a MATLAB® expression, e.g., 'disp(''here'')' or
a handle to a MATLAB function that accepts two arguments.
The first argument is the block runtime object of the block that
triggered the event. The second argument is an instance of
EventData class that specifies the runtime object and the name
of the event that just occurred.

Return
Value

add_exec_event_listener returns a handle to the listener that it
registered. To stop listening for an event, use the MATLAB clear
command to clear the listener handle from the workspace in which the
listener was registered.

4-5

add_line

Purpose Add line to Simulink® system

Syntax h = add_line('sys','oport','iport')
h = add_line('sys','oport','iport', 'autorouting','on')
h = add_line('sys', points)

Description The add_line command adds a line to the specified system and returns
a handle to the new line. You can define the line in two ways:

• By naming the block ports that are to be connected by the line

• By specifying the location of the points that define the line segments

add_line('sys', 'oport', 'iport') adds a straight line to a system
from the specified block output port 'oport' to the specified block
input port 'iport'. 'oport' and 'iport' are strings consisting
of a block name and a port identifier in the form 'block/port'.
Most block ports are identified by numbering the ports from top
to bottom or from left to right, such as 'Gain/1' or 'Sum/2'.
Enable, Trigger, State, and Action ports are identified by name,
such as 'subsystem_name/Enable', 'subsystem_name/Trigger',
'Integrator/State', or if_action_subsystem_name/Ifaction'.

add_line('sys','oport','iport', 'autorouting','on') works
like add_line('sys','oport','iport') except that it routes the line
around intervening blocks. The default value for autorouting is 'off'.

add_line(system, points) adds a segmented line to a system. Each
row of the points array specifies the x and y coordinates of a point on a
line segment. The origin is the top-left corner of the window. The signal
flows from the point defined in the first row to the point defined in the
last row. If the start of the new line is close to the output of an existing
block or line, a connection is made. Likewise, if the end of the line is
close to an existing input, a connection is made.

4-6

add_line

Examples This command adds a line to the mymodel system connecting the output
of the Sine Wave block to the first input of the Mux block.

add_line('mymodel','Sine Wave/1','Mux/1')

This command adds a line to the mymodel system extending from
(20,55) to (40,10) to (60,60).

add_line('mymodel',[20 55; 40 10; 60 60])

See Also delete_line

4-7

add_param

Purpose Add parameter to Simulink® system

Syntax add_param('sys','parameter1',value1,'parameter2',value2,...)

Description The add_param command adds the specified parameters to the specified
system and initializes the parameters to the specified values. Case is
ignored for parameter names. Value strings are case sensitive. The
value of the parameter must be a string. Once the parameter is added to
a system, set_param and get_param can be used on the new parameters
as if they were standard Simulink parameters. Simulink software saves
these new parameters with the model file.

Note If you attempt to add a parameter that has the same name as an
existing parameter of the system, Simulink software displays an error.

Examples This command

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

adds the parameters DemoName and EquationOrder with string values
'VanDerPolEquation' and '2' to the vdp system. Afterward, you
can use the following command to retrieve the value of the DemoName
parameter.

get_param('vdp','DemoName')

See Also delete_param, get_param, set_param

4-8

addterms

Purpose Add terminators to unconnected ports in model

Syntax addterms('sys')

Description addterms('sys') adds Terminator and Ground blocks to the
unconnected ports in the Simulink® block diagram sys.

See Also slupdate

4-9

attachConfigSet

Purpose Associate configuration set or configuration reference with model

Syntax attachConfigSet('model', configObj)
attachConfigSet('model', configObj, allowRename)

Arguments model
The name of an open model, or gcs to specify the current model

configObj
A configuration set (Simulink.ConfigSet) or configuration
reference (Simulink.ConfigSetRef)

allowRename
Boolean that determines how Simulink® software handles a name
conflict

Description attachConfigSet associates the configuration set or configuration
reference (configuration object) specified by configObj with model.

You cannot attach a configuration object to a model if the configuration
object is already attached to another model, or has the same name as
another configuration object attached to the same model. The optional
Boolean argument allowRename determines how Simulink software
handles a name conflict between configuration objects. If allowRename
is false and the configuration object specified by configObj has
the same name as a configuration object already attached to model,
Simulink software generates an error. If allowRename is true and a
name conflict occurs, Simulink software provides a unique name for
configObj before associating configObj with model.

Example The following example creates a copy of the current model’s active
configuration object and attaches it to the model, changing its name if
necessary to be unique. The code is the same whether the object is a
configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);
copiedConfig = myConfigObj.copy;
copiedConfig.Name = 'DevConfig';

4-10

attachConfigSet

attachConfigSet(gcs, copiedConfig, true);

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSetCopy, closeDialog, detachConfigSet,
getActiveConfigSet, getConfigSet, getConfigSets, openDialog,
setActiveConfigSet

4-11

attachConfigSetCopy

Purpose Copy configuration set or configuration reference and associate it with
model

Syntax myConfigObj = attachConfigSetCopy('model', configObj)
myConfigObj = attachConfigSetCopy('model',
configObj, allowRename)

Arguments model
The name of an open model, or gcs to specify the current model

configObj
A configuration set (Simulink.ConfigSet) or configuration
reference (Simulink.ConfigSetRef)

allowRename
Boolean that specifies how Simulink® software handles a name
conflict

Description attachConfigSetCopy copies the configuration set or configuration
reference (configuration object) specified by configObj and associates
the copy with model. Simulink software returns the copied configuration
object as newConfigObj.

You cannot attach a configuration object to a model if the configuration
object has the same name as another configuration object attached
to the same model. The optional Boolean argument allowRename
determines how Simulink software handles a name conflict between
configuration objects. If allowRename is false and the configuration
object specified by configObj has the same name as a configuration
object already attached to model, Simulink software generates an error.
If allowRename is true and a name conflict occurs, Simulink software
provides a unique name for the copy of configObj before associating it
with model.

Example The following example creates a copy of ModelA’s active configuration
object and attaches it to ModelB, changing the name if necessary to be
unique. The code is the same whether the object is a configuration set
or configuration reference.

4-12

attachConfigSetCopy

myConfigObj = getActiveConfigSet('ModelA');

newConfigObj = attachConfigSetCopy('ModelB', myConfigObj, true);

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, closeDialog, detachConfigSet,
getActiveConfigSet, getConfigSet, getConfigSets,
openDialog, setActiveConfigSet

4-13

bdclose

Purpose Close any or all Simulink® system windows unconditionally

Syntax bdclose
bdclose('sys')
bdclose('all')

Description bdclose with no arguments closes the current system window
unconditionally and without confirmation. Any changes made to the
system since it was last saved are lost.

bdclose('sys') closes the specified system window.

bdclose('all') closes all system windows.

Examples This command closes the vdp system.

bdclose('vdp')

See Also close_system, new_system, open_system, save_system

4-14

bdIsLoaded

Purpose Whether block diagram is in memory

Syntax isLoaded = bdIsLoaded(bdnames)

Description isLoaded = bdIsLoaded(bdnames) returns whether or not a block
diagram is in memory. bdnames can be a string or a cell array of strings.
All strings must be valid block diagram names (which are the same as
valid MATLAB® variable names). It is an error to supply a path to a
block or subsystem.

isLoaded is a logical array with one entry for each block diagram name.
Examples:

Examples bdIsLoaded('sf_car')

returns a logical scalar.

bdIsLoaded({'sf_car','vdp'})

returns a 1*2 logical array.

See Also find_system

4-15

bdroot

Purpose Return name of top-level Simulink® system

Syntax bdroot
bdroot('obj')

Description bdroot with no arguments returns the top-level system name.

bdroot('obj'), where 'obj' is a system or block pathname, returns
the name of the top-level system containing the specified object name.

Examples This command returns the name of the top-level system that contains
the current block.

bdroot(gcb)

See Also find_system, gcb

4-16

close_system

Purpose Close Simulink® system window or block dialog box

Syntax close_system
close_system('sys')
close_system('sys', saveflag)
close_system('sys', 'newname')
close_system('sys', 'newname','ErrorIfShadowed', true)

Description close_system with no arguments closes the current system or
subsystem window. If the current system is the top-level system and it
has been modified, close_system returns an error. The current system
is defined in the description of the gcs command.

close_system(’sys’) closes the specified system, subsystem, or block
window.

’sys’ can be a string (which can be a system, a subsystem, or a full
block pathname), a cell array of strings, a numeric handle, or an array
of numeric handles. This command displays an error if ’sys’ is a
MATLAB® keyword, 'simulink', or more than 63 characters long.

close_system(’sys’, saveflag), if saveflag is 1, saves the specified
top-level system to a file with its current name, then closes the specified
top-level system window and removes it from memory. If saveflag is 0,
the system is closed without saving. A single saveflag can be supplied,
in which case it is applied to all block diagrams. Alternatively, separate
saveflags can be supplied for each block diagram, as a numeric array.

close_system(’sys’, ’newname’) saves the specified top-level system
to a file with the specified new name, then closes the system.

Additional arguments can be supplied when saving a block diagram.
These are exactly the same as for save_system:

• ErrorIfShadowed: true or false (default: false)

• BreakLinks: true or false (default: false)

• SaveAsVersion: MATLAB version name (default: current)

4-17

close_system

• OverwriteIfChangedOnDisk: true or false (default: false)

• SaveModelWorkspace: true or false (default: false)

If you try to specify additional options when you are doing something
other than saving a block diagram, they are ignored. You see a warning
if you try to save when closing something other than a block diagram
(e.g., a subsystem or a Block Properties dialog).

Examples This command closes the current system.

close_system

This command closes the vdp system, unless it has been modified, in
which case it returns an error.

close_system('vdp')

This command saves the engine system with its current name, then
closes it.

close_system('engine', 1)

This command saves the mymdl12 system under the new name testsys,
then closes it.

close_system('mymdl12', 'testsys')

This command tries to save the vdp system to a file with the name
'max', but returns an error because 'max' is the name of an existing
MATLAB function.

close_system('vdp','max','ErrorIfShadowed', true)

All three of the following commands save and close mymodel (saved
with the same name), and replace links to library blocks with copies of
the library blocks in the saved file:

close_system('mymodel',1,'BreakLinks',true)

4-18

close_system

close_system('mymodel','mymodel','BreakLinks',true)
close_system('mymodel',[],'BreakLinks',true)

This command closes the dialog box of the Unit Delay block in the
Combustion subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

Note The close_system command cannot be used in a block or menu
callback to close the root-level model. Attempting to close the root-level
model in a block or menu callback results in an error and discontinues
the callback’s execution.

See Also bdclose, gcs, new_system, open_system, save_system

4-19

closeDialog

Purpose Close configuration parameters dialog

Syntax closeDialog(configObj)

Arguments configObj
A configuration set (Simulink.ConfigSet) or configuration
reference (Simulink.ConfigSetRef)

Description closeDialog closes an open configuration parameters dialog box. If
configObj is a configuration set, the function closes the dialog box
that displays the configuration set. If configObj is a configuration
reference, the function closes the dialog box that displays the referenced
configuration set, or generates an error if the reference does not specify
a valid configuration set. If the dialog box is already closed, the function
does nothing.

Example The following example closes a configuration parameters dialog box that
shows the current parameters for the current model. The parameter
values derive from the active configuration set or configuration
reference (configuration object). The code is the same in either case; the
only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
closeDialog(myConfigObj);

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, detachConfigSet,
getActiveConfigSet, getConfigSet, getConfigSets, openDialog,
setActiveConfigSet

4-20

delete_block

Purpose Delete block from Simulink® system

Syntax delete_block('blk')

Description delete_block('blk'), where 'blk' is a full block pathname, deletes
the specified block from a system.

Examples This command removes the Out1 block from the vdp system.

delete_block('vdp/Out1')

See Also add_block

4-21

delete_line

Purpose Delete line from Simulink® system

Syntax delete_line('sys', 'oport', 'iport')
delete_line('system', [x y])
delete_line('handle')

Description delete_line('sys', 'oport', 'iport') deletes the line extending
from the specified block output port 'oport' to the specified block
input port 'iport'. 'oport' and 'iport' are strings consisting
of a block name and a port identifier in the form 'block/port'.
Most block ports are identified by numbering the ports from top
to bottom or from left to right, such as 'Gain/1' or 'Sum/2'.
Enable, Trigger, and State ports are identified by name, such
as 'subsystem_name/Enable', 'subsystem_name/Trigger',
'Integrator/State', or if_action_subsystem_name/Ifaction'.

delete_line('sys', [x y]) deletes one of the lines in the system that
contains the specified point (x,y), if any such line exists.

delete_line('system', [x y]) deletes all of the lines in the system
that contain the specified point, including any branches.

delete_line('handle') deletes the line specified by the handle,
'handle'.

Examples This command removes the line from the mymodel system connecting
the Sum block to the second input of the Mux block.

delete_line('mymodel','Sum/1','Mux/2')

See Also add_line

4-22

delete_param

Purpose Delete system parameter added via add_param command

Syntax delete_param('sys','parameter1','parameter2',...)

Description This command deletes parameters that were added to the system using
the add_param command. The command displays an error message if a
specified parameter was not added with the add_param command.

Examples The following example

add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2')

delete_param('vdp','DemoName')

adds the parameters DemoName and EquationOrder to the vdp system,
then deletes DemoName from the system.

See Also add_param

4-23

detachConfigSet

Purpose Dissociate configuration set or configuration reference from model

Syntax detachConfigSet('model', 'configObjName')

Arguments model
The name of an open model, or gcs to specify the current model

configObjName
The name of a configuration set (Simulink.ConfigSet) or
configuration reference (Simulink.ConfigSetRef)

Description detachConfigSet detaches the configuration set or configuration
reference (configuration object) specified by 'configObjName' from
model. If no such configuration object is attached to the model, an error
occurs.

Examples The following example detaches the configuration object named
DevConfig from the current model. The code is the same whether
DevConfig is a configuration set or configuration reference.

detachConfigSet(gcs, 'DevConfig');

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
getActiveConfigSet, getConfigSet, getConfigSets, openDialog,
setActiveConfigSet

4-24

disableimplicitsignalresolution

Purpose Convert model to use only explicit signal resolution

Syntax [retVal] = disableimplicitsignalresolution(model)
[retVal] = disableimplicitsignalresolution(model,
displayOnly)

Arguments model
Model name or handle.

displayOnly
Boolean specifying whether to change the model or just generate a
report. Default: false; the function changes the model.

Return retVal
A MATLAB® structure containing:

• Signals: Handles to ports with signal names that resolve to
signal objects

• States: Handles to blocks with states that resolve to signal
objects.

Description disableimplicitsignalresolution inputs a model, reports all signals
and states that implicitly resolve to signal objects, and optionally
converts the model to resolve only signals and states that explicitly
require it. The report and any changes are limited to the model itself;
they do not include blocks that are library links. Before executing this
function, ensure that all relevant Simulink® data objects are defined
in the base workspace. The function ignores any data objects that are
defined elsewhere.

If displayOnly is true, the function scans model, returns a structure of
handles to signals and states that resolve implicitly to signal objects,
and leaves the model unchanged. If displayOnly is false (the default),
the function returns the same list and also performs the following
operations on model:

4-25

disableimplicitsignalresolution

• Search the model for all output ports and block states that resolve to
Simulink signal objects.

• Modify these ports and blocks to enforce signal object resolution in
the future.

• Set the model’s SignalResolutionControl parameter to
'UseLocalSettings' (GUI: Explicit Only.

• If any Stateflow® output data resolves to a Simulink signal object:

- Turn off hierarchical scoping of signal objects from within the
Stateflow chart.

- Explicitly label the output signal of the Stateflow chart.

- Enforce signal object resolution for this signal in the future.

Note The changes made by disableimplicitsignalresolution
permanently change the model. Be sure to back up the model before
calling the function with displayOnly defaulted or specified as false.

See Also “Signal Properties Dialog Box”

“Data Validity Diagnostics Overview”

Simulink.Signal

4-26

docblock

Purpose Get or set editor invoked by Simulink® DocBlock

Syntax docblock('setEditorHTML', editCmd)
docblock('setEditorDOC', editCmd)
docblock('setEditorTXT', editCmd)
editCmd = docblock('getEditorHTML')
editCmd = docblock('getEditorDOC')
editCmd = docblock('getEditorTXT')

Description docblock('setEditorHTML', editCmd) sets the HTML editor invoked
by the DocBlock. The editCmd string specifies a command, executed
at the MATLAB® prompt, which launches a custom HTML editor. By
default, the DocBlock invokes Microsoft® Word (if available) as the
HTML editor; otherwise, it opens HTML documents using the editor
you specified on the Editor/Debugger Preferences pane of the
Preferences dialog box.

docblock('setEditorDOC', editCmd) sets the Rich Text Format
(RTF) editor invoked by the DocBlock. The editCmd string specifies
a command, executed at the MATLAB prompt, which launches a
custom RTF editor. By default, the DocBlock invokes Microsoft Word
(if available) as the RTF editor; otherwise, it opens RTF documents
using the editor you specified on the Editor/Debugger Preferences
pane of the Preferences dialog box.

docblock('setEditorTXT', editCmd) sets the text editor invoked by
the DocBlock. The editCmd string specifies a command, executed at the
MATLAB prompt, which launches a custom text editor. By default, the
DocBlock invokes the editor you specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

editCmd = docblock('getEditorHTML') returns the value of the
current command used to invoke an HTML editor when double-clicking
the DocBlock.

editCmd = docblock('getEditorDOC') returns the value of the
current command used to invoke a RTF editor when double-clicking
the DocBlock.

4-27

docblock

editCmd = docblock('getEditorTXT') returns the value of the
current command used to invoke a text editor when double-clicking
the DocBlock.

Note Use the "%<FileName>" token in the editCmd string to represent
the full pathname to the document. Use the empty string '' as the
editCmd to reset the DocBlock to its default editor for a particular
document type.

Examples This command specifies Microsoft Notepad as the DocBlock editor for
RTF documents.

docblock('setEditorRTF','system(''notepad "%<FileName>"'');')

This command resets the DocBlock to use its default editor for RTF
documents.

docblock('setEditorRTF','')

This command specifies Mozilla Composer as the HTML editor for the
DocBlock.

docblock('setEditorHTML','system(''/usr/local/bin/mozilla ...

-edit "%<FileName>" &'');')

4-28

find_mdlrefs

Purpose Find Model blocks in model. Find models that Model blocks reference

Syntax [refMdls, mdlBlks] = find_mdlrefs('modelName')
[refMdls, mdlBlks] = find_mdlrefs('modelName', true)
[refMdls, mdlBlks] = find_mdlrefs('modelName', false)

Description [refMdls, mdlBlks] = find_mdlrefs('modelName') or
find_mdlrefs('modelName', true) finds all Model blocks contained
by and models referenced by 'modelName' directly or indirectly (i.e., via
models referenced by 'modelName'. The commands output arguments
are

• refMdls

List of models. The last element in the list is 'modelName'. The other
elements are the names of models referenced by 'modelName'.

• mdlBlks

Names of Model blocks contained by 'modelName' and the models
that it references directly or indirectly.

[refMdls, mdlBlks] = find_mdlrefs(modelName, false) finds only
the Model blocks and models directly referenced by 'modelName'.

Examples Open the sldemo_mdlref_basic demo. Then execute

>> [r, b] = find_mdlrefs('sldemo_mdlref_basic')

r =
'sldemo_mdlref_counter'
'sldemo_mdlref_basic'

b =
'sldemo_mdlref_basic/CounterA'
'sldemo_mdlref_basic/CounterB'
'sldemo_mdlref_basic/CounterC'

4-29

find_mdlrefs

See Also view_mdlrefs

4-30

find_system

Purpose Find systems, blocks, lines, ports, and annotations

Syntax find_system(sys, ’c1’, cv1, ’c2’, cv2,...’p1’,
v1, ’p2’, v2,...)

Description find_system(sys, ’c1’, cv1, ’c2’, cv2,...’p1’, v1, ’p2’,
v2,...) searches the systems or subsystems specified by sys, using
the constraints specified by c1, c2, etc., and returns handles or paths
to the objects whose parameters, p1, p2, etc., have the values, v1, v2,
etc. sys can be a pathname (or cell array of pathnames), a handle (or
vector of handles), or omitted. If you specify 'BlockDialogParams' as
the parameter name , find_system searches for all blocks that have
a parameter that has the specified value and appears in the block’s
dialog box.

Note All the search constraints must precede all the property-value
pairs in the argument list.

If sys is a pathname or cell array of pathnames, find_system returns
a cell array of pathnames of the objects it finds. If sys is a handle or
a vector of handles, find_system returns a vector of handles to the
objects that it finds. If sys is omitted, find_system searches all open
systems and returns a cell array of pathnames.

Case is ignored for parameter names. Value strings are case sensitive by
default (see the ’CaseSensitive’ search constraint for more information).
Any parameters that correspond to dialog box entries have string
values. See Chapter 8, “Model and Block Parameters” for a list of model
and block parameters.

You can specify any of the following search constraints.

4-31

find_system

Name Value Type Description

’SearchDepth’ scalar Restricts the search depth to the
specified level (0 for open systems
only, 1 for blocks and subsystems
of the top-level system, 2 for the
top-level system and its children,
etc.). The default is all levels.

'LookUnderMasks' 'none' Search skips masked blocks.

{'graphical'} Search includes masked blocks
that have no workspaces and no
dialogs. This is the default.

'functional' Search includes masked blocks
that do not have dialogs.

'all' Search includes all masked blocks.

'FollowLinks' 'on'| {'off'} If 'on', search follows links into
library blocks. The default is
'off'.

'FindAll' 'on'| {'off'} If 'on', search extends to lines,
ports, and annotations within
systems. The default is 'off'.
Note that find_system returns a
vector of handles when this option
is 'on', regardless of the array
type of sys.

'CaseSensitive' {'on'}| 'off' If 'on', search considers case
when matching search strings.
The default is 'on'.

'RegExp' 'on'| {'off'} If 'on', search treats search
expressions as regular
expressions. The default is'off'.

4-32

find_system

The table encloses default constraint values in brackets. If a
'constraint' is omitted, find_system uses the default constraint
value.

By default, find_system attempts to load any partially loaded models.
When a PreLoadFcn callback invokes find_system, find_system tries
to load the calling model, causing recursive load warnings. To prevent
this warning, disable the model loading property of find_system. Turn
off the LoadFullyIfNeeded property, as follows:

find_system(gcs,'LoadFullyIfNeeded','off','PropertyName','PropertyValue')

Examples This command returns a cell array containing the names of all open
systems and blocks.

find_system

This command returns the names of all open block diagrams.

open_bd = find_system('type', 'block_diagram')

This command returns the names of all Goto blocks that are children of
the Unlocked subsystem in the clutch system.

find_system('clutch/
Unlocked','SearchDepth',1,'BlockType','Goto')

These commands return the names of all Gain blocks in the vdp system
having a Gain parameter value of 1.

gb = find_system('vdp', 'BlockType', 'Gain')
find_system(gb, 'Gain', '1')

The preceding commands are equivalent to this command:

find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

4-33

find_system

These commands obtain the handles of all lines and annotations in
the vdp system.

sys = get_param('vdp', 'Handle');
l = find_system(sys, 'FindAll', 'on', 'type', 'line');
a = find_system(sys, 'FindAll', 'on', 'type',
'annotation');

Searching
with
Regular
Expressions

If you specify the 'RegExp' constraint as 'on', find_system treats
search value strings as regular expressions. A regular expression
is a string of characters in which some characters have special
pattern-matching significance. For example, a period (.) in a regular
expression matches not only itself but any other character.

Regular expressions greatly expand the types of searches you can
perform with find_system. For example, regular expressions allow you
to do partial-word searches. You can search for all objects that have a
specified parameter that contains or begins or ends with a specified
string of characters.

To use regular expressions effectively, you need to learn the meanings
of the special characters that regular expressions can contain. The
following table lists the special characters supported by find_subystem
and explains their usage.

Expression Usage

. Matches any character. For example, the string 'a.' matches 'aa',
'ab', 'ac', etc.

* Matches zero or more of preceding character. For example, 'ab*'
matches 'a', 'ab', 'abb', etc. The expression '.*' matches any
string, including the empty string.

+ Matches one or more of preceding character. For example, 'ab+'
matches 'ab', 'abb', etc.

^ Matches start of string. For example, '^a.*' matches any string
that starts with 'a'.

4-34

find_system

Expression Usage

$ Matches end of string. For example, '.*a$' matches any string that
ends with 'a'.

\ Causes the next character to be treated as an ordinary character.
This escape character lets regular expressions match expressions
that contain special characters. For example, the search string '\\'
matches any string containing a \ character.

[] Matches any one of a specified set of characters. For example,
'f[oa]r' matches 'for' and 'far'. Some characters have special
meaning within brackets. A hyphen (-) indicates a range of
characters to match. For example, '[a-zA-Z1-9]' matches any
alphanumeric character. A circumflex (^) indicates characters that
should not produce a match. For example, 'f[^i]r' matches 'far'
and 'for' but not 'fir'.

\w Matches a word character. (This is a shorthand expression for
[a-z_A-Z0-9].) For example, '^\w' matches 'mu' but not '&mu'.

\d Matches any digit (shorthand for [0-9]). For example, '\d+'
matches any integer.

\D Matches any nondigit (shorthand for [^0-9]).

\s Matches a white space (shorthand for [\t\r\n\f]).

\S Matches a non white-space (shorthand for [^ \t\r\n\f]).

\<WORD\> Matches WORD exactly, where WORD is a string of characters separated
by white space from other words. For example, '\<to\>' matches
'to' but not 'today'.

To use regular expressions to search Simulink® systems, specify the
'regexp' search constraint as 'on' in a find_system command and
use a regular expression anywhere you would use an ordinary search
value string.

4-35

find_system

For example, the following command finds all the inport and outport
blocks in the clutch model demo provided with Simulink software.

find_system('clutch', 'regexp', 'on', 'blocktype', 'port')

See Also get_param, set_param

4-36

fixdt

Purpose Create Simulink.NumericType object describing fixed-point or
floating-point data type

Syntax a = fixdt(Signed, WordLength)
a = fixdt(Signed, WordLength, FractionLength)
a = fixdt(Signed, WordLength, TotalSlope, Bias)
a = fixdt(Signed, WordLength, SlopeAdjustmentFactor,

FixedExponent, Bias)
a = fixdt(DataTypeNameString)
[DataType,IsScaledDouble] = fixdt(DataTypeNameString)

Description fixdt(Signed, WordLength) returns a Simulink.NumericType object
describing a fixed-point data type with unspecified scaling. The scaling
would typically be determined by another block parameter. Signed can
be 0 (false) for unsigned or 1 (true) for signed.

fixdt(Signed, WordLength, FractionLength) returns a
Simulink.NumericType object describing a fixed-point data type with
binary point scaling.

fixdt(Signed, WordLength, TotalSlope, Bias) or fixdt(Signed,
WordLength, SlopeAdjustmentFactor, FixedExponent, Bias)
returns a Simulink.NumericType object describing a fixed-point data
type with slope and bias scaling.

fixdt(DataTypeNameString) returns a Simulink.NumericType object
describing an integer, fixed-point, or floating-point data type specified
by a data type name. The data type name can be either the name of a
built-in Simulink® data type or the name of a fixed-point data type that
conforms to the naming convention for fixed-point names established by
the Simulink® Fixed Point™ product.

[DataType,IsScaledDouble] = fixdt(DataTypeNameString) returns
a Simulink.NumericType object describing an integer, fixed-point,
or floating-point data type specified by a data type name and a flag
that indicates whether the specified data type name was the name of
a scaled double data type.

4-37

fixdt

See Also float, sfix, sfrac, sint, ufix, ufrac, uint

4-38

fixpt_evenspace_cleanup

Purpose Modify lookup table input data to be evenly spaced

Syntax xdata_adjusted = fixpt_evenspace_cleanup(xdata_original, xdt,
xscale)

Description xdata_adjusted = fixpt_evenspace_cleanup(xdata_original,
xdt, xscale) modifies lookup table input data to be evenly spaced if it
is not quite evenly spaced after quantization. For example, 0:0.005:1
appears evenly spaced, but if it is quantized with scaling 2^-12, it is not
evenly spaced. Loss of even spacing can make a significant impact on
the efficiency of your implementation. Code generated by Real-Time
Workshop® software to implement an uneven lookup table is more
complicated. In addition, unevenly spaced input data is stored in data
memory. If you modify the input data to remain evenly spaced after
quantization, Real-Time Workshop software generates simpler code
and excludes the input data from memory, thereby saving significant
amounts of data memory.

The modifications to the lookup table input data are likely to change
the numerical behavior of the table. The numerical changes may or
may not be trivial, so you should test the model using simulation, rapid
prototyping, or other appropriate methods. This function is intended for
use with nontunable data. Tunable data is always treated as if it were
unevenly spaced. Even if tunable data starts out evenly spaced, it may
later be tuned to values that are unevenly spaced.

It is important to note that the data is judged to be "almost" evenly
spaced relative to the scaling slope. Consider the data vector [0 2 5],
which has spacing value 2 and 3. A natural first impression is that the
data has significantly uneven spacing. However, the difference between
the maximum spacing 3 and the minimum spacing 2 equals 1. If the
scaling slope is 1 or greater, then a spacing variation of 1 represents a
one bit change or less. A spacing variation of one bit or less is judged
to be "almost" evenly spaced, and this function will adjust the data to
force it to be evenly spaced.

The required input parameters of this function are as follows.

4-39

fixpt_evenspace_cleanup

Input Value Example

xdata_original Input lookup data 0:0.005:1

xdt Input data type sfix(16)

xscale Input scaling 2^-12

See Also fixdt, fixpt_interp1, fixpt_look1_func_approx, sfix, ufix

4-40

fixpt_interp1

Purpose Implement 1-D lookup table

Syntax y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)
implements a lookup table to find output(s) y for input(s) x. If x falls
between two xdata values, then y is found by interpolating between the
corresponding ydata pair. If x falls above the range given by xdata, y is
given as the maximum ydata value. If x falls below the range given by
xdata, y is given as the minimum ydata value.

If either the input data type, xdt, or the output data type, ydt, is
floating point, then floating-point calculation is used to perform
the interpolation. Otherwise, integer-only calculation is used. This
calculation handles the input scaling, xscale, and the output scaling,
yscale, appropriately, and obeys the designated rounding method,
rndmeth.

Examples Define xdata as a vector of 33 evenly spaced points between 0 and 8,
and ydata as the sinc of xdata.

xdata = linspace(0,8,33).';
ydata = sinc(xdata);

Now define your input x as a vector of 201 evenly spaced points between
-1 and 9.

x = linspace(-1,9,201).';

Notice that x includes some values that are both lower and higher than
the range of xdata.

You can now use fixpt_interp1 to interpolate outputs for x.

y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16),...
2^-14,'Floor')

4-41

fixpt_interp1

See Also fixpt_look1_func_approx, fixpt_look1_func_plot

4-42

fixpt_look1_func_approx

Purpose Optimize for fixed-point function, x values, or breakpoints that are
generated for lookup table

Syntax [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,[],nptsmax)

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax,spacing)

Description fixpt_look1_func_approx('funcstr',xmin,xmax,xdt,xscale,ydt,
yscale,rndmeth,errmax,nptsmax) optimizes the breakpoints of a
lookup table over a specified range. The lookup table satisfies the
maximum acceptable error, maximum number of points, and spacing
requirements given by the optional parameters. The breakpoints refer
to the x values of the lookup table. The command

[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr',...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])

returns the x- and y- coordinates of the lookup table as vectors xdata
and ydata, respectively. It also returns the maximum absolute error of
the lookup table as a variable errworst.

The fixed-point approximation is found by interpolating between the
lookup table data points. The required input parameters are as follows.

Input Value

'funcstr' Function of x funcstr is the function for which
breakpoints are approximated.

4-43

fixpt_look1_func_approx

Input Value

xmin Minimum value of x

xmax Maximum value of x

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by fixed-point Simulink®

blocks: 'Toward Zero', 'Nearest', 'Floor' (default
value), 'Ceiling'

• xmin and xmax specify the range over which the breakpoints are
approximated.

• xdt, xscale, ydt, yscale, and rndmeth follow conventions used by
fixed-point Simulink blocks.

• rndmeth has a default value listed in the input table.

In addition to the required parameters, there are three optional inputs,
as follows.

Input Value

errmax Maximum acceptable error

nptsmax Maximum number of points

spacing Spacing: 'even', 'pow2' (even power of 2),
'unrestricted' (default value)

Of these, you must use at least one of the parameters errmax and
nptsmax. If you omit one of these, you must use brackets, [], in place of
the omitted parameter. The function will then ignore that requirement
for the lookup table.

4-44

fixpt_look1_func_approx

The outputs of the function are as follows.

Output Value

xdata The breakpoints for the lookup table

ydata The ideal function applied to the breakpoints

errworst The worst case error, which is the maximum absolute
error between the ideal function and the approximation
given by the lookup table

Criteria For Optimizing the Breakpoints: errmax, nptsmax,
and spacing

The approximation produced from the lookup table must satisfy the
requirements for the maximum acceptable error, errmax, the maximum
number of points, nptsmax, and the spacing, spacing. The requirements
are

• The maximum absolute error is less than errmax.

• The number of points required is less than nptsmax.

• The spacing is specified as unrestricted, even or even power of 2.

Modes for errmax and nptsmax

• If both errmax and nptsmax are specified

The returned breakpoints will meet both criteria if possible. The
errmax parameter is given priority, and nptsmax is ignored, if both
criteria cannot be met with the specified spacing.

• If only errmax is specified

The breakpoints that meet the error criteria, and have the least
number of points are returned

• If only nptsmax is specified

The breakpoints that require nptsmax or fewer, and give the smallest
worst case error are returned

4-45

fixpt_look1_func_approx

Modes for Spacing

If no spacing is specified, and more than one spacing method meets
the requirements given by errmax and nptsmax, power of 2 spacing is
chosen over even spacing, which in turn is chosen over uneven spacing.
This case occurs when the errmax and nptsmax are both specified, but
typically does not occur when only one is specified:

• If unrestricted is entered, the function chooses the spacing that
provides the best optimization.

• If even is entered, the function chooses an evenly spaced set of points,
including the pow2 spacing.

• If pow2 spacing is entered, the function chooses an even power of 2
spaced set of points.

Note The global optimum may not be found. The worst case error
can depend on fixed-point calculations, which are highly nonlinear.
Furthermore, the optimization approach is heuristic.

The spacing you choose depends on the parameters you want to
optimize: execution speed, function approximation error, ROM usage,
and RAM usage:

• The execution speed depends on the bisection search, and the
interpolation method.

• The error depends on how accurately the method approximates the
nonuniform curvature of the function.

• The ROM usage depends on the amount of data and command ROM
used.

• The RAM usage depends on how much global and stack RAM is used.

4-46

fixpt_look1_func_approx

When the lookup table has even power of two spacing, division is
replaced by a bit shift. As a result, the execution speed is faster than for
evenly spaced data.

Using the Approximation Function

1 Choose a function and use the eval('funcstr'); command to view
the function before creating the lookup table.

2 Define the remaining inputs.

3 Run the fixpt_look1_func_approx function.

4 Use the fixpt_look1_func_plot function to plot the function from
the selected breakpoints, and to calculate the error and the number
of points used.

5 Vary the inputs to produce sets of breakpoints that generate functions
with varying number of points required and worst case error.

6 Compare the number of points required and worst case error from
various runs to choose the best set of breakpoints.

Calculating the Output Function

To calculate the function, use the returned breakpoints with

• The eval function

• A function lookup table. The x values are the breakpoints from
the fixpt_look1_func_approx function, and the y values can be
supplied using the eval function.

See “Tutorial: Producing Lookup Table Data” in Simulink® Fixed
Point™ User’s Guide for a tutorial on using fixpt_look1_func_approx.

The following table summarizes the effect of spacing on the execution
speed, error, and memory used.

4-47

fixpt_look1_func_approx

Parameter
Even Power of 2
Spaced Data

Evenly Spaced
Data

Unevenly Spaced
Data

Execution Speed The execution speed
is the fastest. The
position search
and interpolation
are the same as
for evenly spaced
data. However, to
increase the speed
more, the position
search is replaced
by a bit shift, and
the interpolation is
replaced with a bit
mask.

The execution speed
is faster than that
for unevenly spaced
data because the
position search
is faster and
the interpolation
requires a simple
division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

Error The error can
be larger than
that for unevenly
spaced data because
approximating
a function with
nonuniform
curvature requires
more points to
achieve the same
accuracy.

The error can
be larger than
that for unevenly
spaced data because
approximating
a function with
nonuniform
curvature requires
more points to
achieve the same
accuracy.

The error can be
smaller because
approximating
a function with
nonuniform
curvature requires
fewer points to
achieve the same
accuracy.

ROM Usage Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command
ROM, and less data
ROM.

RAM Usage Not significant. Not significant. Not significant.

4-48

fixpt_look1_func_approx

Examples This example produces a lookup table for a sine function. The inputs for
the example are as follows:

funcstr = 'sin(2*pi*x)';
xmin = 0;
xmax = 0.25;
xdt = ufix(16);
xscale = 2^-16;
ydt = sfix(16);
yscale = 2^-14;
rndmeth = 'Floor';
errmax = 2^-10;
spacing = 'pow2';

To create the lookup table, type

[xdata, ydata, errWorst]=fixpt_look1_func_approx(funcstr,...

xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);

The brackets [] are a place holder for the nptsmax parameter, which is
not used in this example.

You can then plot the ideal function, the approximation, and the errors
by typing

fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);

The fixpt_look1_func_plot function produces a plot of the fixed-point
sine function, using these breakpoints, and a plot of the error between
the ideal function and the fixed-point function. The maximum absolute
error and the number of points required are listed with the plot. The
error drops to zero at a breakpoint, and increases between breakpoints
due to the difference in curvature of the ideal function and the line
drawn between breakpoints.

The resulting plots are shown.

4-49

fixpt_look1_func_approx

The lookup table requires 33 points to achieve a maximum absolute
error of 2^-11.3922.

See Also fixpt_look1_func_plot

4-50

fixpt_look1_func_plot

Purpose Plot function with x values generated by fixpt_look1_func_approx
function

Syntax errworst = fixpt_look1_func_plot(xdata,ydata,'funcstr',
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_look1_func_plot(xdata,ydata,'funcstr',xmin,xmax,xdt,xscale,
ydt,yscale,rndmeth) plots a lookup table approximation
function and its error from the ideal function. You can use
the fixpt_look1_func_approx function to generate xdata
and ydata, the x and y data points for the lookup table. The
function returns the maximum absolute error as a variable
errworst. The inputs are as follows.

Input Value

xdata x values for the lookup table

ydata y values for the lookup table

'funcstr' Function of x

xmin Minimum input of interest

xmax Maximum input of interest

xdt Data type of x

xscale Scaling for the x values

ydt Data type of y

yscale Scaling for the y values

rndmeth Rounding mode supported by the blockset: 'Toward
Zero', 'Nearest', 'Floor', 'Ceiling'

The fixpt_look1_func_approx function applies the ideal function to
the points in xdata to produce ydata. While this is the easiest way to
generate ydata, you are not required to use these values for ydata as
input for the fixpt_look1_func_approx function. Choosing different

4-51

fixpt_look1_func_plot

values for ydata can, in some cases, produce a lookup table with a
smaller maximum absolute error.

See “Tutorial: Producing Lookup Table Data” in Simulink® Fixed
Point™ User’s Guide for a tutorial on using fixpt_look1_func_plot.
For an example of the function, see fixpt_look1_func_approx function.

See Also fixpt_look1_func_approx

4-52

fixpt_set_all

Purpose Set property for every fixed-point block in subsystem

Syntax fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)

Description fixpt_set_all sets the property fixptPropertyName of every
applicable block in the model or subsystem SystemName to the value
fixptPropertyValue.

Examples To set every fixed-point block in a model called Filter_1 to round
toward the floor and to saturate upon overflow, type

fixpt_set_all('Filter_1','RndMeth','Floor')
fixpt_set_all('Filter_1','DoSatur','on')

4-53

fixptbestexp

Purpose Determine exponent that gives best precision fixed-point representation
of value

Syntax out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
out = fixptbestexp(RealWorldValue,FixPtDataType)

Description out = fixptbestexp(RealWorldValue,TotalBits,IsSigned)
determines the exponent that gives the best precision for the fixed-point
representation of the real-world value specified by RealWorldValue.
You specify the number of bits for the fixed-point number with
TotalBits, and you specify whether the fixed-point number is signed
with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is 0,
the number is not signed. The exponent is returned to out.

out = fixptbestexp(RealWorldValue,FixPtDataType) determines
the exponent that gives the best precision based on the data type
specified by FixPtDataType.

Examples The following command returns the exponent that gives the best
precision for the real-world value 4/3 using a signed, 16-bit number:

out = fixptbestexp(4/3,16,1)
out =

-14

Alternatively, you can specify the fixed-point data type:

out = fixptbestexp(4/3,sfix(16))
out =

-14

This value means that the maximum precision representation of 4/3 is
obtained by placing 14 bits to the right of the binary point:

01.01010101010101

4-54

fixptbestexp

You would specify the precision of this representation in fixed-point
blocks by setting the scaling to 2^-14 or 2^fixptbestexp(4/3,16,1).

See Also fixptbestprec

4-55

fixptbestprec

Purpose Determine maximum precision available for fixed-point representation
of value

Syntax out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
out = fixptbestprec(RealWorldValue,FixPtDataType)

Description out = fixptbestprec(RealWorldValue,TotalBits,IsSigned)
determines the maximum precision for the fixed-point representation
of the real-world value specified by RealWorldValue. You specify the
number of bits for the fixed- point number with TotalBits, and you
specify whether the fixed-point number is signed with IsSigned. If
IsSigned is 1, the number is signed. If IsSigned is 0, the number is not
signed. The maximum precision is returned to out.

out = fixptbestprec(RealWorldValue,FixPtDataType) determines
the maximum precision based on the data type specified by
FixPtDataType.

Examples Example 1

The following command returns the maximum precision available for
the real-world value 4/3 using a signed, 8-bit number:

out = fixptbestprec(4/3,8,1)
out =

0.015625

Alternatively, you can specify the fixed-point data type:

out = fixptbestprec(4/3,sfix(8))
out =

0.015625

4-56

fixptbestprec

This value means that the maximum precision available for 4/3 is
obtained by placing six bits to the right of the binary point since 2-6

equals 0.015625:

01.010101

Example 2

You can use the maximum precision as the scaling in fixed-point blocks.
This enables you to use fixptbestprec to perform a type of autoscaling
if you would like to designate a known range of your simulation. For
example, if your known range is -13 to 22, and you are using a safety
margin of 30%:

knownMax = 22;
knownMin = -13;
localSafetyMargin = 30;
slope = max(fixptbestprec((1+localSafetyMargin/100)* ...
[knownMax,knownMin], sfix(16)));

The variable slope can then be used in the expression that you specify
for the Output data type parameter in a block mask. Be sure to select
the Lock output scaling against changes by the autoscaling
tool parameter in the same block to prevent the scaling from being
overridden by the Fixed-Point Tool. If you know the range, you can use
this technique in place of relying on a model simulation to provide the
range to the autoscaling tool, as described in autofixexp in Simulink®

Fixed Point™ User’s Guide.

See Also fixptbestexp

4-57

float

Purpose Create MATLAB® structure describing floating-point data type

Syntax a = float('single')
a = float('double')
a = float(TotalBits, ExpBits)

Description float('single') returns a MATLAB structure that describes the data
type of an IEEE® single (32 total bits, 8 exponent bits).

float('double') returns a MATLAB structure that describes the data
type of an IEEE double (64 total bits, 11 exponent bits).

float(TotalBits, ExpBits) returns a MATLAB structure that
describes a nonstandard floating-point data type that mimics the IEEE
style. That is, the numbers are normalized with a hidden leading one
for all exponents except the smallest possible exponent. However, the
largest possible exponent might not be treated as a flag for Infs and
NaNs.

float is automatically called when a floating-point number is specified
in a block dialog box.

Examples Define a nonstandard, IEEE style, floating-point data type with 31 total
bits (excluding the hidden leading one) and 9 exponent bits:

a = float(31,9)
a =

Class: 'FLOAT'
MantBits: 21
ExpBits: 9

See Also fixdt, sfix, sfrac, sint, ufix, ufrac, uint

4-58

fxptdlg

Purpose Invoke Fixed-Point Tool

Syntax fxptdlg('modelname')

Description fxptdlg('modelname') launches the Fixed-Point Tool for the Simulink®

model specified by modelname. You can also access this tool by the
following methods:

• From the Simulink Tools menu, select Fixed-Point > Fixed-Point
Tool.

• From a subsystem context (right-click) menu, select
Fixed-Point > Fixed-Point Tool.

In conjunction with Simulink® Fixed Point™ software, the Fixed-Point
Tool provides convenient access to

• Model and subsystem parameters that control the logging mode
and data type override, namely, MinMaxOverflowArchiveMode,
MinMaxOverflowLogging, and DataTypeOverride (see “Model
Parameters” on page 8-2).

• Plotting capabilities that enable you to plot data that resides in the
MATLAB® workspace, namely, simulation results associated with
Scope, To Workspace, and root-level Outport blocks, in addition to
logged signal data (see “Logging Signals” in Using Simulink).

• An interactive autoscaling feature that proposes fixed-point scaling
for appropriately configured objects in your model, and then allows
you to selectively accept and apply the scaling proposals.

You can launch the Fixed-Point Tool for any system or subsystem, and
the tool controls the object selected in its Model Hierarchy pane.
If Simulink Fixed Point software is installed, the Fixed-Point Tool
Contents pane displays the name, data type, design minimum and
maximum values, minimum and maximum simulation values, and
scaling of each model object that logs fixed-point data. Additionally, if
a signal saturates or overflows, the tool displays the number of times

4-59

fxptdlg

saturation or overflow occurred. You can display an object’s dialog
box by right-clicking the appropriate entry in the Contents pane and
selecting Properties.

Note The Fixed-Point Tool works only for models that simulate in
Normal mode. The tool does not work when you simulate your model
in Accelerator or Rapid Accelerator mode (see “Accelerating Models”
in Using Simulink).

Most of the functionality in the Fixed-Point Tool is for use with the
Simulink Fixed Point software. However, even if you do not have
Simulink Fixed Point software, you can use data type override to
simulate a model that specifies fixed-point data types. In this mode,
the Simulink software replaces fixed-point values with floating-point
values when simulating the model. Data type override mode allows you
to share fixed-point models with people in your company who do not
have Simulink Fixed Point software.

To simulate a model in data type override mode:

1 From the Simulink Tools menu, select Fixed-Point > Fixed-Point
Tool.

The Fixed-Point Tool appears.

2 Set the Logging mode parameter to Force off.

3 Set the Data type override parameter to True doubles or True
singles.

Note If a parameter in your model specifies a fi object, you can
prevent the checkout of a Fixed-Point Toolbox™ license by setting
the fipref DataTypeOverride property to TrueDoubles. See the
Fixed-Point Toolbox documentation for more information.

4-60

fxptdlg

Parameters
and
Dialog
Box

4-61

fxptdlg

The Fixed-Point Tool includes the following components:

• Model Hierarchy pane (see “Model Hierarchy Pane” on page 4-62)

• Contents pane (see “Contents Pane” on page 4-63)

• Dialog pane (see “Dialog Pane” on page 4-68)

• Main toolbar (see “Main Toolbar” on page 4-72)

Model Hierarchy Pane

The Model Hierarchy pane displays a tree-structured view of the
Simulink model hierarchy. The first node in the pane represents a
Simulink model. Expanding the root node displays subnodes that
represent the model’s subsystems, Embedded MATLAB™ Function
blocks, Stateflow® charts, and referenced models.

The Fixed-Point Tool’s Contents pane displays elements that comprise
the object selected in the Model Hierarchy pane. The Dialog pane
provides parameters for specifying the selected object’s data type
override and logging mode. Objects that control the Logging mode
parameter display a red flag on their icons, while those that control

4-62

fxptdlg

the Data type override parameter display a green flag. The Model
Hierarchy pane indicates the value of these parameters by displaying
the following abbreviations next to the object name:

Abbreviation Parameter Value

Logging mode

mmo Minimums, maximums and overflows

o Overflows only

fo Force off

Data type override

scl Scaled doubles

dbl True doubles

sgl True singles

fo Force off

See “Dialog Pane” on page 4-68 for more information about these
parameters.

Contents Pane

The Contents pane displays a tabular view of objects that log
fixed-point data in the system or subsystem selected in the Model
Hierarchy pane. The table rows correspond to model objects, such
as blocks, block parameters, and Stateflow data. The table columns
correspond to attributes of those objects, such as the data type,
design minimum and maximum values, and simulation minimum and
maximum values.

4-63

fxptdlg

Note The Contents pane displays information only after you simulate
a system or propose fraction lengths.

The Contents pane displays columns that correspond to the following
properties and controls:

Column Label Description

Name Identifies path and name of block.

Run Indicates whether the Fixed-Point Tool stores
results as an active or a reference run.

SimDT Data type the block uses during simulation.

SpecifiedDT Data type the block specifies in its parameter
dialog box, e.g., the value of its Output data
type parameter.

4-64

fxptdlg

Column Label Description

ProposedDT Data type that the Fixed-Point Tool proposes.

Accept Check box that enables you to selectively accept
the Fixed-Point Tool’s scaling proposal.

DesignMin Minimum value the block specifies in its
parameter dialog box, e.g., the value of its Output
minimum parameter.

SimMin Minimum value that occurs during simulation.

ProposedMin Minimum value that results from the data type
the Fixed-Point Tool proposes.

DesignMax Maximum value the block specifies in its
parameter dialog box, e.g., the value of its Output
maximum parameter.

SimMax Maximum value that occurs during simulation.

ProposedMax Maximum value that results from the data type
the Fixed-Point Tool proposes.

OvfWrap Number of overflows that wrap during simulation.

OvfSat Number of overflows that saturate during
simulation.

DTGroup Identification tag associated with objects that
share data types.

DivByZero Number of divide-by-zero instances that occur
during simulation.

LogSignal Check box that allows you to enable or disable
signal logging for an object.

The following topics describe ways in which you can customize the
Contents pane:

• “Changing Column Order and Width”

4-65

fxptdlg

• “Sorting Rows by Column”

• “Hiding Columns”

Changing Column Order and Width
You can alter the order and width of columns that appear in the
Contents pane as follows:

• To move a column, click and drag the head of a column to a new
location among the column headers.

• To make a column wider or narrower, click and drag the right edge
of a column header. If you double-click the right edge of a column
header, the column width changes to fit its contents.

Sorting Rows by Column
By default, the Contents pane displays its contents in ascending order
of the Name column. You can alter the order in which the Contents
pane displays its rows as follows:

• To sort all the rows in ascending order of another column, click the
head of that column.

• To change the order from ascending to descending, simply click again
on the head of that column.

Hiding Columns
You can select the properties that the Contents pane displays or hides
by using the Customize Contents pane. When visible, the pane
appears in the lower-left corner of the Fixed-Point Tool window.

4-66

fxptdlg

��������

�������	
�����
��������

• To access the Customize Contents pane, from the Fixed-Point
Tool View menu, select Customize Contents. A splitter divides
the Customize Contents pane from the Model Hierarchy pane
above it. Drag the splitter up or down to adjust the relative size of
the two panes.

• To hide properties from the Contents pane, in the Customize
Contents pane, expand the Current Properties node and uncheck
the properties that you do not want to appear.

4-67

fxptdlg

• To display additional properties in the Contents pane, in the
Customize Contents pane, expand the All Properties node and
select the desired properties.

Dialog Pane

Use the Dialog pane to view and change particular properties
associated with the object selected in the Model Hierarchy pane.

4-68

fxptdlg

Tip From the Fixed-Point Tool View menu, you can select Dialog View
to hide the Dialog pane, making more room for the other components.

The Dialog pane displays the following items:

Propose fraction lengths
Click to perform the first phase of the autoscaling procedure,
in which the Fixed-Point Tool collects range data for model
objects—either from design minimum and maximum values the
objects specify explicitly, or from logged minimum and maximum
values that occur during simulation. Based on these values, the
tool proposes fraction lengths for blocks whose

• Lock output scaling against changes by the autoscaling
tool parameter is not selected.

• Data type specifies a generalized fixed-point number.

The Fixed-Point Tool lists its scaling proposals in the Contents
pane. The tool alerts you to potential scaling issues for each object
in the list by displaying a green, yellow, or red icon, as shown here:

The proposed scaling poses no issues for this object.

The proposed scaling poses potential issues for this object.
Open the Autoscale Information dialog box to review these
issues.

The proposed scaling will introduce data type errors if
applied to this object. Open the Autoscale Information
dialog box for details about how to resolve these issues.

Apply accepted fraction lengths
Click to perform the second phase of the autoscaling procedure,
in which the Fixed-Point Tool applies the scaling proposals to the
objects whose Accept check box in the Contents pane is selected.

4-69

fxptdlg

Percent safety margin
The Fixed-Point Tool uses the Percent safety margin parameter
when proposing fraction lengths. Before performing autoscaling,
you must either specify design min/max values or run the
simulation to collect min/max data. To learn how to do this, see
“Fixed-Point Tool” in the Simulink Fixed Point documentation.

The min/max values are multiplied by the factor designated by
this parameter, allowing you to specify a range different from that
defined by, e.g., the maximum and minimum values logged to the
workspace. For example, a value of 55 specifies that a range at
least 55 percent larger is desired. A value of -15 specifies that a
range up to 15 percent smaller is acceptable.

Use SimMin/Max if DesignMin/Max are not available
If selected, the Fixed-Point Tool proposes fraction lengths based
on simulation minimum and maximum values, but only for
blocks that do not specify minimum or maximum values using,
e.g., Output minimum and Output maximum parameters.
Otherwise, the Fixed-Point Tool ignores simulation minimum and
maximum values when proposing fraction lengths.

Show autoscale information for selected result
Display Autoscale Information dialog box for object selected in
the Contents pane.

Exchange Active and Reference results
Click to swap the results that the Fixed-Point Tool stores as an
active run with those that it stores as a reference run.

Run simulation and store Active results
Simulate a model and store results as active run, denoted by the
Active label in the Run column of the Contents pane.

Logging mode
Controls which objects log data during simulation. The value of
this parameter for parent systems controls logging for all child
subsystems, unless Use local settings is selected:

4-70

fxptdlg

• Use local settings — Data is logged according to the value
of this parameter set for each subsystem. Otherwise, settings
for parent systems always override those of child systems.

• Minimums, maximums and overflows — Minimum value,
maximum value, and overflow data is logged for all blocks in
the current system or subsystem.

• Overflows only — Only overflow data is logged for all blocks
in the current system or subsystem.

• Force off — No data is logged for any block in the current
system or subsystem. Use this selection to work with models
containing fixed-point enabled blocks if you do not have a
Simulink Fixed Point license.

Data type override
Controls data type override of objects that allow you to specify
data types in their dialog boxes. The value of this parameter
for parent systems controls data type override for all child
subsystems, unless Use local settings is selected:

• Use local settings — Data types are overridden according to
the value of this parameter set for each subsystem. Otherwise,
settings for parent systems override those of child systems.

• Scaled doubles — The output data type of all blocks in
the current system or subsystem is overridden with doubles;
however, the scaling and bias specified in the mask of each
block is maintained.

• True doubles — The output data type of all blocks in the
current system or subsystem is overridden with true doubles.
The overridden values have no scaling or bias.

• True singles — The output data type of all blocks in the
current system or subsystem is overridden with true singles.
The overridden values have no scaling or bias.

• Force off — No data type override is performed on any block
in the current system or subsystem.

4-71

fxptdlg

Set this parameter to True doubles or True singles to work
with models containing fixed-point enabled blocks if you do not
have a Simulink Fixed Point license.

Note The following Simulink blocks allow you to set data types
in their block masks, but ignore the Data type override setting:
Probe, Trigger, Width. The Embedded MATLAB Function block
ignores the Data type override parameter if it specifies Scaled
doubles.

Overwrite or merge results
Controls the logging type:

• Overwrite — Completely clears existing simulation results
from the Contents pane before displaying new simulation
results.

• Merge — Merges new simulation results with existing
simulation results in the Contents pane.

Main Toolbar

The Fixed-Point Tool’s main toolbar appears near the top of the
Fixed-Point Tool window under the Fixed-Point Tool’s menu.

The toolbar contains the following buttons that execute commonly used
Fixed-Point Tool commands:

4-72

fxptdlg

Button Usage

Propose fraction lengths.

Apply accepted fraction lengths.

Display autoscale information.

Exchange active results with reference results.

Simulate a model and store results as active run.

Pause a simulation.

Stop a simulation.

Create a time series plot.

Create a histogram plot.

Create a time series difference (A-R) plot.

Plot
Interface

The Fixed-Point Tool provides plotting capabilities that enable you to
plot signals for graphical analysis. The tool can access signal data that
resides in the MATLAB workspace, allowing you to plot simulation
results associated with

• Scope blocks whose Save data to workspace parameter is selected

• To Workspace blocks

• Root-level Outport blocks, when the Output check box on the Data
Import/Export pane of the Configuration Parameters dialog box
is selected

• Logged signal data (see “Logging Signals” in Using Simulink)

4-73

fxptdlg

Tip The Contents pane of the Fixed-Point Tool displays an antenna
icon next to items that you can plot.

You can create the following types of plots using the Fixed-Point Tool’s
interface:

• Time series plot — Plots data as a function of time.

4-74

fxptdlg

• Histogram plot — Plots the number of data values that occur at each
bit.

4-75

fxptdlg

• Time series difference (A-R) plot — Plots both the active and
reference versions of a signal on the upper axes, and plots the
difference between the active and reference versions of that signal
on the lower axes.

4-76

fxptdlg

Signal
Logging
Options

The Fixed-Point Tool provides options that allow you to control signal
logging in a model (see “Logging Signals” in Using Simulink). Using
these options, you can enable or disable logging for multiple signals
simultaneously, based on signal attributes such as:

• The location of signals in a model hierarchy

• Whether or not signals have names

To access the signal logging options in the Fixed-Point Tool:

1 In the Model Hierarchy pane, right-click a node that represents
either a model or a subsystem.

The Fixed-Point Tool displays a context menu for the selected node.

2 In the context menu, select either Enable Signal Logging or
Disable Signal Logging.

The Fixed-Point Tool displays a submenu that lists a variety of signal
logging options.

4-77

fxptdlg

Choose from the following signal logging options:

Select... To Enable or Disable Signal Logging
for...

All Signals in this
System

All signals in the selected system

All Signals from Here
Down

All signals in the selected system and its
subsystems

Outports in this System All Outport blocks in the selected system

Named Signals in this
System

All signals in the selected system, whose
Signal name parameter specifies a
value

Named Signals from
Here Down

All signals in the selected system and
its subsystems, whose Signal name
parameter specifies a value

Unnamed Signals in
this System

All signals in the selected system, whose
Signal name parameter is empty

Unnamed Signals from
Here Down

All signals in the selected system and
its subsystems, whose Signal name
parameter is empty

Note The Fixed-Point Tool does not control signal logging for Stateflow
charts, referenced models, and subsystems with library links. It ignores
these objects when enabling or disabling signal logging in a model
hierarchy.

Examples To learn how to use the tool, see “Fixed-Point Tool” in the Simulink
Fixed Point documentation.

See Also autofixexp, showfixptsimerrors, showfixptsimranges

4-78

gcb

Purpose Get pathname of current block

Syntax gcb
gcb('sys')

Description gcb returns the full block pathname of the current block in the current
system.

gcb('sys') returns the full block pathname of the current block in
the specified system.

The current block is one of these:

• During editing, the current block is the block most recently clicked.

• During simulation of a system that contains S-Function blocks,
the current block is the S-Function block currently executing its
corresponding MATLAB® function.

• During callbacks, the current block is the block whose callback
routine is being executed.

• During evaluation of the MaskInitialization string, the current
block is the block whose mask is being evaluated.

Examples This command returns the path of the most recently selected block.

gcb
ans =

clutch/Locked/Inertia

This command gets the value of the Gain parameter of the current block.

get_param(gcb,'Gain')
ans =

1/(Iv+Ie)

See Also gcbh, gcs

4-79

gcbh

Purpose Get handle of current block

Syntax gcbh

Description gcbh returns the handle of the current block in the current system.

You can use this command to identify or address blocks that have no
parent system. The command should be most useful to blockset authors.

Examples This command returns the handle of the most recently selected block.

gcbh

ans =

281.0001

See Also gcb

4-80

gcs

Purpose Get pathname of current system

Syntax gcs

Description gcs returns the full pathname of the current system.

The current system is one of these:

• During editing, the current system is the system or subsystem most
recently clicked.

• During simulation of a system that contains S-Function blocks, the
current system is the system or subsystem containing the S-Function
block that is currently being evaluated.

• During callbacks, the current system is the system containing any
block whose callback routine is being executed.

• During evaluation of the MaskInitialization string, the current
system is the system containing the block whose mask is being
evaluated.

The current system is always the current model or a subsystem of the
current model. Use bdroot to get the current model.

Examples This example returns the path of the system that contains the most
recently selected block.

gcs
ans =

clutch/Locked

See Also bdroot, gcb

4-81

get_param

Purpose Get system and block parameter values

Syntax get_param('obj', 'parameter')
get_param({ objects }, 'parameter')
get_param(handle, 'parameter')
get_param(0, 'parameter')
get_param('obj', 'ObjectParameters')
get_param('obj', 'DialogParameters')

Description get_param('obj', 'parameter'), where 'obj' is a system or
block pathname, returns the value of the specified parameter. Some
parameters are case-sensitive, and some are not. To prevent problems,
treat all parameters as case-sensitive.

get_param({ objects }, 'parameter') accepts a cell array of full
path specifiers, enabling you to get the values of a parameter common
to all objects specified in the cell array.

get_param(handle, 'parameter') returns the specified parameter of
the object whose handle is handle.

get_param(0, 'parameter') returns the current value of a Simulink®

session parameter or the default value of a model or block parameter.

get_param('obj', 'ObjectParameters') returns a structure that
describes obj’s parameters. Each field of the returned structure
corresponds to a particular parameter and has the parameter’s name.
For example, the Name field corresponds to the object’s Name parameter.
Each parameter field itself contains three fields, Name, Type, and
Attributes, that specify the parameter’s name (for example, 'Gain'),
data type (for example, string), and attributes (for example, read-only),
respectively.

get_param('obj', 'DialogParameters') returns a cell array
containing the names of the dialog parameters of the specified block.

Chapter 8, “Model and Block Parameters” contains lists of model and
block parameters.

4-82

get_param

Examples This command returns the value of the Gain parameter for the Inertia
block in the Requisite Friction subsystem of the clutch system.

get_param('clutch/Requisite Friction/Inertia','Gain')
ans =

1/(Iv+Ie)

These commands display the block types of all blocks in the mx + b
system (the current system), described in “Masked Subsystem Example”
in Using Simulink.

blks = find_system(gcs, 'Type', 'block');
listblks = get_param(blks, 'BlockType')

listblks =

'SubSystem'
'Inport'
'Constant'
'Gain'
'Sum'
'Outport'

This command returns the name of the currently selected block.

get_param(gcb, 'Name')

The following commands get the attributes of the currently selected
block’s Name parameter.

p = get_param(gcb, 'ObjectParameters');
a = p.Name.Attributes

ans =
'read-write' 'always-save'

4-83

get_param

The following command gets the dialog parameters of a Sine Wave block.

p = get_param('untitled/Sine Wave', 'DialogParameters')
p =

SineType: [1x1 struct]
TimeSource: [1x1 struct]
Amplitude: [1x1 struct]

Bias: [1x1 struct]
Frequency: [1x1 struct]

Phase: [1x1 struct]
Samples: [1x1 struct]
Offset: [1x1 struct]

SampleTime: [1x1 struct]
VectorParams1D: [1x1 struct]

See Also find_system, set_param

4-84

getActiveConfigSet

Purpose Get model’s active configuration set or configuration reference

Syntax myConfigObj = getActiveConfigSet('model')

Arguments model
The name of an open model, or gcs to specify the current model

Description getActiveConfigSet returns the configuration set or configuration
reference (configuration object) that is the active configuration object
of 'model'.

Example The following example returns the active configuration object of
the current model. The code is the same whether the object is a
configuration set or configuration reference.

myConfigObj = getActiveConfigSet(gcs);

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
detachConfigSet, getConfigSet, getConfigSets, openDialog,
setActiveConfigSet

4-85

getCallbackAnnotation

Purpose Get information about annotation

Syntax getCallbackAnnotation

Description getCallbackAnnotation is intended to be invoked by annotation
callback functions. If it is invoked from an annotation callback function,
it returns an instance of Simulink.Annotation class that represents
the annotation associated with the callback function. The callback
function can then use the instance to get and set the annotation’s
properties, such as its text, font and color. If this function is not invoked
from an annotation callback function, it returns nothing, i.e., [].

4-86

getConfigSet

Purpose Get one of model’s configuration sets or configuration references

Syntax myConfigObj = getConfigSet('model', 'configObjName')

Arguments model
The name of an open model, or gcs to specify the current model

configObjName
The name of a configuration set (Simulink.ConfigSet) or
configuration reference (Simulink.ConfigSetRef)

Description getConfigSet returns the configuration set or configuration reference
(configuration object) that is attached to model and is named
configObjName. If no such object exists, an error occurs.

Example The following example returns the configuration object that is named
DevConfig and attached to the current model. The code is the same
whether DevConfig is a configuration set or configuration reference.

myConfigObj = getConfigSet(gcs, 'DevConfig');

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
detachConfigSet, getActiveConfigSet, getConfigSets, openDialog,
setActiveConfigSet

4-87

getConfigSets

Purpose Get names of all of model’s configuration sets or configuration references

Syntax myConfigObjNames = getConfigSets('model')

Arguments model
The name of an open model, or gcs to specify the current model

Description getConfigSets returns a cell array of strings specifying the names
of all configuration sets and configuration references (configuration
objects) attached to 'model'.

Example The following example obtains the names of the configuration objects
attached to the current model.

myConfigObjNames = getConfigSets(gcs)

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
detachConfigSet, getActiveConfigSet, getConfigSet, openDialog,
setActiveConfigSet

4-88

getfullname

Purpose Get pathname of block or line

Syntax path=getfullname(handle)

Description path=getfullname(handle) returns the full pathname of the block or
line specified by handle.

Examples getfullname(gcb) returns the pathname of the block currently selected
in the model editor’s window.

The following code returns the pathname of the line currently selected
in the model editor’s window.

line = find_system(gcs, 'SearchDepth', 1, 'FindAll', 'on', ...

'Type', 'line', 'Selected', 'on');

path = getfullname(line);

See Also gcb, find_system

4-89

legacy_code

Purpose Use Legacy Code Tool

Syntax legacy_code('help')
specs = legacy_code('initialize')
legacy_code('sfcn_cmex_generate', specs)
legacy_code('compile', specs, compilerOptions)
legacy_code('slblock_generate', specs, modelname)
legacy_code('sfcn_tlc_generate', specs)
legacy_code('rtwmakecfg_generate', specs)
legacy_code('backward_compatibility')

Arguments specs
A structure with the following fields

Field Description

Name the S-function

SFunctionName (Required) A string specifying a name for the S-function to be
generated by the Legacy Code Tool.

Define Legacy Code Tool Function Specifications

InitializeConditionsFcnSpec A nonempty string specifying a reentrant function
that the S-function calls to initialize and reset states.
You must declare this function by using tokens that
Simulink® software can interpret as explained in
“Declaring Legacy Code Tool Function Specifications”.

OutputFcnSpec A nonempty string specifying the function that the
S-function calls at each time step. You must declare this
function by using tokens that Simulink software can
interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

4-90

legacy_code

Field Description

StartFcnSpec A string specifying the function that the S-function
calls when it begins execution. This function can access
S-function parameter arguments only. You must declare
this function by using tokens that Simulink software can
interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

TerminateFcnSpec A string specifying the function that the S-function calls
when it terminates execution. This function can access
S-function parameter arguments only. You must declare
this function by using tokens that Simulink software can
interpret as explained in “Declaring Legacy Code Tool
Function Specifications”.

Define Compilation Resources

HeaderFiles A cell array of strings specifying the file names of header
files required for compilation.

SourceFiles A cell array of strings specifying source files required
for compilation. You can specify the source files using
absolute or relative pathnames.

HostLibFiles A cell array of strings specifying library files required for
host compilation. You can specify the library files using
absolute or relative pathnames.

TargetLibFiles A cell array of strings specifying library files required for
target (that is, standalone) compilation. You can specify
the library files using absolute or relative pathnames.

IncPaths A cell array of strings specifying directories containing
header files. You can specify the directories using
absolute or relative pathnames.

SrcPaths A cell array of strings specifying directories containing
source files. You can specify the directories using
absolute or relative pathnames.

4-91

legacy_code

Field Description

LibPaths A cell array of strings specifying directories containing
host and target library files. You can specify the
directories using absolute or relative pathnames.

Specify a Sample Time

SampleTime One of the following:

'inherited' (default) — Sample time is inherited from
the source block.

'parameterized' — Sample time is represented as
a tunable parameter. Generated code can access the
parameter by calling MEX API functions, such as
mxGetPr or mxGetData.

Fixed — Sample time that you explicitly specify.
For information on how to specify sample time, see
“Specifying Sample Time”.

If you specify this field, you must specify it last.

4-92

legacy_code

Field Description

Define S-Function Options

Options A structure that controls S-function options. The
structure’s fields include:

isMacro — A logical value specifying whether the legacy
code is a C macro. By default, its value is false (0).

isVolatile — A logical value specifying the setting
of the S-function SS_OPTION_NONVOLATILE option (see
SS_OPTION_NONVOLATILE). By default, its value is true
(1).

canBeCalledConditionally — A logical
value specifying the setting of the S-function
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option
(see SS_OPTION_CAN_BE_CALLED_CONDITIONALLY). By
default, its value is true (1).

useTlcWithAccel — A logical value
specifying the setting of the S-function
SS_OPTION_USE_TLC_WITH_ACCELERATOR option
(see SS_OPTION_USE_TLC_WITH_ACCELERATOR). By
default, its value is true (1).

language — A string specifying either 'C' or 'C++' as
the target language of the S-function that Legacy Code
Tool will produce. By default, its value is 'C'.

modelname
The name of a Simulink model into which Legacy Code Tool is to
insert the masked S-function block generated when you specify
legacy_code with the action string 'slblock_generate'. If you
omit this argument, the block appears in an empty model editor
window.

Description The legacy_code function creates a MATLAB® structure for registering
the specification for existing C or C++ code and the S-function being

4-93

legacy_code

generated. In addition, the function can generate, compile and link,
and create a masked block for the specified S-function. Other options
include generating

• A TLC file for simulation in Accelerator mode or code generation

• An rtwmakecfg.m file that you can customize to specify dependent
source and header files that reside in a different directory than that
of the generated S-function

legacy_code('help') displays instructions for using Legacy Code Tool.

specs = legacy_code('initialize') initializes the Legacy Code
Tool data structure, specs, which registers characteristics of existing
C or C++ code and properties of the S-function that the Legacy Code
Tool generates.

legacy_code('sfcn_cmex_generate', specs) generates an
S-function source file as specified by the Legacy Code Tool data
structure, specs.

legacy_code('compile', specs, compilerOptions) compiles and
links the S-function generated by the Legacy Code Tool based on the
data structure, specs, and any compiler options that you might specify.
The following examples show how to specify no options, one option,
and multiple options:

legacy_code('compile', s);
legacy_code('compile', s, '-DCOMPILE_VALUE1=1');
legacy_code('compile', s,...

{'-DCOMPILE_VALUE1=1', '-DCOMPILE_VALUE2=2',...
'-DCOMPILE_VALUE3=3'});

legacy_code('slblock_generate', specs, modelname) generates a
masked S-Function block for the S-function generated by the Legacy
Code Tool based on the data structure, specs. The block appears in the
Simulink model specified by modelname. If you omit modelname, the
block appears in an empty model editor window.

4-94

legacy_code

legacy_code('sfcn_tlc_generate', specs) generates a TLC file for
the S-function generated by the Legacy Code Tool based on the data
structure, specs. This option is relevant if you want to

• Force Accelerator mode in Simulink software to use the
TLC inlining code of the generated S-function. See the
description of the ssSetOptions SimStruct function and
SS_OPTION_USE_TLC_WITH_ACCELERATOR S-function option for more
information.

• Use Real-Time Workshop® software to generate code from your
Simulink model. See “Using the Legacy Code Tool to Automate
the Generation of Files for Fully Inlined S-Functions” for more
information.

legacy_code('rtwmakecfg_generate', specs) generates an
rtwmakecfg.m file for the S-function generated by the Legacy Code Tool
based on the data structure, specs. This option is relevant only if you
use Real-Time Workshop software to generate code from your Simulink
model. See “Using the rtwmakecfg.m API” and “Using the Legacy Code
Tool to Automate the Generation of Files for Fully Inlined S-Functions”
in the Real-Time Workshop documentation for more information.

legacy_code('backward_compatibility') automatically updates
syntax for using Legacy Code Tool, as made available from MATLAB
Central in releases before R2006b, to the supported syntax described
in this reference page and in “Integrating Existing C Functions into
Simulink Models with the Legacy Code Tool” in Writing S-Functions.

See Also • “Integrating Existing C Functions into Simulink Models with the
Legacy Code Tool” in the Writing S-Functions documentation

• “Using the Legacy Code Tool to Automate the Generation of
Files for Fully Inlined S-Functions” in the Real-Time Workshop
documentation

4-95

libinfo

Purpose Get information about library blocks referenced by model

Syntax libdata = libinfo('sys')

Description libdata = libinfo('sys') returns information about library blocks
referenced by sys and all of the systems underneath it. The command
returns an array of structures that describes each library block
referenced by the model. Each structure has the following fields:

• Block

Path of the link to the library block.

• Library

Name of the library containing the referenced block.

• ReferenceBlock

Path of the library block.

• LinkStatus

Value of the LinkStatus parameter for the link to the library block.

This command also accepts search constraints as additional arguments.
For instance:

libdata=libinfo(Sys,'FollowLinks','off')

See find_system for more information.

4-96

linmod, dlinmod, linmod2, linmodv5

Purpose Extract continuous- or discrete-time linear state-space model of system
around operating point

Syntax argout = linmod('sys');
argout = linmod('sys',x,u);
argout = linmod('sys', x, u, para);
argout = linmod('sys', x, u, 'v5');
argout = linmod('sys', x, u, para, 'v5');
argout = linmod('sys', x, u, para, xpert, upert, 'v5');

argout = dlinmod('sys', Ts, x, u);
argout = dlinmod('sys',Ts, x, u, para, 'v5');
argout = dlinmod('sys',Ts, x, u, para, xpert, upert, 'v5');

argout = linmod2('sys', x, u);
argout = linmod2('sys', x, u, para);

argout = linmodv5('sys');
argout = linmodv5('sys',x,u);
argout = linmodv5('sys', x, u, para);
argout = linmod('sys', x, u, para, xpert, upert);

4-97

linmod, dlinmod, linmod2, linmodv5

Arguments sys The name of the Simulink® system from which the
linear model is to be extracted.

x and u The state and the input vectors. If specified,
they set the operating point at which the linear
model is to be extracted. When a model has model
references using the Model block, you must use the
Simulink structure format to specify x. To extract
the x structure from the model, use the following
command:

x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values
within this structure by editing x.signals.values.

Ts Sample time of the discrete-time linearized model

'v5' An optional argument that invokes the perturbation
algorithm created prior to MATLAB® 5.3. Invoking
this optional argument is equivalent to calling
linmodv5.

4-98

linmod, dlinmod, linmod2, linmodv5

para A three-element vector of optional arguments:

• para(1) — Perturbation value of delta, the value
used to perform the perturbation of the states
and the inputs of the model. This is valid for
linearizations using the 'v5' flag. The default
value is 1e-05.

• para(2) — Linearization time. For blocks that
are functions of time, this parameter can be set
with a nonnegative value of t giving the time at
which Simulink software evaluates the blocks
when linearizing a model. The default value is 0.

• para(3) — Set para(3)=1 to remove extra states
associated with blocks that have no path from
input to output. The default value is 0.

4-99

linmod, dlinmod, linmod2, linmodv5

xpert and
upert

The perturbation values used to perform the
perturbation of all the states and inputs of the
model. The default values are

xpert = para(1) + 1e-3*para(1)*abs(x)
upert = para(1) + 1e-3*para(1)*abs(u)

When a model has model references using the Model
block, you must use the Simulink structure format
to specify xpert. To extract the xpert structure, use
the following command:

xpert = Simulink.BlockDiagram.getInitialState('sys');

You can then change the perturbation values within
this structure by editing xpert.signals.values.

The perturbation input arguments are only available
when invoking the perturbation algorithm created
prior to MATLAB 5.3, either by calling linmodv5 or
specifying the 'v5' input argument to linmod.

argout linmod, dlinmod, and linmod2 all return
state-space, transfer function, and MATLAB data
structure representations of the linearized system,
depending on how you specify the output (left-hand)
side of the equation. Using linmod as an example:

• [A,B,C,D] = linmod('sys', x, u) obtains the
linearized model of sys around an operating point
with the specified state variables x and the input
u. If you omit x and u, the default values are zero.

• [num, den] = linmod('sys', x, u) returns
the linearized model in transfer function form.

• sys_struc = linmod('sys', x, u) returns a
structure that contains the linearized model,
including state names, input and output names,
and information about the operating point.

4-100

linmod, dlinmod, linmod2, linmodv5

Description linmod and dlinmod compute a linear state space model by linearizing
each block in a model individually. linmod2 computes a linear
state-space model by perturbing the model inputs and model states,
and uses an advanced algorithm to reduce truncation error. linmodv5
computes a linear state space model using the full model perturbation
algorithm created prior to MATLAB 5.3.

linmod obtains linear models from systems of ordinary differential
equations described as Simulink models. Inputs and outputs are
denoted in Simulink block diagrams using Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians
for most blocks which should result in more accurate linearization
than numerical perturbation of block inputs and states. A list of
blocks that have preprogrammed analytic Jacobians is available
in the Simulink® Control Design™ documentation along with a
discussion of the block-by-block analytic algorithm for linearization.
If you do not have Simulink Control Design software installed, you
can access the documentation on The MathWorks™ Web site at
http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/.

The default algorithm also allows for special treatment of problematic
blocks such as the Transport Delay and the Quantizer. See the mask
dialog of these blocks for more information and options.

Discrete-Time System Linearization

The function dlinmod can linearize discrete, multirate, and hybrid
continuous and discrete systems at any given sampling time. Use the
same calling syntax for dlinmod as for linmod, but insert the sample
time at which to perform the linearization as the second argument.
For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the
operating point given by the state vector x and input vector u. To obtain
a continuous model approximation of a discrete system, set Ts to 0.

4-101

http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/

linmod, dlinmod, linmod2, linmodv5

For systems composed of linear, multirate, discrete, and continuous
blocks, dlinmod produces linear models having identical frequency and
time responses (for constant inputs) at the converted sampling time
Ts, provided that

• Ts is an integer multiple of all the sampling times in the system.

• The system is stable.

For systems that do not meet the first condition, in general the
linearization is a time-varying system, which cannot be represented
with the [A,B,C,D] state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an
indication of the stability of the system. The system is stable if Ts>0
and the eigenvalues are within the unit circle, as determined by this
statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the
left half plane, as determined by this statement:

all(real(eig(Ad))) < 0

When the system is unstable and the sample time is not an integer
multiple of the other sampling times, dlinmod produces Ad and Bd
matrices, which can be complex. The eigenvalues of the Ad matrix in
this case still, however, provide a good indication of stability.

You can use dlinmod to convert the sample times of a system to other
values or to convert a linear discrete system to a continuous system or
vice versa.

You can find the frequency response of a continuous or discrete system
by using the bode command.

Notes By default, the system time is set to zero. For systems that are
dependent on time, you can set the variable para to a two-element

4-102

linmod, dlinmod, linmod2, linmodv5

vector, where the second element is used to set the value of t at which
to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model
is maintained. For Simulink systems, a string variable that contains
the block name associated with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose ith row is the block name
associated with the ith state. Inputs and outputs are numbered
sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer
function form using the routine ss2tf or to zero-pole form using ss2zp.
You can also convert the linearized models to LTI objects using ss. This
function produces an LTI object in state-space form that can be further
converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport
Delay blocks by replacing the linearization of the blocks with a Pade
approximation. For the 'v5' algorithm, linearization of a model that
contains Derivative or Transport Delay blocks can be troublesome. For
more information, see “Linearizing Models” in Using Simulink.

4-103

load_system

Purpose Invisibly load Simulink® model

Syntax load_system('sys')

Description load_system('sys') loads 'sys', where sys is the name of a Simulink
model, into memory without making its model window visible.

Examples The command

load_system('vdp')

loads the vdp sample model into memory.

See Also close_system, open_system

4-104

model

Purpose Execute particular phase of simulation of model

Syntax [sys,x0,str,ts] = model([],[],[],'sizes');
[sys,x0,str,ts] = model([],[],[],'compile');
outputs = model(t,x,u,'outputs');
derivs = model(t,x,u,'derivs');
dstates = model(t,x,u,'update');
model([],[],[],'term');

Description The model command executes a specific phase of the simulation of a
Simulink® model whose name is model. The command’s last (flag)
argument specifies the phase of the simulation to be executed. See
“Simulating Dynamic Systems” for a description of the steps that
Simulink software uses to simulate a model.

This command is intended to allow linear analysis and other M-file
program-based tools to run a simulation step by step, gathering
information about the model’s states and outputs at each step. It is not
intended to be used to run a model step by step, for example, to debug a
model. Use the Simulink debugger if you need to examine intermediate
results to debug a model.

4-105

model

Arguments
sys Vector of model size data:

• sys(1) = number of continuous states

• sys(2) = number of discrete states

• sys(3) = number of outputs

• sys(4) = number of inputs

• sys(5) = reserved

• sys(6) = direct-feedthrough flag (1 =
yes, 0 = no)

• sys(7) = number of sample times (=
number of rows in ts)

x0 Vector containing the initial conditions of
the system’s states

str Vector of names of the blocks associated
with the model’s states. The state names
and initial conditions appear in the same
order in str and x0, respectively.

ts An m-by-2 matrix containing the sample
time (period, offset) information

outputs Outputs of the model at time step t.

derivs Derivatives of the continuous states of
the model at time t.

dstates Discrete states of the model at time t.

t Time step

x State vector

4-106

model

u Inputs

flag String that indicates the simulation
phase to be executed:

• 'sizes' executes the size computation
phase of the simulation. This phase
determines the sizes of the model’s
inputs, outputs, state vector, etc.

• 'compile' executes the compilation
phase of the simulation. The
compilation phase propagates signal
and sample time attributes.

• 'update' computes the next values of
the model’s discrete states.

• 'outputs' computes the outputs of the
model’s blocks at time t.

• 'derivs'computes the derivatives of
the model’s continuous states at time
step t.

• 'term' causes Simulink software to
terminate simulation of the model.

Examples This command executes the compilation phase of the vdp model that
comes with Simulink software.

vdp([], [], [], 'compile')

The following command terminates the simulation initiated in the
previous example.

vdp([], [], [], 'term')

4-107

model

Note You must always terminate simulation of the model by invoking
the model command with the 'term' command. Simulink software does
not let you close the model until you have terminated the simulation.

See Also sim

4-108

modeladvisor

Purpose Open Model Advisor

Syntax modeladvisor('model')

Arguments model
A string specifying the name or handle to the model or subsystem.

Description modeladvisor(model) opens the Model Advisor on the model or
subsystem specified by model. If the specified model or subsystem is
not open, this command opens it.

Examples The command

modeladvisor('vdp')

opens the Model Advisor on the vdp demo model.

The command

modeladvisor('f14/Aircraft Dynamics Model')

opens the Model Advisor on the Aircraft Dynamics Model subsystem of
the f14 demo model.

The command

modeladvisor(gcs)

opens the Model Advisor on the currently selected subsystem.

The command

modeladvisor(bdroot)

opens the Model Advisor on the currently selected model.

See Also “Consulting the Model Advisor”

4-109

new_system

Purpose Create empty Simulink® system

Syntax new_system('sys')
new_system('sys', 'Model')
new_system('sys', 'Model', 'subsystem_path')
new_system('sys', 'Model', 'ErrorIfShadowed')
new_system('sys', 'Library')

Description new_system('sys') or new_system('sys', 'Model') creates an
empty system where ’sys’ is the name of the new system. This
command displays an error if ’sys’ is a MATLAB® keyword, 'simulink',
or more than 63 characters long.

new_system('sys', 'Model', 'subsystem_path') creates a system
from a subsystem where 'subsystem_path' is the full path of the
subsystem. The model that contains the subsystem must be open when
this command is executed.

new_system('sys', 'Model', 'ErrorIfShadowed') creates an empty
system having the specified name. This command generates an error
if another model, M-file, or variable of the same name exists on the
MATLAB path or workspace.

new_system('sys', 'Library') creates an empty library.

Note The new_system command does not open the window of the
system or library that it creates.

See Chapter 8, “Model and Block Parameters” for a list of the default
parameter values for the new system.

Examples This command creates a new system named 'mysys'.

new_system('mysys')

4-110

new_system

The command

new_system('mysys','Library')

creates, but does not open, a new library named 'sys'.

The command

new_system('vdp','Model','ErrorIfShadowed')

returns an error because 'vdp' is the name of a model on the MATLAB
path.

The commands

load_system('f14')
new_system('mycontroller','Model','f14/Controller')

create a new model named mycontroller that has the same contents as
does the subsystem named Controller in the f14 demo model.

See Also close_system, open_system, save_system

4-111

num2fixpt

Purpose Convert number to nearest value representable by specified fixed-point
data type

Syntax outValue = num2fixpt(OrigValue, FixPtDataType, FixPtScaling,
RndMeth, DoSatur)

Description num2fixpt(OrigValue, FixPtDataType, FixPtScaling, RndMeth,
DoSatur) returns the result of converting OrigValue to the nearest
value representable by the fixed-point data type FixPtDataType. Both
OrigValue and outValue are of data type double. As illustrated in the
example that follows, you can use num2fixpt to investigate quantization
error that might result from converting a number to a fixed-point data
type. The arguments of num2fixpt include:

OrigValue Value to be converted to a fixed-point
representation. Must be specified using a double
data type.

FixPtDataType The fixed-point data type used to convert
OrigValue.

FixPtScaling Scaling of the output in either Slope or [Slope
Bias] format. If FixPtDataType does not specify a
generalized fixed-point data type using the sfix or
ufix command, FixPtScaling is ignored.

4-112

num2fixpt

RndMeth Rounding technique used if the fixed-point data
type lacks the precision to represent OrigValue. If
FixPtDataType specifies a floating-point data type
using the float command, RndMeth is ignored.
Valid values are Zero, Nearest, Ceiling, or Floor
(the default).

DoSatur Indicates whether the output should be saturated
to the minimum or maximum representable value
upon underflow or overflow. If FixPtDataType
specifies a floating-point data type using the float
command, DoSatur is ignored. Valid values are on
or off (the default).

Examples Suppose you wish to investigate the quantization effect associated with
representing the real-world value 9.875 as a signed, 8-bit fixed-point
number. The command

num2fixpt(9.875, sfix(8), 2^-1)

ans =

9.50000000000000

reveals that a slope of 2^-1 results in a quantization error of 0.375.
The command

num2fixpt(9.875, sfix(8), 2^-2)

ans =

9.75000000000000

4-113

num2fixpt

demonstrates that a slope of 2^-2 reduces the quantization error to
0.125. But a slope of 2^-3, as used in the command

num2fixpt(9.875, sfix(8), 2^-3)

ans =

9.87500000000000

eliminates the quantization error entirely.

See Also fixptbestexp, fixptbestprec

4-114

open_system

Purpose Open Simulink® system window or block dialog box

Syntax open_system('sys')
open_system('blk')
open_system('blk', 'force')
open_system('blk', 'parameter')
open_system('blk', 'mask')
open_system('blk', 'OpenFcn')
open_system('sys', 'destsys', 'replace')
open_system('sys', 'destsys', reuse')

Description open_system('sys') opens the specified system or subsystem window,
where 'sys' is the name of a model on the MATLAB® path, the fully
qualified pathname of a model, or the relative pathname of a subsystem
of an already open system (for example, engine/Combustion). On
UNIX® systems, the fully qualified pathname of a model can start with
a tilde (~), signifying your home directory.

open_system('blk'), where 'blk' is a full block pathname, opens the
dialog box associated with the specified block. If the block’s OpenFcn
callback parameter is defined, the routine is evaluated.

open_system('blk', force), where 'blk' is a full pathname or a
masked system, looks under the mask of the specified system. This
command is equivalent to using the Look Under Mask menu item.

open_system('blk', 'parameter') opens this block’s parameter dialog
box.

open_system('sys', 'mask') opens this block’s mask.

open_system('blk', 'OpenFcn') runs this block’s open function.

open_system('sys', 'destsys', 'replace') replaces the window
of the previously opened system destsys with the window of the
subsystem sys opened by this command. The location of the new
window is determined by the location of the destination system destsys
while the size of the window will match that used by sys.

4-115

open_system

open_system('sys', 'destsys', 'reuse') reuses the window of
the previously opened system destsys to display the contents of the
subsystem sys opened by this command. In this case, sys will be scaled
to fit within the window size determined by the destination system
destsys.

Note Use the MATLAB sprintf command to insert carriage return or
line feed characters into paths passed to the open_system command.
For example, the path to the Aircraft Dynamics Model subsystem of the
f14 demo model contains line feeds. To open the subsystem, enter the
following command at the MATLAB command line:

open_system(['f14/Aircraft' sprintf('\n') 'Dynamics' sprintf('\n') 'Model'])

Examples This command opens the controller system in its default screen
location.

open_system('controller');

This command opens the block dialog box for the Gain block in the
controller system.

open_system('controller/Gain');

This command opens f14 into the f14/Controller window using reuse
mode.

open_system('f14','f14/Controller','reuse');

Suppose that mymodel contains a masked subsystem, A, and a block, B,
whose OpenFcn contains the following lines:

open_system('mymodel/B', 'parameter');
open_system('mymodel/A', 'mask');

4-116

open_system

Then opening block B causes both the parameter dialog box for B and
the mask dialog box for A to appear.

This command opens f14 and vdp with a vectorized operation.

open_system({'f14','vdp'});

See Also close_system, load_system, new_system, save_system

4-117

openDialog

Purpose Open configuration parameters dialog

Syntax openDialog(configObj)

Arguments configObj
A configuration set (Simulink.ConfigSet) or configuration
reference (Simulink.ConfigSetRef)

Description openDialog opens a configuration parameters dialog box. If configObj
is a configuration set, the dialog box displays the configuration set.
If configObj is a configuration reference, the dialog box displays the
referenced configuration set, or generates an error if the reference does
not specify a valid configuration set. If the dialog box is already open,
its window becomes selected.

Example The following example opens a configuration parameters dialog box that
shows the current parameters for the current model. The parameter
values derive from the active configuration set or configuration
reference (configuration object). The code is the same in either case; the
only difference is which type of configuration object is currently active.

myConfigObj = getActiveConfigSet(gcs);
openDialog(myConfigObj);

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
detachConfigSet, getActiveConfigSet, getConfigSet,
getConfigSets, setActiveConfigSet

4-118

replace_block

Purpose Replace blocks in Simulink® model

Syntax replace_block('sys', 'blk1', 'blk2', 'noprompt')
replace_block('sys', 'Parameter', 'value', 'blk', ...)

Description replace_block('sys', 'blk1', 'blk2') replaces all blocks in 'sys'
having the block or mask type 'blk1' with 'blk2'.

• If 'blk2' is a Simulink built-in block, only the block name is
necessary.

• If 'blk' is in another system, its full block pathname is required.

• If 'noprompt' is omitted, Simulink software displays a dialog
box that asks you to select matching blocks before making the
replacement. Specifying the 'noprompt' argument suppresses the
dialog box from being displayed.

• If a return variable is specified, the paths of the replaced blocks are
stored in that variable.

replace_block('sys', 'Parameter', 'value', ..., 'blk')
replaces all blocks in 'sys' having the specified values for the specified
parameters with 'blk'. You can specify any number of parameter
name/value pairs. For information on block parameters, see Chapter
8, “Model and Block Parameters”

Note Because it may be difficult to undo the changes this command
makes, it is a good idea to save your system first.

Examples This command replaces all Gain blocks in the f14 system with
Integrator blocks and stores the paths of the replaced blocks in
RepNames. Simulink software lists the matching blocks in a dialog box
before making the replacement.

4-119

replace_block

RepNames = replace_block('f14','Gain','Integrator')

This command replaces all blocks in the Unlocked subsystem in the
clutch system having a Gain of 'bv' with the Integrator block.
Simulink software displays a dialog box listing the matching blocks
before making the replacement.

replace_block('clutch/Unlocked','Gain','bv','Integrator')

This command replaces the Gain blocks in the f14 system with
Integrator blocks but does not display the dialog box.

replace_block('f14','Gain','Integrator','noprompt')

This command replaces the Small_Wheel subsystem in the
wheel_analysis model with the Large_Wheel subsystem from the
wheels library.

replace_block('wheel_analysis','Name','Small_Wheel','wheels/Large_Wheel')

See Also find_system, set_param

4-120

save_system

Purpose Save Simulink® system

Syntax save_system
save_system(’sys’)
save_system(’sys’, ’newname’)
save_system(’sys’, ’newname', 'BreakAllLinks', true)
save_system(’sys’, ’newname', 'BreakUserLinks', true)
save_system(’sys’, ’newname’, 'SaveModelWorkspace', true)
save_system(’sys’, ’newname’, 'ErrorIfShadowed', true)
save_system(’sys’, ’newname', 'SaveAsVersion', 'version')
save_system(’sys’, ’newname’, 'OverWriteIfChangedOnDisk', true)
save_system(’sys’, ’newname’, 'SaveModelWorkspace', true,
'BreakLinks', true, 'OverwriteIfChangedOnDisk', true)

Description save_system saves the current top-level system to a file with its current
name.

save_system(’sys’) saves the specified top-level system to a file with
its current name. The system must be open. ’sys’ can be a string, a
cell array of strings, a numeric handle, or an array of numeric handles.

save_system(’sys’, ’newname’) saves the specified top-level system
to a file with the specified new name. The system to be saved must
be open. The new name can be a file name, in which case Simulink
software saves the system in the working directory, or a fully qualified
pathname. On UNIX® systems, the fully qualified pathname can start
with a tilde (~), signifying your home directory.

’newname’ can be empty ([]), in which case the current name is used.
If ’sys’ refers to more than one block diagram, ’newname’ must be a
cell array of new names.

This command displays an error if you enter any of the following as
the new model name:

• A MATLAB® keyword

• 'simulink'

4-121

save_system

• More than 63 characters

Additional arguments must be supplied as name-value pairs, in any
order. Allowed names are:

• ErrorIfShadowed: true or false (default: false)

Generates an error if the specified new name already exists on the
MATLAB path or workspace.

• BreakAllLinks: true or false (default: false)

Replaces links to library blocks with copies of the library blocks in
the saved file. The 'BreakLinks' option affects any linked block,
including user-defined and Simulink library blocks.

Note

The 'BreakAllLinks' option can result in compatibility issues when
upgrading to newer versions of Simulink software. For example:

- Any masks on top of library links to Simulink S-functions will not
upgrade to the new version of the S-function.

- Any library links to masked subsystems in a Simulink library will
not upgrade to the new subsystem behavior.

- Any broken links prevent the automatic library forwarding
mechanism from upgrading the link.

If you have saved a model with broken links, use the Check model,
local libraries, and referenced models for known upgrade
issues option in the Model Advisor to scan the model for out-of-date
blocks. You can then use the slupdate command to upgrade the
Simulink blocks to their current versions. Subsequently running the
Model Advisor lists any remaining third-party library and optional
Simulink blockset blocks that are still out of date and need to be
manually upgraded.

4-122

save_system

• BreakUserLinks: true or false (default: false)

Replaces links to user-defined library blocks with copies of the library
blocks in the saved file.

• SaveAsVersion: MATLAB version name (default: current)

Saves the system in a form that can be loaded by a specified version
of Simulink software. Valid values include R12, R12P1, R13, R13SP1,
R14, R14SP1, R14SP2, R14SP3, R2006A, R2006B, R2007A. These
are case insensitive. If the system to be saved contains blocks not
supported by the specified Simulink software version, the command
replaces the unsupported blocks with empty masked subsystem
blocks colored yellow. As a result, the converted system may generate
incorrect results.

• OverwriteIfChangedOnDisk: true or false (default: false)

If the file has changed on disk since the model was loaded,
save_system displays an error to prevent the changes on disk from
being overwritten. This error appears only if the Saving the model
option in the Model File Change Notification section of the
Simulink Preferences dialog is selected.

To save the model regardless of whether the file has been changed on
disk supply the OverwriteIfChangedOnDisk option with value true.

• SaveModelWorkspace: true or false (default: false)

If the model workspace DataSource is a MAT-file, this command also
saves the contents of the model workspace. 'SaveModelWorkspace'
is most useful when DataSource is a MAT-file.

The same options are applied to all the block diagrams that are saved.

save_system returns the full name of the file that was saved, as a string.
If multiple files were saved, the return value is a cell array of strings.

save_system can save only entire block diagrams, but the utility
function Simulink.SubSystem.copyContentsToBlockDiagram can be
used to copy the contents of a subsystem into a new block diagram,
which can then be saved using save_system.

4-123

save_system

If you set the UpdateHistory property of the model to
UpdateHistoryWhenSave, you see the following behavior:

• When you save interactively, you see a dialog prompting for a
comment to include in the model history.

• When you save using save_system, you are not prompted for a
comment. save_system reuses the previous comment, unless you set
'ModifiedComment' before saving, as follows:

set_param(mymodel,'ModifiedComment',mycomment)

Examples This command saves the current system.

save_system

This command saves the vdp system with the name vdp.

save_system('vdp')

This command saves the vdp system to a file with the name 'myvdp'.

save_system('vdp', 'myvdp')

This command saves the vdp system to another directory.

save_system('vdp', 'C:\TMP\vdp.mdl')

This command saves the vdp system to a file with the name 'myvdp'
and replaces links to library blocks with copies of the library blocks
in the saved file.

save_system('vdp','myvdp','BreakLinks', true)

Both of these commands save the current model (with its current name),
and break any library links in it:

save_system('mymodel,'mymodel','BreakLinks',true)
save_system('mymodel,[],'BreakLinks',true)

4-124

save_system

This command saves the current model with a new name, but displays
an error (instead of saving) if something with this name already exists
on the MATLAB path:

save_system('mymodel','mynewmodel','ErrorIfShadowed',true)

This command tries to save the vdp system to a file with the name
'max', but returns an error because 'max' is the name of a MATLAB
function.

save_system('vdp', 'max', 'ErrorIfShadowed', true)

This command saves the vdp system to Simulink Version R13SP1 with
the name 'myvdp'. It does not replace links to library blocks with
copies of the library blocks.

save_system('vdp','myvdp','SaveAsVersion','R13SP1')

This command saves the current model with a new name, saves the
model workspace, breaks any library links, and overwrites if the file
has changed on disk:

save_system('mymodel, 'mynewmodel', 'SaveModelWorkspace',
true, 'BreakLinks',true, 'OverwriteIfChangedOnDisk', true)

This command returns the full path name of the file that was saved, as
a string. If multiple files were saved, the return value is a cell array of
strings.

filename = save_system('mymodel')

See Also close_system, new_system, open_system

4-125

set_param

Purpose Set Simulink® system and block parameters

Syntax set_param('obj', 'parameter1', value1, 'parameter2', value2, ...)
set_param(0, 'modelparm1', value1, 'modelparm2', value2, ...)

Description set_param('obj', 'parameter1', value1, 'parameter2',
value2, ...), where 'obj' is a system or block path, sets the specified
parameters to the specified values. Value strings are case sensitive.
Case is ignored for parameter names. Any parameters that correspond
to dialog box entries have string values. Model and block parameters
are listed in Chapter 8, “Model and Block Parameters”.

set_param(0, 'modelparm1', value1, 'modelparm2', value2,
...) sets the specified model parameters to default values, i.e., to
values that Simulink software assigns to the parameters when it creates
a model. You can use this form of set_param in your MATLAB® startup
file to specify your own default values for Simulink model parameters.

You can change block parameter values in the workspace during a
simulation and update the block diagram with these changes. To do
this, make the changes in the command window, then make the model
window the active window, then choose Update Diagram from the
Edit menu.

Note Most block parameter values must be specified as strings. Two
exceptions are the Position and UserData parameters, common to all
blocks.

Examples This command sets the Solver and StopTime parameters of the vdp
system.

set_param('vdp', 'Solver', 'ode15s', 'StopTime', '3000')

4-126

set_param

This command sets the Gain parameter of block Mu in the vdp system
to 1000.

set_param('vdp/Mu', 'Gain', '1000')

This command sets the position of the Fcn block in the vdp system.

set_param('vdp/Fcn', 'Position', [50 100 110 120])

This command sets the Zeros and Poles parameters for the Zero-Pole
block in the mymodel system.

set_param('mymodel/Zero-Pole','Zeros','[2 4]','Poles','[1 2 3]')

This command sets the Gain parameter for a block in a masked
subsystem. The variable k is associated with the Gain parameter.

set_param('mymodel/Subsystem', 'k', '10')

This command sets the OpenFcn callback parameter of the block named
Compute in system mymodel. The function 'my_open_fcn' executes
when you double-click on the Compute block (see “Using Callback
Functions”).

set_param('mymodel/Compute', 'OpenFcn', 'my_open_fcn')

See Also find_system, get_param

4-127

setActiveConfigSet

Purpose Specify model’s active configuration set or configuration reference

Syntax setActiveConfigSet('model', 'configObjName')

Arguments model
The name of an open model, or gcs to specify the current model

configObjName
The name of a configuration set (Simulink.ConfigSet) or
configuration reference (Simulink.ConfigSetRef)

Description setActiveConfigSet specifies the active configuration set or
configuration reference (configuration object) of model to be the
configuration object specified by configObjName. If no such
configuration object is attached to the model, an error occurs. The
previously active configuration object becomes inactive.

Example The following example makes DevConfig the active configuration object
of the current model. The code is the same whether DevConfig is a
configuration set or configuration reference.

setActiveConfigSet(gcs, 'DevConfig');

See Also “Configuration Sets”, “Referencing Configuration Sets”

attachConfigSet, attachConfigSetCopy, closeDialog,
detachConfigSet, getActiveConfigSet, getConfigSet,
getConfigSets, openDialog

4-128

sfix

Purpose Create MATLAB® structure describing signed generalized fixed-point
data type

Syntax a = sfix(TotalBits)

Description sfix(TotalBits) returns a MATLAB structure that describes the data
type of a signed generalized fixed-point number with a word size given
by TotalBits.

sfix is automatically called when a signed generalized fixed-point data
type is specified in a block dialog box.

Note A default binary point is not included in this data type description.
Instead, the scaling must be explicitly defined in the block dialog box.

Examples Define a 16-bit signed generalized fixed-point data type:

a = sfix(16)
a =

Class: 'FIX'
IsSigned: 1
MantBits: 16

See Also fixdt, float, sfrac, sint, ufix, ufrac, uint

4-129

sfrac

Purpose Create MATLAB® structure describing signed fractional data type

Syntax a = sfrac(TotalBits)
a = sfrac(TotalBits, GuardBits)

Description sfrac(TotalBits) returns a MATLAB structure that describes the
data type of a signed fractional number with a word size given by
TotalBits.

sfrac(TotalBits, GuardBits) returns a MATLAB structure that
describes the data type of a signed fractional number. The total word
size is given by TotalBits with GuardBits bits located to the left of
the sign bit.

sfrac is automatically called when a signed fractional data type is
specified in a block dialog box.

The default binary point for this data type is assumed to lie immediately
to the right of the sign bit. If guard bits are specified, they lie to the left
of the binary point in addition to the sign bit.

Examples Define an 8-bit signed fractional data type with 4 guard bits. Note that
the range of this number is -24 = -16 to (1 - 2(1 - 8)).24 = 15.875:

a = sfrac(8,4)
a =

Class: 'FRAC'
IsSigned: 1
MantBits: 8

GuardBits: 4

See Also fixdt, float, sfix, sint, ufix, ufrac, uint

4-130

signalbuilder

Purpose Create and access Signal Builder blocks

Syntax [time, data] = signalbuilder(block)
[time, data, siglabels] = signalbuilder(block)
[time, data, siglabels, grouplabels] = signalbuilder(block)
block = signalbuilder([], 'create', time, data, siglabels,

grouplabels)
block = signalbuilder(block, 'append', time, data, siglabels,

grouplabels)

[time, data] = signalbuilder(block, 'get', signal, group)
signalbuilder(block, 'set', signal, group, time, data)

index = signalbuilder(block, 'activegroup')
signalbuilder(block, 'activegroup', index)

signalbuilder(block, 'print', [])
signalbuilder(block, 'print', config, printArgs)
figh = signalbuilder(block, 'print', config, 'figure')

Description Use the signalbuilder command to interact programmatically with
Signal Builder blocks.

• “Create and Access Signal Builder Blocks” on page 4-131

• “Get/Set Methods for Specific Signals and Groups” on page 4-133

• “Query and Set the Active Group” on page 4-133

• “Print Signal Groups” on page 4-133

Create and Access Signal Builder Blocks

[time, data] = signalbuilder(block) returns the time
(x-coordinate) and amplitude (y-coordinate) data of the Signal Builder
block, block.

The output arguments, time and data, take different formats depending
on the block configuration:

4-131

signalbuilder

Configuration Time/Data Format

1 signal, 1 group Row vector of break points.

>1 signal, 1 group Column cell vector where each element
corresponds to a separate signal and
contains a row vector of breakpoints.

1 signal, >1 group Row cell vector where each element
corresponds to a separate group and
contains a row vector of breakpoints.

>1 signal, >1 group Cell matrix where each element (i, j)
corresponds to signal i and group j.

[time, data, siglabels] = signalbuilder(block) returns the
signal labels, siglabels, in a string or a cell array of strings.

[time, data, siglabels, grouplabels] = signalbuilder(block)
returns the group labels, grouplabels, in a string or a cell array of
strings.

block = signalbuilder([], 'create', time, data, siglabels,
grouplabels) creates a Signal Builder block in a new Simulink® model
using the specified values. The preceding table describes the allowable
formats of time and data. If data is a cell array and time is a vector,
the time values are duplicated for each element of data. Each vector
in time and data must be the same length and have at least two
elements. If time is a cell array, all elements in a column must have
the same initial and final value. Signal labels, siglabels, and group
labels, grouplabels, can be omitted to use default values. The function
returns the path to the new block, block.

block = signalbuilder(block, 'append', time, data,
siglabels, grouplabels) appends new groups to the Signal Builder
block, block. The time and data arguments must have the same
number of signals as the existing block.

4-132

signalbuilder

Get/Set Methods for Specific Signals and Groups

[time, data] = signalbuilder(block, 'get', signal, group)
gets the time and data values for the specified signal(s) and group(s).
The signal argument can be the name of a signal, a scalar index of a
signal, or an array of signal indices. The group argument can be a group
label, a scalar index, or an array of indices.

signalbuilder(block, 'set', signal, group, time, data) sets
the time and data values for the specified signal(s) and group(s). Use
empty values of time and data to remove groups and signals.

Note The signalbuilder function does not allow you to alter and
delete data in the same invocation.

Query and Set the Active Group

index = signalbuilder(block, 'activegroup') gets the index of
the active group.

signalbuilder(block, 'activegroup', index) sets the active group
index to index.

Print Signal Groups

signalbuilder(block, 'print', []) prints the currently active
signal group.

signalbuilder(block, 'print', config, printArgs) prints the
currently active signal group or the signal group that config specifies.
The argument config is a structure that allows you to customize
the printed appearance of a signal group. The config structure may
contain any of the following fields:

Field Description Example
Value

groupIndex Scalar specifying index of signal
group to print

2

4-133

signalbuilder

Field Description Example
Value

timeRange Two-element vector specifying
the time range to print (must not
exceed the block’s time range)

[3 6]

visibleSignals Vector specifying index of signals
to print

[1 2]

yLimits Cell array specifying limits for each
signal’s y-axis

{[-1 1],
[0 1]}

extent Two-element vector of the form:

[width, height]

specifying the dimensions (in
pixels) of the area in which to print
the signals

[500 300]

showTitle Logical value specifying whether to
print a title; true (1) prints the title

false

The optional argument printArgs allows you to configure print options
(see print in the MATLAB® Function Reference).

figh = signalbuilder(block, 'print', config, 'figure') prints
the currently active signal group or the signal group that config
specifies to a new hidden figure handle, figh.

Examples Example 1

The following command creates a new Signal Builder block in a new
model editor window:

block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});

The Signal Builder block contains two signals in one group. To alter the
second signal in the group, use the set keyword as follows:

4-134

signalbuilder

signalbuilder(block, 'set', 2, 1, [0 5], [2 0])

To delete the first signal from the group, enter the following command:

signalbuilder(block, 'set', 1, 1, [], [])

To add a new signal in a new group, use the append keyword as follows:

signalbuilder(block, 'append', [0 2.5 5], [0 2 0]);

Example 2

The following command creates a new Signal Builder block in a new
model editor window:

block = signalbuilder([], 'create', [0 2], {[0 1],[1 0]});

The Signal Builder block has two groups, each of which contains a
signal. To delete the second group, simply delete its signal with the
following command:

signalbuilder(block, 'set', 1, 2, [], [])

Example 3

The following command creates a new Signal Builder block in a new
model editor window:

block = signalbuilder([], 'create', [0 1], ...
{[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]});

The Signal Builder block has two groups, each of which contains three
signals.

4-135

sim

Purpose Simulate dynamic system

Syntax sim(model,timespan,options,ut);
[t,x,y] = sim(model,timespan,options,ut);
[t,x,y1, y2, ..., yn] = sim(model,timespan,options,ut);

Description The sim command causes the specified Simulink® model to be executed.
The model is executed with the data passed to the sim command,
which may include parameter values specified in an options structure.
The values in the structure override the values shown for block
diagram parameters in the Configuration Parameters dialog box, and
the structure may set additional parameters that are not otherwise
available (such as DstWorkSpace). The parameters in an options
structure are useful for setting conditions for a specific simulation run.

Note sim cannot be called from inside parfor. Doing so causes the
simulation to hang.

Use the simset command to create an options structure for use by
the sim command. The simset command inputs name-value pairs and
sets each named parameter to the value indicated. You do not need to
specify values for all block diagram parameters that simset accepts.
In most cases, an unspecified parameter defaults to the block diagram
value that is current when sim executes the model, but some exceptions
exist. See the simset command documentation for details.

Note If you use an options structure, check the simset documentation
to determine the values used by the sim command for the parameters
that you do not specify.

With one exception, the default workspace for a simulation executed by
the sim command is the MATLAB® workspace. The exception is that

4-136

sim

the default workspace for To Workspace blocks is the workspace of the
function that invoked the sim command.

Superseding the Base Workspace

When you run a simulation interactively, the Simulink software tries
to resolve any symbols used in the model to appropriate workspace
items, as described in “Resolving Symbols” and “Hierarchical Symbol
Resolution”, and it writes any exported or logged data to the MATLAB
base workspace, as described in “Importing and Exporting Simulation
Data” and “Logging Signals”.

When you use the sim command to run a simulation programmatically,
you have two options that do not exist with interactive simulation: you
can specify a workspace other than the MATLAB base workspace as
the last workspace searched in hierarchical symbol resolution, and a
workspace other than the MATLAB base workspace as the destination
for any data logged or exported during simulation.

Most simulation is interactive, so most Simulink documentation
does not mention these possibilities: it unconditionally describes the
MATLAB base workspace as the final workspace searched during
hierarchical symbol resolution, and the workspace to which any
exported or logged data is written.

To supersede the base workspace for symbol resolution, data output,
or both, provide an options structure to the sim command and set one
or both of the following two structure fields:

• SrcWorkspace — Specifies which workspace is searched last during
hierarchical symbol resolution.

• DstWorkspace — Specifies which workspace is the destination of any
logged or exported data.

Each of these fields can take any of these three values:

• base — Use the base workspace, just as it would be used if no
options structure had been provided.

4-137

sim

• current — Supersede the base workspace with the workspace of the
function that called the sim command.

• parent — Supersede the base workspace with the workspace of the
function that called the function that called the sim command.

Note When you create a new options structure, the default value for
SrcWorkspace is base, but the default for DstWorkspace is current,
which can cause unexpected behavior if you inadvertently accept it. See
the simset documentation for a complete list of all options structure
fields and their default values.

If you execute the sim command without providing an options
structure, hierarchical resolution, data logging, and data export occur
exactly as they do for interactive simulation. When you supersede
the base workspace, the change is effective only for the duration of
the sim command. After the command completes, the base workspace
is accessible just as it was previously. You cannot supersede the base
workspace for a sequence of programmatic simulations by setting a
global state: each execution of the sim command must specify its own
SrcWorkspace or DstWorkspace as needed.

Arguments t Returns the simulation’s time vector.

x Returns the simulation’s state matrix consisting
of continuous states followed by discrete states.

y Returns the simulation’s output matrix. Each
column contains the output of a root-level
Outport block, in port number order. If any
Outport block has a vector input, its output
takes the appropriate number of columns.

4-138

sim

y1,...,yn Each yi returns the output of the corresponding
root-level Outport block for a model that has
n such blocks.

model Name of a block diagram.

timespan Simulation start and stop time. Specify as one
of these:

tFinal to specify the stop time. The start time
is 0.

[tStart tFinal] to specify the start and stop
times.

[tStart OutputTimes tFinal] to specify
the start and stop times and time points to
be returned in t. Generally, t includes more
time points. OutputTimes is equivalent to
specifying Configuration Parameters > Data
Import/Export > Output options > Produce
additional output.

4-139

sim

options Optional simulation parameters specified as a
structure created by the simset command (see
simset).

ut Optional external inputs to top-level Inport
blocks. ut can be a MATLAB function
(expressed as a string) that specifies the input u
= UT(t) at each simulation time step, a table
of input values versus time for all input ports,
or a comma-separated list of tables, ut1, ut2,
..., each of which corresponds to a specific port.
Tabular input for all ports can be in the form
of a MATLAB array or a structure. Tabular
input for individual ports must be in the form
of a structure. See “Importing Data from a
Workspace” in the online documentation for a
description of the array and structure input
formats.

Examples This command simulates the Van der Pol equations, using the vdp
model that comes with Simulink software. The command uses all
default parameters.

[t,x,y] = sim('vdp')

This command simulates the Van der Pol equations, using the
parameter values associated with the vdp model, but defines a value
for the Refine parameter.

[t,x,y] = sim('vdp', [], simset('Refine',2));

This command simulates the Van der Pol equations for 1,000 seconds,
saving the last 100 rows of the return variables. The simulation outputs
values for t and y only, but saves the final state vector in a variable
called xFinal.

[t,x,y] = sim('vdp', 1000, simset('MaxRows', 100,

'OutputVariables', 'ty', 'FinalStateName', 'xFinal'));

4-140

sim

See Also simset, simget

4-141

simget

Purpose Get settings of model’s simulation parameters

Syntax struct = simget(model)
value = simget(model, ’param’)
value = simget(OptionStructure, param)
simget

Description struct = simget(model) returns the current simulation parameter
settings for the specified model as a structure compatible with the
options argument of the sim command. You can use this command
along with the simset command to override model-specified simulation
options for a particular simulation run. See simset for more
information. If the model uses a workspace variable to specify a
simulation parameter, simget returns the variable’s value, not its name.
If the variable does not exist in the workspace, Simulink® software
issues an error message.

value = simget(model, 'param') returns the value of the simulation
parameter, ’param’, specified by the model, model.

value = simget(OptionStructure, param) extracts the value of the
specified simulation parameter from OptionStructure, returning an
empty matrix if the value is not specified in the structure. param can
be a cell array containing a list of parameter names. If a cell array is
used, the output is also a cell array.

simget returns a structure containing the names of simulation
parameters recognized by the simget command.

You need to enter only as many leading characters of a property name
as are necessary to identify it.

Examples This command retrieves the simulation options for the vdp model.

options = simget('vdp');

4-142

simget

This command retrieves the value of the Refine property for the vdp
model.

refine = simget('vdp', 'Refine');

See Also sim, simset

4-143

simplot

Purpose Plot simulation data in figure window

Syntax simplot(data);
simplot(time, data);
simplot(data, ports);
simplot(data, 'diff')
simplot(time, data, ports, 'diff')

Description The simplot command plots output from a simulation in a Handle
Graphics® figure window. The plot looks like the display on the screen
of a Scope block. Plotting the output on a figure window allows you
to annotate and print the output.

The data to be plotted can be either a data structure or a matrix of the
form produced by Simulink® output blocks.

Specifying a Separate Time Vector

If data is a matrix or a structure without time, you can specify a
separate time vector. time must be a vector with the same length as
data.

Foe example:

simplot(time,data)

Specifying Specific Ports to Display

If data is a structure produced by a multi-port Scope block, the data
from each port is displayed in a separate subplot. You can select specific
ports to display by supplying a vector of port indices.

For example:

ports = [1,3];
simplot(data,ports)

plots the data from the first and third ports.

4-144

simplot

Overlaying Plots from Multiple Runs

If data is a cell array of structures or matrices, Simulink software
overlays the plots from each element so that you can compare multiple
runs. Each run is assumed to have identical structure. Line styles are
used to differentiate between runs.

For example:

data = {run1, run2};
simplot(data)

overlays the data from run1 and run2.

Note If data contains Matrices or Structures without time, the data
sets for all runs must be the same size.

You can use the 'diff' flag to display the differences between multiple
runs. When you specify the 'diff' flag, Simulink software subtracts
the first run from subsequent runs, and plots the results with the line
style of the final run being compared.

For example:

data = {run1,run2};
simplot(data, 'diff')

plots run2 — run 1 using the line style of run2.

Note Simulink software uses linear interpolation if the time vectors
are not identical.

If the start and stop times differ between runs, the difference is only
plotted for the region of overlap.

4-145

simplot

Combining Input Argument Options:

The options described above can be used in various combinations. All
input arguments except for data are optional but when included must
be entered in the following order:

simplot(time, data, ports, 'diff')

Obtaining Object Handles

You can obtain the handles for the plotted figure, its axes and lines
using the simplot command:

• hfig = simplot(data) — returns the figure handles.

• haxes = simplot(data) — returns the handles for the figure axes.

• hlins = simplot(data) — returns the handles for the lines in the
figure.

Arguments data Data produced by one of the Simulink output
blocks (for example, a root-level Outport block
or a To Workspace block) or in one of the output
formats used by those blocks: Array, Structure,
Structure with time (see “Data Import/Export
Pane”).

time The vector of sample times produced by an output
block when you have selected Array or Structure
as the simulation’s output format.

The simplot command ignores this argument if the
format of the data is Structure with time.

4-146

simplot

ports The vector of port indices from which to display
data. If the data is a structure produced by a
multi-port Scope block, the data from each port is
displayed in a separate subplot.

'diff' Displays the differences between multiple runs.
When you specify the ’diff ’ flag, Simulink software
subtracts the first run from subsequent runs, and
plots the results with the line style of the final run
being compared.

Examples The following sequence of commands

vdp
set_param(gcs, 'SaveOutput', 'on')
set_param(gcs, 'SaveFormat', 'StructureWithTime')
sim(gcs)
simplot(yout)

4-147

simplot

plots the output of the vdp demo model on a figure window as follows.

See Also sim, set_param, plot

4-148

simset

Purpose Specify simulation options for simulations run via sim command

Syntax options = simset(param, value, ...);
options = simset(old_opstruct, param, value, ...);
options = simset(old_opstruct, new_opstruct);
simset

Description The simset command creates and returns the structure required by the
options argument of the sim command. The structure specifies the
simulation parameter values to be used for the simulation run initiated
by the sim command.

The block diagram parameter values in an options structure created by
simset affect simulation only when the sim command executes with that
options structure as an argument. After the simulation terminates,
the values shown for block diagram parameters in the Configuration
Parameters dialog box remain unchanged. The options structure
persists and can be reused, perhaps after changing some of its values.

Note Use the set_param command to change a corresponding block
diagram configuration parameter.

You can enter the values of the parameters as paired arguments of
the simset command, e.g., 'Debug', 'on'. You need enter only as
many leading characters as are necessary to identify a parameter. The
structure contains default values for parameters that you do not specify.

options = simset(param, value, ...) returns an options structure
containing the specified values for the specified parameters and default
values for unspecified parameters.

options = simset(old_opstruct, param, value, ...) modifies
the specified parameters in old_opstruct, an existing structure. You
can use this form of the command to override the values of simulation
parameters specified by the model to be simulated. To do this, use the

4-149

simset

simget command to get the settings specified by the model and pass the
settings to simset along with the parameters that you want to override.

options = simset(old_opstruct, new_opstruct) combines two
existing options structures, old_opstruct and new_opstruct, into
options. Any properties defined in new_opstruct overwrite the same
properties defined in old_opstruct.

simset with no input arguments displays all parameter names and
values that the simset command can specify

If a parameter is set more than once within a call to the simset
command, the last specified value is used. For example:

simset('MaxStep', 0.01, 'MaxStep', 0.02)

assigns the final value of 0.02 to the MaxStep parameter.

Parameters AbsTol positive scalar {1e-6}
Absolute error tolerance. This scalar applies to all elements of the
state vector. AbsTol applies only to the variable-step solvers.

Debug 'on' | {'off'} | cmds
Debug. Starts the simulation in debug mode (see “Starting the
Debugger” in Using Simulink® for more information). The value
of this option can be a cell array of commands to be sent to the
debugger after it starts, e.g.,

opts = simset('debug', ...
{'strace 4', ...
'diary solvertrace.txt', ...
'cont', ...
'diary off', ...
'cont'})

sim('vdp',[], opts);

Decimation positive integer {1}
Decimation for output variables. Decimation factor applied to
the return variables t, x, and y. A decimation factor of 1 returns

4-150

simset

every data logging time point, a decimation factor of 2 returns
every other data logging time point, etc.

DstWorkspace base | {current} | parent
Where to assign variables. Specifies the workspace in which to
assign any variables defined as return variables or as output
variables on the To Workspace block. See “Superseding the Base
Workspace” on page 4-137 for details.

ExtrapolationOrder 1 | 2 | 3 | {4}
ode14x extrapolation order. Specifies extrapolation order of the
ode14x implicit fixed-step solver.

FinalStateName string {''}
Name of final states variable. This property specifies the name of
a variable in which Simulink software saves the model’s states at
the end of the simulation.

FixedStep positive scalar
Fixed step size. This property applies only to the fixed-step solvers.
If the model contains discrete components, the default is the
fundamental sample time; otherwise, the default is one-fiftieth of
the simulation interval.

InitialState vector {[]}
Initial continuous and discrete states. The initial state vector
consists of the continuous states (if any) followed by the discrete
states (if any). InitialState supersedes the initial states specified
in the model. The default, an empty matrix, causes the initial
state values specified in the model to be used. The initial state
values can be specified using either an array, structure, or
structure-with-time format. See Importing and Exporting States
for more information.

InitialStep positive scalar {auto}
Suggested initial step size. This property applies only to the
variable-step solvers. The solvers try a step size of InitialStep
first. By default, the solvers determine an initial step size
automatically.

4-151

simset

MaxOrder 1 | 2 | 3 | 4 | {5}
Maximum order of ode15s. This property applies only to ode15s.

MaxDataPoints nonnegative integer {0}
Limit number of output data points. This property limits
the number of data points returned in t, x, and y to the last
MaxDataPoints data logging time points. If specified as 0, the
default, no limit is imposed.

MaxStep positive scalar {auto}
Upper bound on the step size. This property applies only to the
variable-step solvers and defaults to one-fiftieth of the simulation
interval.

MinStep [positive scalar, nonnegative integer] {auto}
Lower bound on the step size. This property applies only to the
variable-step solvers and defaults to one-fiftieth of the simulation
interval.

NumberNewtonIterations positive integer {1}
Number of Newton iterations. Specifies number of Newton’s
Method iterations to be performed by the ode14x implicit
fixed-step solver.

OutputPoints {specified} | all
Determine output points. When set to specified, the solver
produces outputs t, x, and y only at the times specified in
timespan. When set to all, t, x, and y also include the time steps
taken by the solver.

OutputVariables {txy} | tx | ty | xy | t | x | y
Set output variables. If 't', 'x', or 'y' is missing from the
property string, the solver produces an empty matrix in the
corresponding output t, x, or y.

Refine positive integer {1}
Output refine factor. This property increases the number of
output points by the specified factor, producing smoother output.
Refine applies only to the variable-step solvers. It is ignored if
output times are specified.

4-152

simset

RelTol positive scalar {1e-3}
Relative error tolerance. This property applies to all elements
of the state vector. The estimated error in each integration step
satisfies

e(i) <= max(RelTol*abs(x(i)),AbsTol(i))

This property applies only to the variable-step solvers and
defaults to 1e-3, which corresponds to accuracy within 0.1%.

Solver VariableStepDiscrete |
ode45 | ode23 | ode113 | ode15s | ode23s |
FixedStepDiscrete |
ode5 | ode4 | ode3 | ode2 | ode1

Method to advance time. This property specifies the solver that
is used to advance time.

SaveFormat {'Array'} | 'Structure' | 'StructureWithTime'
How to save output to workspace. Specifies format for exporting
model states and root-level outputs to the MATLAB® workspace.
See “Exporting Data to the MATLAB Workspace” for more
information.

SrcWorkspace {base} | current | parent
Where to evaluate expressions. This property specifies the
workspace in which to evaluate MATLAB expressions defined in
the model. See “Superseding the Base Workspace” on page 4-137
for details.

Trace 'minstep', 'siminfo', 'compile' {''}
Tracing facilities. This property enables simulation tracing
facilities (specify one or more as a comma-separated list):

• The 'minstep' trace flag specifies that simulation stops when
the solution changes so abruptly that the variable-step solvers
cannot take a step and satisfy the error tolerances. By default,
Simulink software issues a warning message and continues
the simulation.

4-153

simset

• The 'siminfo' trace flag provides a short summary of the
simulation parameters in effect at the start of simulation.

• The 'compile' trace flag displays the compilation phases of
a block diagram model.

ZeroCross {on} | off
Enable/disable location of zero crossings. This property applies
only to the variable-step solvers. If set to off, variable-step
solvers do not detect zero crossings for blocks having intrinsic
zero-crossing detection. The solvers adjust their step sizes only to
satisfy error tolerance.

SignalLogging {on} | off
Enable/disable signal logging. This parameter enables signal
logging for the model, overriding the Signal logging setting in
the Configuration Parameters dialog box.

SignalLoggingName string
Specify signal logging name. This parameter specifies the name
of the signal logging object used to record logged signal data in
the MATLAB workspace. It overrides the Signal logging name
setting in the Configuration Parameters dialog box.

Unspecified
Parameters

You do not need to specify values for all block diagram parameters that
simset accepts. In most cases, an unspecified parameter defaults to
the block diagram value that is current when sim executes the model,
but some options (such as MaxDataPoints) take on a different value.
Additionally, not all parameters accepted by simset have an equivalent
block diagram parameter.

For each parameter that simset accepts, the following table shows the
equivalent block diagram parameter (if any) and the default value
that applies if simset is called with no value specified for that simset
parameter.

4-154

simset

Name of option
specified to simset

Equivalent Block
Diagram Parameter

Default
Value
when not
specified to
simset

AbsTol AbsTol Block
diagram
parameter

ConsecutiveZCsStepRelTol ConsecutiveZCsStepRelTol Block
diagram
parameter

Debug Not available Not available

Decimation Decimation Block
diagram
parameter

DstWorkspace Not available Not available

ExtrapolationOrder ExtrapolationOrder Block
diagram
parameter

FinalStateName SaveFinalState is 'on'
and FinalStateName is
non-empty

Block
diagram
parameter

FixedStep FixedStep Block
diagram
parameter

InitialState InitialState Block
diagram
parameter

InitialStep InitialStep Block
diagram
parameter

4-155

simset

Name of option
specified to simset

Equivalent Block
Diagram Parameter

Default
Value
when not
specified to
simset

MaxConsecutiveMinStep MaxConsecutiveMinStep Block
diagram
parameter

MaxConsecutiveZCs MaxConsecutiveZCs Block
diagram
parameter

MaxDataPoints MaxDataPoints All points (no
limit)

MaxOrder MaxOrder Block
diagram
parameter

MaxStep MaxStep Block
diagram
parameter

MinStep MinStep Block
diagram
parameter

NumberNewtonIterations NumberNewtonIterations Block
diagram
parameter

OutputPoints Not available Not available

OutputVariables Not available Not available

Refine Refine Block
diagram
parameter

4-156

simset

Name of option
specified to simset

Equivalent Block
Diagram Parameter

Default
Value
when not
specified to
simset

RelTol RelTol Block
diagram
parameter

SaveFormat SaveFormat Array

SignalLogging SignalLogging Block
diagram
parameter

SignalLoggingName SignalLoggingName Block
diagram
parameter

Solver Solver Block
diagram
parameter

SrcWorkspace Not available Not available

TimeOut Not available Not available

Trace Not available Not available

ZeroCross is 'on' ZeroCrossControl is
enable all

Block
diagram
parameter

ZeroCross is 'off' ZeroCrossControl is
disable all

Block
diagram
parameter

Examples This command creates an options structure called myopts that defines
values for the MaxDataPoints and Refine parameters, using default
values for other parameters.

4-157

simset

myopts = simset('MaxDataPoints', 100, 'Refine', 2);

This command simulates the vdp model for 10 seconds and uses the
parameters defined in myopts.

[t,x,y] = sim('vdp', 10, myopts);

The following command overrides the signal logging setting specified by
the vdp model.

sim('vdp', 10, simset(simget('vdp'), 'SignalLogging', 'on'))

See Also sim, simget

4-158

simulink

Purpose Open Simulink® block library

Syntax simulink
simulink('open')
simulink('close')

Description simulink or simulink('open') opens the Simulink Library Browser.
simulink('close') closes the Library Browser.

4-159

Simulink.BlockDiagram.addBusToVector

Purpose Add Bus to Vector blocks to convert bus signals used as muxes/vectors
to vectors

Syntax [DstBlocks, BusToVectorBlocks] =
Simulink.BlockDiagram.addBusToVector(model)
[DstBlocks, BusToVectorBlocks] =
Simulink.BlockDiagram.addBusToVector(model, includeLibs)
[DstBlocks, BusToVectorBlocks] =
Simulink.BlockDiagram.addBusToVector(model,
includeLibs, reportOnly)

Arguments model
Model name or handle

includeLibs
Boolean specifying whether to search library blocks. Default:
false; the function does not search library blocks.

reportOnly
Boolean specifying whether to change the model or just generate a
report. Default: true; the function just generates a report.

Returns DstBlocks
An array of structures that contain information about blocks that
are connected to buses but treat the buses as vectors. If no such
blocks exist the array has 0 length. Each structure in the array
contains the following fields:

BlockPath
A string specifying the path to the block to which the bus
connects

InputPort
An integer specifying the input port to which the bus
connects

4-160

Simulink.BlockDiagram.addBusToVector

LibPath
If the block is a library block instance, and includeLibs
is true, the path to the source library block. Otherwise,
LibPath is empty ([]).

BusToVectorBlocks
If reportOnly is false, and model contains any buses used as
vectors, a cell array containing the path to each Bus to Vector block
that was added to the model. Otherwise, BusToVectorBlocks is
empty ([]).

Description Simulink.BlockDiagram.addBusToVector reports whether a model
contains any bus signals used implicitly as vectors, and optionally
changes the model by inserting a Bus to Vector block into each such
signal, replacing the implicit use with an explicit conversion. The report
and any changes can be limited to the model itself, or can be extended
to include any library block of which an instance appears in the model.

Before executing this function, you must do the following:

1 Set Configuration Parameters > Diagnostics > Connectivity
> Buses > Mux blocks used to create bus signals to error,
or equivalently, execute set_param (model, 'StrictBusMsg',
'ErrorLevel1').

2 Ensure that the model compiles without error.

3 Save the model.

If includeLibs is false (the default), the function does not report on
or change any blocks in libraries. If the argument is true, the function
reports on and may change blocks in libraries.

If reportOnly is true (the default), the function does not change the
model or any libraries, displays the number of buses used as vectors,
and returns a report in DstBlocks.

If reportOnly is false, the function displays the number of buses used
as vectors, returns a report in DstBlocks and BusToVectorBlocks,

4-161

Simulink.BlockDiagram.addBusToVector

and inserts a Bus to Vector block into each bus that is used as a vector,
in the model and optionally in any libraries. The signal’s source and
destination blocks are unchanged by this insertion.

Note If Simulink.BlockDiagram.addBusToVector adds Bus to Vector
blocks to the model or any library, the function permanently changes
the saved copy of the diagram. Be sure to back up the model and any
libraries before calling the function with reportOnly specified as false.

Caution

If Simulink.BlockDiagram.addBusToVector changes a library block,
the change affects every instance of that block in every Simulink®

model that uses the library. To preview the effects of the change on
blocks in all models, call Simulink.BlockDiagram.addBusToVector
with includeLibs = true and reportOnly = true, then examine the
information returned in DstBlocks.

The Bus to Vector block is intended only for use in existing models
to facilitate the elimination of implicit conversion of buses into
muxes/vectors. New models and new parts of existing models should
avoid mixing composite signals, and should not use Bus to Vector blocks
for any purpose. See “Intermixing Composite Signal Types” for more
information about using Simulink.BlockDiagram.addBusToVector.

Example The following model simulates correctly, but the input to the Gain
block is a bus, while the output is a vector. Thus the Gain block uses
a block as a vector.

4-162

Simulink.BlockDiagram.addBusToVector

If the model shown is open as the current model, you can eliminate the
implicit conversion with the following command:

Simulink.BlockDiagram.addBusToVector(gcs, false, false)

Rebuilding and simulating the model then gives this result:

The Gain block no longer implicitly converts a bus to a vector; the
inserted Bus to Vector block performs the conversion explicitly. Note
that the results of simulation are the same for both models. The Bus
to Vector block is virtual, and never affects simulation results, code
generation, or performance.

See Also Bus to Vector

“Intermixing Composite Signal Types”

4-163

Simulink.BlockDiagram.copyContentsToSubSystem

Purpose Copy contents of block diagram to empty subsystem

Syntax Simulink.BlockDiagram.copyContentsToSubSystem(bdiag,
subsys)

Arguments bdiag
Block diagram name or handle

subsys
Subsystem name or handle

Description Simulink.BlockDiagram.copyContentsToSubSystem copies the
contents of the block diagram bdiag to the subsystem subsys. The block
diagram and subsystem must have already been loaded. The subsystem
cannot be part of the block diagram. The function affects only blocks,
lines, and annotations; it does not affect nongraphical information such
as configuration sets. You can use this function to convert a referenced
model derived from an atomic subsystem into an atomic subsystem that
is equivalent to the original subsystem.

Limitation Simulink.BlockDiagram.copyContentsToSubSystem cannot be used if
the destination subsystem contains any blocks or signals. Other types of
information can exist in the destination subsystem and are not affected
by the function. Use Simulink.SubSystem.deleteContents
if necessary to empty the subsystem before using
Simulink.BlockDiagram.copyContentsToSubSystem.

Example If two block diagrams exist, f14 and f16, and f16 contains an empty
subsystem named f14cp, the following code copies the contents of
f14, including all nested subsystems, to f16/f14cp. Nongraphical
information in f14 is not copied.

% open f14 and f16

open_system('f14');

open_system('f16');

% copy the block diagram f14 to an empty subsystem of f16 named f14cp

4-164

Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.BlockDiagram.copyContentsToSubsystem('f14', 'f16/f14cp');

% close f14 and f16

close_system('f14', 0);

close_system('f16', 0);

See Also Simulink.BlockDiagram.deleteContents

Simulink.SubSystem.convertToModelReference

Simulink.SubSystem.copyContentsToBlockDiagram

Simulink.SubSystem.deleteContents

4-165

Simulink.BlockDiagram.deleteContents

Purpose Delete contents of block diagram

Syntax Simulink.BlockDiagram.deleteContents(bdiag)

Arguments bdiag
Block diagram name or handle

Description Simulink.BlockDiagram.deleteContents deletes the contents of the
block diagram bdiag. The block diagram must have already been
loaded. The function affects only blocks, lines, and annotations; it does
not affect nongraphical information such as configuration sets.

Example If an open block diagram named f14 exists, the following code deletes
the graphical contents of f14, including all subsystems. Nongraphical
information in f14 is unaffected.

Simulink.BlockDiagram.deleteContents('f14');

See Also Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.SubSystem.convertToModelReference

Simulink.SubSystem.copyContentsToBlockDiagram

Simulink.SubSystem.deleteContents

4-166

Simulink.BlockDiagram.getChecksum

Purpose Return checksum of model

Syntax [checksum,details] = Simulink.BlockDiagram.getChecksum(mdl)

Description [checksum,details] = Simulink.BlockDiagram.getChecksum(mdl)
returns the checksum of the specified model. Simulink® software
computes the checksum based on attributes of the model and the blocks
the model contains.

One use of this command is to determine why the Accelerator mode in
Simulink software regenerates code. For an example, see the demo
slAccelDemoWhyRebuild.

Note Simulink.BlockDiagram.getChecksum compiles the specified
model, using the command model([], [], [], 'compileForRTW'), if
the model is not already in a compiled state. To get the checksum for
the model when Simulink software compiles it for simulation, use the
command model([], [], [], 'compile') to place the model in a
compiled state before using Simulink.BlockDiagram.getChecksum.

This command accepts the argument mdl, which is the full name or
handle of the model for which you are returning checksum data.

This command returns the following output:

• checksum — Array of four 32-bit integers that represents the model’s
128-bit checksum.

• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

4-167

Simulink.BlockDiagram.getChecksum

- ContentsChecksum — Structure of the following form that
represents a checksum that provides information about all blocks
in the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the
model’s 128-bit checksum.

• MarkedUnique — True if any blocks in the model have a
property that prevents code reuse.

- InterfaceChecksum — Structure of the following form that
represents a checksum that provides information about the model.

Value: [4x1 uint32]
MarkedUnique: [bool]

• Value — Array of four 32-bit integers that represents the
model’s 128-bit checksum.

• MarkedUnique — Always true. Present for consistency with
ContentsChecksum structure.

- ContentsChecksumItems and InterfaceChecksumItems —
Structure arrays of the following form that contain information
that Simulink software uses to compute the checksum for
ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink software added an item to
the checksum. For a block, the handle is a full block path. For
a block port, the handle is the full block path and a string that
identifies the port.

4-168

Simulink.BlockDiagram.getChecksum

• Identifier — Descriptor of the item Simulink software added
to the checksum. If the item is a documented parameter, the
identifier is the parameter name.

• Value — Value of the item Simulink software added to the
checksum. If the item is a parameter, Value is the value
returned by

get_param(handle, identifier)

See Also Simulink.SubSystem.getChecksum

4-169

Simulink.BlockDiagram.getInitialState

Purpose Return initial state structure of block diagram

Syntax x0 = Simulink.BlockDiagram.getInitialState(mdl)

Description x0 = Simulink.BlockDiagram.getInitialState(mdl) returns the
initial state structure of the block diagram specified by the input
argument mdl. This state structure can be used to specify the initial
state vector in the Configuration Parameters dialog box or to provide
an initial state condition to the linearization commands.

The command returns x0, a structure of the form

time: 0
signals: [1xn struct]

where n is the number of states contained in the model, including any
models referenced by Model blocks. The signals field is a structure
of the form

values: [1xm double]
dimensions: [1x1 double]
label: [char array]
blockName: [char array]
inReferencedModel: [bool]
sampleTime: [1x2 double]

• values — Numeric array of length m, where m is the number of states
in the signal

• dimensions — Length of the values vector

• label — Indication of whether the state is continuous (CSTATE) or
discrete. If the state is discrete:

The name of the discrete state will be shown for S-function blocks

The name of the discrete state will be shown for those built-in blocks
that assign their own names to discrete states

DSTATE is used in all other cases

4-170

Simulink.BlockDiagram.getInitialState

• blockName — Full path to block associated with this state

• inReferencedModel — Indication of whether the state originates in
a model referenced by a Model block (1) or in the top-level model (0)

• sampleTime — Array containing the sample time and offset of the
state.

Using the state structure simplifies specifying initial state values for
models with multiple states, as each state is associated with the full
path to its parent block.

See Also linmod

4-171

Simulink.Bus.cellToObject

Purpose Convert cell array containing bus information to bus objects

Syntax Simulink.Bus.cellToObject(busCell)

Description Simulink.Bus.cellToObject(busCell) creates a set of bus objects in the
MATLAB® base workspace from a cell array of bus information.

See Also Simulink.Bus.save, Simulink.Bus.objectToCell

4-172

Simulink.Bus.createObject

Purpose Create bus objects for blocks

Syntax busInfo = Simulink.Bus.createObject(model, blks)
busInfo = Simulink.Bus.createObject(model, blks, 'fileName')
busInfo = Simulink.Bus.createObject(model, blks, 'fileName',
'format')

Description Simulink.Bus.createObject(model, blks, ’fileName’, ’format’)
creates bus objects, i.e., instances of Simulink.Bus class, in the
MATLAB® workspace for specified blocks and optionally saves the bus
objects in an M-file. The function accepts the following arguments:

• model — Name or handle of a model

• blks — List of subsystem-level Inport blocks, root-level or
subsystem-level Outport blocks or Bus Creator blocks in the specified
model. If only one block needs to be specified, this argument can be
the full pathname of the block. Otherwise, this argument can be
either a cell array containing block pathnames or a vector of block
handles.

• ’fileName’ — Name of the file in which to save the bus objects
created by this function. If this argument is omitted, this function
does not save the created bus objects in a file.

• ’format’ — Format used to store the bus objects. May be 'cell' or
'object' or omitted in which case 'cell' is assumed. Use cell array
format to save the objects in a compact form.

This function returns a structure array containing bus information for
the specified blocks. Each element of the structure array corresponds to
one of the specified blocks and contains the following fields:

• block — Handle of the block

• busName — Name of the bus object associated with the block

See Also Simulink.Bus.cellToObject, Simulink.Bus.save

4-173

Simulink.Bus.objectToCell

Purpose Convert bus objects to cell array containing bus information

Syntax Simulink.Bus.objectToCell(busNames)

Description Simulink.Bus.objectToCell(busNames) creates a cell array of cell
arrays that contains bus information from a set of bus objects in the
MATLAB® base workspace. Each element of the cell array represents a
bus object that has been converted.

The argument busNames is a cell array of bus object names to convert
to cell arrays. If the specified array is empty, the function converts all
bus objects in the base workspace.

The function converts each bus object to a cell array with the following
data:

{BusName, HeaderFile, Description,
BusElements}

The BusElements field is an array containing the following data for
each element:

{ElementName, Dimensions, DataType,
SampleTime, Complexity, SamplingMode}

See Also Simulink.Bus.save, Simulink.Bus.cellToObject

4-174

Simulink.Bus.save

Purpose Save bus objects in M-file

Syntax Simulink.Bus.save(’fileName')
Simulink.Bus.save(’fileName', ’format’)
Simulink.Bus.save(’fileName', ’format', busNames)

Description Simulink.Bus.save(’fileName’, ’format’, busNames) saves bus
objects, i.e., instances of Simulink.Bus class, residing in the MATLAB®

workspace in an M-file. Executing the M-file restores the objects to the
workspace. This function takes the following arguments:

• ’fileName’ — Name of the file in which to store the bus objects

• ’format’ — Format used to store the bus objects. May be 'cell' or
'object' or omitted in which case 'cell' is assumed. Use cell array
format to save the objects in a compact form.

When the M-file generated for the 'cell' format executes, it

- Calls Simulink.Bus.cellToObject to recreate the bus objects

- Returns the new bus objects in the cell array

To suppress the creation of bus objects, specify the optional argument
'false' when you execute the M-file.

• busNames — A cell array containing names of bus objects to be saved.
If the cell array is empty or omitted, this function saves all bus
objects in the MATLAB workspace.

See also Simulink.Bus.cellToObject

4-175

Simulink.SubSystem.convertToModelReference

Purpose Convert atomic subsystem or function call subsystem to model reference

Syntax [success,mdlRefBlkH] =
Simulink.SubSystem.convertToModelReference(subsys,
mdlRef, ’opt1’, ’val1’, ’opt2’, ’val2’, ...)

Description [success,mdlRefBlkH] =
Simulink.SubSystem.convertToModelReference(subsys, mdlRef,
’opt1’, ’val1’, ’opt2’, ’val2’, ...) converts an atomic
subsystem or function call subsystem to a referenced model. The
function does this by creating a new model, copying the contents of
the subsystem into the model, and configuring the root level Inport
and Outport blocks and configuration parameters of the new model.
Then, based on its input arguments, the function either replaces the
subsystem block with a Model block that references the new model, or
it creates another, temporary model containing a Model block that
references the new model.

Note Execute

sldemo_mdlref_conversion

at the MATLAB® command line for a demonstration of this command’s
usage.

Converting a subsystem to a referenced model requires your model to
have the following configuration parameter settings:

• The Inline parameters option in the Optimization pane must
be On.

• The Signal resolution option in the Data Validity diagnostics pane
must be set to Explicit only.

• The Mux blocks used to create bus signals diagnostic in the
Connectivity diagnostics pane must be set to Error.

4-176

Simulink.SubSystem.convertToModelReference

You can use the following commands to set these parameters to the
values required by this function:

set_param(mdlName, 'InlineParams', 'on');

set_param(mdlName, 'SignalResolutionControl', 'UseLocalSettings');

set_param(mdlName, 'StrictBusMsg', 'ErrorLevel1');

Note This function produces error or warning messages for models and
subsystems that it cannot handle. Even if conversion is successful,
you may still need to reconfigure the resulting model to meet your
requirements.

This function accepts the following arguments:

• subsys — Full name or handle of the atomic subsystem block to be
converted

• mdlRef — Name of the model to which the subsystem is to be
converted

• ’opt1’, ’val1’, ’opt2’, ’val2’... — parameter/value pairs
that specify various conversion options. This function support the
following option pairs:

- 'ReplaceSubsystem', [true|{false}] — If the option value
is true, this function replaces the subsystem block with a Model
block that references the model created from the subsystem. If
you do not specify this option or specify its value as false, this
function creates and opens a model containing a Model block that
references the model derived from the subsystem block.

- 'BusSaveFormat', ['Cell' | 'Object'] — If this option is
specified, the function saves the bus objects that it creates in an
M-file. See Simulink.Bus.save for more information.

- 'BuildTarget', ['Sim' | 'RTW'] — If you specify this option,
this function generates a model reference Sim or RTW target for
the new model.

4-177

Simulink.SubSystem.convertToModelReference

- 'Force', [true|{false}] — If this parameter is true, this
function reports some errors that would halt the conversion
process as warnings and continues with the conversion. This
allows you to use this function to do the initial steps of conversion
and then complete the conversion process yourself. If you do not
specify this option or specify it as false, this function halts the
conversion if an error occurs.

This function returns the following outputs:

• success — True if this function is successful; otherwise, false.

• mdlRefBlkH — Handle of the Model block that references the new
model

See Also Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.Bus.save

Simulink.SubSystem.copyContentsToBlockDiagram

“Converting a Subsystem to a Referenced Model”

4-178

Simulink.SubSystem.copyContentsToBlockDiagram

Purpose Copy contents of subsystem to empty block diagram

Syntax Simulink.SubSystem.copyContentsToBlockDiagram(subsys,
bdiag)

Arguments subsys
Subsystem name or handle

bdiag
Block diagram name or handle

Description Simulink.SubSystem.copyContentsToBlockDiagram copies the
contents of the subsystem subsys to the block diagram bdiag. The
subsystem and block diagram must have already been loaded. The
subsystem cannot be part of the block diagram. The function affects
only blocks, lines, and annotations; it does not affect nongraphical
information such as configuration sets.

Limitation Simulink.SubSystem.copyContentsToBlockDiagram cannot
be used if the destination block diagram contains any
blocks or signals. Other types of information can exist in
the destination block diagram and are unaffected by the
function. Use Simulink.BlockDiagram.deleteContents
if necessary to empty the block diagram before using
Simulink.SubSystem.copyContentsToBlockDiagram.

Example If a block diagram named f14 has a subsystem named Controller, the
following code copies the graphical contents of Controller, including all
nested subsystems, to a new block diagram. Nongraphical information
in Controller is not copied.

% open f14

open_system('f14');

% create a new model

newbd = new_system;

open_system(newbd);

4-179

Simulink.SubSystem.copyContentsToBlockDiagram

% copy the subsystem

Simulink.SubSystem.copyContentsToBlockDiagram('f14/Controller', newbd);

% close f14 and the new model

close_system('f14', 0);

close_system(newbd, 0);

See Also Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.BlockDiagram.deleteContents

Simulink.SubSystem.convertToModelReference

Simulink.SubSystem.deleteContents

4-180

Simulink.SubSystem.deleteContents

Purpose Delete contents of subsystem

Syntax Simulink.SubSystem.deleteContents(subsys)

Arguments subsys
Subsystem name or handle

Description Simulink.SubSystem.deleteContents deletes the contents of the
subsystem subsys. The subsystem must have already been loaded. The
function affects only blocks, lines, and annotations; it does not affect
nongraphical information such as configuration sets.

Example If an open block diagram named f14 has a subsystem named
Controller, the following code deletes the graphical contents of
Controller, including all nested subsystems. Nongraphical information
in Controller remains unchanged.

Simulink.SubSystem.deleteContents('f14/Controller');

See Also Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.BlockDiagram.deleteContents

Simulink.SubSystem.convertToModelReference

Simulink.SubSystem.copyContentsToBlockDiagram

4-181

Simulink.SubSystem.getChecksum

Purpose Return checksum of subsystem

Syntax [checksum,details] = Simulink.SubSystem.getChecksum(subsys)

Description [checksum,details] = Simulink.SubSystem.getChecksum(subsys)
returns the checksum of the specified subsystem. Simulink® software
computes the checksum based on subsystem parameter settings and
the blocks the subsystem contains.

One use of this command is to determine why code generated for a
subsystem is not being reused. For an example, see “Determining
Why Subsystem Code Is Not Reused” in the Real-Time Workshop®

documentation.

Note Simulink.SubSystem.getChecksum compiles the model that
contains the specified subsystem, using the command model([], [],
[], 'compileForRTW'), if the model is not already in a compiled
state. To get the checksum for the model when Simulink software
compiles it for simulation, use the command model([], [], [],
'compile') to place the model in a compiled state before using
Simulink.SubSystem.getChecksum.

This command accepts the argument subsys, which is the full name
or handle of the atomic subsystem block for which you are returning
checksum data.

This command returns the following output:

• checksum — Structure of the form

Value: [4x1 uint32]
MarkedUnique: [bool]

- Value — Array of four 32-bit integers that represents the
subsystem’s 128-bit checksum.

4-182

Simulink.SubSystem.getChecksum

- MarkedUnique — True if the subsystem or the blocks it contains
have properties that would prevent the code generated for the
subsystem from being reused; otherwise, false.

• details — Structure of the form

ContentsChecksum: [1x1 struct]
InterfaceChecksum: [1x1 struct]
ContentsChecksumItems: [nx1 struct]
InterfaceChecksumItems: [mx1 struct]

- ContentsChecksum — Structure of the same form as checksum,
representing a checksum that provides information about all
blocks in the system.

- InterfaceChecksum — Structure of the same form as checksum,
representing a checksum that provides information about the
subsystem’s block parameters and connections.

- ContentsChecksumItems and InterfaceChecksumItems —
Structure arrays of the following form that Simulink software
uses to compute the checksum for ContentsChecksum and
InterfaceChecksum, respectively:

Handle: [char array]
Identifier: [char array]
Value: [type]

• Handle — Object for which Simulink software added an item to
the checksum. For a block, the handle is a full block path. For
a block port, the handle is the full block path and a string that
identifies the port.

• Identifier — Descriptor of the item Simulink software added
to the checksum. If the item is a documented parameter, the
identifier is the parameter name.

• Value — Value of the item Simulink software added to the
checksum. If the item is a parameter, Value is the value
returned by

4-183

Simulink.SubSystem.getChecksum

get_param(handle, identifier)

See Also Simulink.BlockDiagram.getChecksum

4-184

sint

Purpose Create MATLAB® structure describing signed integer data type

Syntax a = sint(TotalBits)

Description sint(TotalBits) returns a MATLAB structure that describes the data
type of a signed integer with a word size given by TotalBits.

sint is automatically called when a signed integer is specified in a
block dialog box.

The default binary point for this data type is assumed to lie to the
right of all bits.

Examples Define a 16-bit signed integer data type:

a = sint(16)
a =

Class: 'INT'
IsSigned: 1
MantBits: 16

See Also fixdt, float, sfix, sfrac, ufix, ufrac, uint

4-185

slbuild

Purpose Build standalone and model reference targets

Syntax slbuild('model')
slbuild('model', 'ModelReferenceSimTarget')
slbuild('model', 'ModelReferenceRTWTarget')
slbuild('model', 'ModelReferenceRTWTargetOnly')

Description
Note Except where noted, this command requires a Real-Time
Workshop® license.

slbuild(’model’) builds a standalone executable from model, using the
model’s Real-Time Workshop configuration settings.

Note The following commands honor the setting of the Rebuild
options on the Model Referencing pane of the Configuration
Parameters dialog for rebuilding the model reference target for this
model and its referenced models.

slbuild('model', 'ModelReferenceSimTarget') builds a model
reference simulation target for the model. This command does not
require a Real-Time Workshop license.

slbuild(’model’, 'ModelReferenceRTWTarget') builds model
reference simulation and Real-Time Workshop targets for model.

slbuild('model', 'ModelReferenceRTWTargetOnly') builds a
model reference RTW target for the model.

If the Rebuild option on the Model Referencing pane of the
Configuration Parameters dialog is set to Never, you can use two
additional arguments, 'UpdateThisModelReferenceTarget' and
’Buildcond’, to specify a rebuild option for building a model reference
target for this ’model’. For example,

4-186

slbuild

slbuild('model','ModelReferenceSimTarget', ...
'UpdateThisModelReferenceTarget', Buildcond)

conditionally builds the simulation target for this ’model’ based on the
value of Buildcond.

Note This option does not rebuild model reference targets for models
referenced by this model.

’Buildcond’ must be one of the following:

• 'IfOutOfDateOrStructuralChange'

Causes slbuild to rebuild this model if it detects any changes.
This option is equivalent to the If any changes detected rebuild
option on the Model Referencing pane of the Configuration
Parameters dialog box.

• 'IfOutOfDate'

Causes slbuild to rebuild this model if it detects any changes in
known dependencies of this model. This option is equivalent to the If
any changes in known dependencies detected rebuild option on
the Model Referencing pane of the Configuration Parameters
dialog box.

• 'Force'

Causes slbuild to always rebuild the model. This option
is equivalent to the "Always" rebuild option on the Model
Referencing pane of the Configuration Parameters dialog box.

4-187

slCharacterEncoding

Purpose Change MATLAB® character set encoding

Syntax slCharacterEncoding()
slCharacterEncoding(encoding)

Description This command allows you to change the current MATLAB character set
encoding to be compatible with the encoding of a model that you want
to open.

slCharacterEncoding() returns the current MATLAB character set
encoding.

slCharacterEncoding(encoding) change the MATLAB character set
encoding to the specified encoding. Valid values include:

• 'US-ASCII'

• 'UTF-8'

• 'Shift_JIS'

• 'ISO-8859-1'

To display a complete list of the names of character set encodings
supported by MATLAB and the characters supported by the encodings,
use the ICU Converter Explorer developed by IBM® Corp. and available
on the Internet. The first column of the ICU Converter Explorer lists
the primary names of the character sets supported by MATLAB. The
remaining columns list aliases for the character sets.

4-188

http://demo.icu-project.org/icu-bin/convexp

slCharacterEncoding

The slCharacterEncoding command accepts the aliases as well as
the primary names of character sets. To display a table listing the
characters supported by a character set and the encodings for the
characters, click the character set’s primary name in the ICU Converter
Explorer.

Note You must close all open models or libraries before changing
the MATLAB character set encoding except when changing from
'US-ASCII' to another encoding.

4-189

sldebug

Purpose Start simulation in debug mode

Syntax sldebug('sys')

Description sldebug('sys') starts a simulation in debug mode. See “Simulink®

Debugger” in the Simulink documentation and Chapter 6, “Simulink®

Debugger Commands” in the Simulink Reference for information about
using the debugger.

Examples The following command:

sldebug('vdp')

loads the Simulink demo model vdp into memory and starts the
simulation in debug mode. Alternatively, you can achieve the same
result by using both the sim and simset commands:

sim('vdp', [0,10], simset('debug', 'on'))

See Also sim, simset

4-190

sldiagnostics

Purpose Display diagnostic information about Simulink® system

Syntax [txtRpt, sRpt] = sldiagnostics('sys')
[txtRpt, sRpt] = sldiagnostics('sys', options)

Description sldiagnostics('sys') displays the following diagnostic information
associated with the model or subsystem specified by sys:

• Number of each type of block

• Number of each type of Stateflow® object

• Number of states, outputs, inputs, and sample times

• Names of libraries referenced and instances of the referenced blocks

• Time and additional memory used for each compilation phase of the
root model

If the model specified by sys is not loaded, sldiagnostics loads the
model, completes the diagnostics, and then closes the model. If sys
is a subsystem, the root model must be loaded for sldiagnostics to
operate successfully.

Note To see memory usage, you must first enable the MATLAB®

memory integrity checking option at startup. This is accomplished by
running MATLAB with the -check_malloc flag. For more information
about this startup option, see matlab (Windows) or matlab (UNIX) in
the MATLAB Function Reference.

sldiagnostics('sys', options) displays only the diagnostic
information associated with the specific operations listed as options
strings. The available options and their output are as follows:

4-191

sldiagnostics

Option Description

CountBlocks Lists all unique blocks in the system and the
number of occurrences of each. This includes
blocks that are nested in masked subsystems or
hidden blocks.

CountSF Lists all unique Stateflow objects in the system
and the number of occurrences of each.

Sizes Lists the number of states, outputs, inputs, and
sample times, as well as a flag indicating direct
feedthrough, used in the root model.

Libs Lists all unique libraries referenced in the root
model, as well as the names and numbers of the
library blocks.

CompileStats Lists the time and additional memory used for
each compilation phase of the root model. The
memory usage is displayed when the MATLAB
memory integrity checking option is enabled at
startup. This information helps users troubleshoot
model compilation speed and memory issues.

Verbose Lists the results of the CompileStats diagnostic
during the compilation phase. This is useful for
diagnosing the compilation itself if it takes an
unreasonable amount of time or hangs.

RTWBuildStats Lists the same information as the CompileStats
diagnostic. When issued with the second output
argument sRpt, it captures the Real-Time
Workshop® build statistics in sRpt.rtwbuild.

All Performs all diagnostics.

4-192

sldiagnostics

Note Running the CompileStats diagnostic before simulating a model
for the first time will show greater memory usage. However, subsequent
runs of the CompileStats diagnostic on the model will return a lesser
amount of memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') or [txtRpt, sRpt] =
sldiagnostics('sys', options) returns the diagnostic information
as a textual report txtRpt and a structure array sRpt, which contains
the following fields that correspond to the diagnostic options:

• blocks

• stateflow

• sizes

• links

• compilestats

• rtwbuild

Examples The following command counts and lists each type of block used in the
sldemo_bounce model that comes with Simulink software.

sldiagnostics('sldemo_bounce', 'CountBlocks')

The following command counts and lists both the unique blocks and
Stateflow objects used in the sf_boiler model that comes with
Stateflow software; the textual report returned is captured as myReport.

myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')

The following commands open the f14 model that comes with Simulink
software, and counts the number of blocks used in the Controller
subsystem.

f14; sldiagnostics('f14/Controller', 'CountBlocks')

4-193

sldiagnostics

The following command runs the Sizes and CompileStats diagnostics
on the f14 model, capturing the results as both a textual report and
structure array.

[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

See Also find_system, get_param

4-194

sldiscmdl

Purpose Discretize Simulink® model containing continuous blocks

Syntax sldiscmdl('sys',sampletime)
sldiscmdl('sys',sampletime,'method')
sldiscmdl('sys',sampletime,{options})
sldiscmdl('sys',sampletime,'method',cf)
sldiscmdl('sys',sampletime,'method',{options})
sldiscmdl('sys',sampletime,'method',cf,{options})

Description sldiscmdl('sys',sampletime) discretizes the model specified by 'sys'
and sampletime. You can enter a sample time and an offset as a
two-element vector for sampletime. The units for sampletime are
seconds.

sldiscmdl('sys',sampletime,'method') discretizes the model with the
transform method specified by 'method'. Available values for 'method'
are shown below:

Value Description

'zoh' Zero-order hold on the inputs (the default if
you do not specify a method)

'foh' First-order hold on the inputs

'tustin' Bilinear (Tustin) approximation

'prewarp' Tustin approximation with frequency
prewarping

'matched' Matched pole-zero method (for SISO
systems only)

sldiscmdl('sys',sampletime,{options}) discretizes the model with
the criteria specified by {options}, where {options} is a cell array
containing the following string elements:

{'target','ReplaceWith','PutInto','prompt'}

4-195

sldiscmdl

Available values for 'target' are shown below:

Value Description

'all' Discretize all continuous blocks

'selected' Discretize selected blocks only

'<full path name of
block>'

Discretize specified block

Available values for 'ReplaceWith' are shown below:

Value Description

'parammask' Create discrete blocks whose parameters
are retained from the corresponding
continuous block

'hardcoded' Create discrete blocks whose parameters
are “hard_coded” values placed directly into
the block’s dialog box.

Available values for 'PutInto' are shown below:

Value Description

'current' Apply discretization to current model

'configurable' Create discretization candidate in a
configurable subsystem

'untitled' Create discretization in a new untitled
window

'copy' Create discretization in copy of the original
model

Available values for 'prompt' are shown below:

4-196

sldiscmdl

Value Description

'on' Show the discretization information

'off' Do not show the discretization information

sldiscmdl('sys',sampletime,'method',cf) discretizes the model with
the critical frequency specified by cf. The units for cf are Hz. This is
only used when the transform method is 'prewarp'.

Examples This command discretizes all of the continuous blocks in the f14 model
with a 1 second sample time.

sldiscmdl('f14',1.0)

This command discretizes the Controller subsystem in the f14 model
using a first-order hold transform method with a 1–second sample
time and a 0.1–second sample time offset. The discretized block has
"hard-coded" parameters that are placed directly into the block’s dialog
box.

sldiscmdl('f14',[1.0 0.1],'foh',{'f14/Controller',...
'hardcoded','copy','on'})

This command discretizes the Controller subsystem in the f14 model
using a zero-order hold transform method with a 1–second sample time
and a 0.1–second sample time offset. It returns to the command window
a cell array for the original continuous blocks in the system and a cell
array for the discretized blocks in the system.

4-197

sldiscmdl

[a, b] = sldiscmdl('f14',[1.0 0.1],'zoh', {'f14/Controller',...

'hardcoded', 'copy', 'on'})

a =

[1x43 char] [1x37 char] [1x53 char] [1x30 char]

b =

[1x43 char] [1x37 char] [1x53 char] [1x30 char]

You can index into the cell arrays to get the new names of the discretized
blocks and the original names of the continuous blocks.

For example, this command returns the name of the second discretized
block.

b{2}

ans =

f14_disc_copy/Controller/Pitch Rate
Lead Filter

4-198

slIsFileChangedOnDisk

Purpose Determine whether model has changed since it was loaded

Syntax Changed = slIsFileChangedOnDisk(sys)

Description Changed = slIsFileChangedOnDisk(sys) Returns true if the file
which contains block diagram sys was changed on disk since the block
diagram was loaded.

Example To ensure that code is not generated for a model whose file has changed
on disk since it was loaded, include the following in the 'entry' section
of the STF_make_rtw_hook.m file:

if (slIsFileChangedOnDisk(sys))

error('File has changed on disk since it was loaded. Aborting code generation.');

end

See Also “Customizing the Target Build Process with the STF_make_rtw Hook
File”

“Model File Change Notification”

4-199

slmdldiscui

Purpose Open Model Discretizer GUI

Syntax slmdldiscui('name')

Description slmdldiscui('name') opens the Model Discretizer with the library or
model specified by 'name'.

Examples This command opens the Model Discretizer with the f14 model.

slmdldiscui('f14')

This command opens the Model Discretizer with the library named Test.

slmdldiscui('Test')

4-200

slreplace_mux

Purpose Replace Mux blocks used to create buses with Bus Creator blocks

Syntax [muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model,
reportonly)

Description slreplace_mux(model) or slreplace_mux(model, true) reports all
Mux blocks that create buses in model and in libraries referenced by
model.

A signal created by a Mux block is a bus if the signal meets either or
both of the following conditions:

• A Bus Selector block individually selects one or more of the signal’s
elements (as opposed to the entire signal).

• The signal’s components have different data types, numeric types
(complex or real), dimensionality, storage classes, or sampling modes.

Note Before running this command, you should set the Mux blocks
used to create bus signals connectivity diagnostic to warning or
none. See “Connectivity Diagnostics Overview” for more information.

slreplace_mux(model, false) replaces all Mux blocks in model that
create buses, including Mux blocks in libraries, with Bus Creator blocks.
This command saves the model, if changed, and saves and closes any
library that it modifies.

Note You should make a backup copy of your model and libraries before
using this form of the command because it is difficult to undo its effects.

4-201

slreplace_mux

[muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model)
returns the following output variables:

• muxes

All Mux blocks used as Bus Creators in the model and in libraries
referenced by the model

• uniqueMuxes

All Mux blocks used as Bus Creators in the model and in libraries
referenced by the model except blocks in the model that are copies of
blocks in libraries

• uniqueBds

Models and libraries that use Mux blocks as Bus Creators

4-202

slupdate

Purpose Replace blocks from previous releases with latest versions

Syntax slupdate('sys')
slupdate('sys', prompt)
slupdate('sys', 'OperatingMode', 'Analyze')

Description slupdate('sys') replaces blocks in model sys from a previous release
of Simulink® software with the latest versions.

Note The model to be updated must be open when you call slupdate.

slupdate('sys', prompt) specifies whether to prompt you before
replacing a block. If prompt equals 1, the command prompts you before
replacing the block. The prompt asks whether you want to replace the
block. Valid responses are

• y

Replace the block (the default).

• n

Do not replace the block.

• a

Replace this and all subsequent obsolete blocks without further
prompting.

If prompt equals 0, the command replaces all obsolete blocks without
prompting you.

In addition to replacing obsolete blocks, slupdate

• Reconnects broken links to masked blocks in libraries provided by
the MathWorks to ensure that the model reflects changes made to the
blocks in this release. This will overwrite any customizations that
you have made to the masks of these blocks.

4-203

slupdate

• Updates obsolete configuration settings for the model.

slupdate('sys', 'OperatingMode', 'Analyze') performs only
the analysis portion without updating or changing the model. This
command analyzes referenced models, linked libraries, and S-functions,
and then returns a data structure with the following fields:

• Message — string containing a message summarizing the results

• blockList — cell array listing blocks that need to be updated

• blockReasons — cell array listing reasons for updating the
corresponding blocks

• modelList — cell array listing referenced models and the parent
model

• libraryList — cell array listing non-MathWorks libraries referenced

• configSetList — for internal use

• sfunList — cell array listing S-functions referenced

• sfunOK — logical array representing S-function status, where false
indicates that an S-function needs updating and true indicates
otherwise

• sfunType — cell array listing apparent S-function type (e.g., m, mex)

4-204

trim

Purpose Find trim point of dynamic system

Syntax [x,u,y,dx] = trim('sys')
[x,u,y,dx] = trim('sys',x0,u0,y0)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy)
[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,

options)
[x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,

options,t)

Description A trim point, also known as an equilibrium point, is a point in the
parameter space of a dynamic system at which the system is in a steady
state. For example, a trim point of an aircraft is a setting of its controls
that causes the aircraft to fly straight and level. Mathematically, a trim
point is a point where the system’s state derivatives equal zero. trim
starts from an initial point and searches, using a sequential quadratic
programming algorithm, until it finds the nearest trim point. You
must supply the initial point implicitly or explicitly. If trim cannot
find a trim point, it returns the point encountered in its search where
the state derivatives are closest to zero in a min-max sense; that is, it
returns the point that minimizes the maximum deviation from zero
of the derivatives. trim can find trim points that meet specific input,
output, or state conditions, and it can find points where a system is
changing in a specified manner, that is, points where the system’s state
derivatives equal specific nonzero values.

[x,u,y,dx] = trim('sys') finds the equilibrium point nearest to
the system’s initial state, x0. Specifically, trim finds the equilibrium
point that minimizes the maximum absolute value of [x-x0,u,y]. If
trim cannot find an equilibrium point near the system’s initial state,
it returns the point at which the system is nearest to equilibrium.
Specifically, it returns the point that minimizes abs(dx-0). You can
obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

4-205

trim

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to
x0, u0, y0, that is, the point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point
closest to x0, u0, y0 that satisfies a specified set of state, input, and/or
output conditions. The integer vectors ix, iu, and iy select the values in
x0, u0, and y0 that must be satisfied. If trim cannot find an equilibrium
point that satisfies the specified set of conditions exactly, it returns the
nearest point that satisfies the conditions, namely,

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds
specific nonequilibrium points, that is, points at which the system’s
state derivatives have some specified nonzero value. Here, dx0 specifies
the state derivative values at the search’s starting point and idx selects
the values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] =
trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options) specifies an array
of optimization parameters that trim passes to the optimization
function that it uses to find trim points. The optimization function, in
turn, uses this array to control the optimization process and to return
information about the process. trim returns the options array
at the end of the search process. By exposing the underlying
optimization process in this way, trim allows you to monitor and
fine-tune the search for trim points.

The following table describes how each element affects the search for a
trim point. Array elements 1, 2, 3, 4, and 10 are particularly useful for
finding trim points.

No. Default Description

1 0 Specifies display options. 0 specifies no
display; 1 specifies tabular output; -1
suppresses warning messages.

4-206

trim

No. Default Description

2 10–4 Precision the computed trim point must attain
to terminate the search.

3 10–4 Precision the trim search goal function must
attain to terminate the search.

4 10–6 Precision the state derivatives must attain to
terminate the search.

5 N/A Not used.

6 N/A Not used.

7 N/A Used internally.

8 N/A Returns the value of the trim search goal
function (λ in goal attainment).

9 N/A Not used.

10 N/A Returns the number of iterations used to find
a trim point.

11 N/A Returns the number of function gradient
evaluations.

12 0 Not used.

13 0 Number of equality constraints.

14 100*(Number
of
variables)

Maximum number of function evaluations to
use to find a trim point.

15 N/A Not used.

16 10–8 Used internally.

17 0.1 Used internally.

18 N/A Returns the step length.

4-207

trim

[x,u,y,dx,options] =
trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t) sets the time
to t if the system is dependent on time.

Examples Consider a linear state-space model

The A, B, C, and D matrices are as follows in a system called sys.

A = [-0.09 -0.01; 1 0];
B = [0 -7; 0 -2];
C = [0 2; 1 -5];
D = [-3 0; 1 0];

Example 1

To find an equilibrium point, use

[x,u,y,dx,options] = trim('sys')
x =

0
0

u =
0

y =
0
0

dx =
0
0

The number of iterations taken is

options(10)
ans =

4-208

trim

7

Example 2

To find an equilibrium point near x = [1;1], u = [1;1], enter

x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);
x =

1.0e-11 *
-0.1167
-0.1167

u =
0.3333
0.0000

y =
-1.0000
0.3333

dx =
1.0e-11 *
0.4214
0.0003

The number of iterations taken is

options(10)
ans =

25

Example 3

To find an equilibrium point with the outputs fixed to 1, use

y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)
x =

4-209

trim

0.0009
-0.3075

u =
-0.5383
0.0004

y =
1.0000
1.0000

dx =
1.0e-16 *

-0.0173
0.2396

Example 4

To find an equilibrium point with the outputs fixed to 1 and the
derivatives set to 0 and 1, use

y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)
x =

0.9752
-0.0827

u =
-0.3884
-0.0124

y =
1.0000
1.0000

dx =
0.0000
1.0000

The number of iterations taken is

4-210

trim

options(10)
ans =

13

Limitations The trim point found by trim starting from any given initial point is only
a local value. Other, more suitable trim points may exist. Thus, if you
want to find the most suitable trim point for a particular application, it
is important to try a number of initial guesses for x, u, and y.

Algorithm trim uses a sequential quadratic programming algorithm to find trim
points. See the Optimization Toolbox™ User’s Guide for a description of
this algorithm.

4-211

tunablevars2parameterobjects

Purpose Create Simulink parameter objects from tunable parameters

Syntax tunablevars2parameterobjects (modelName)
tunablevars2parameterobjects (modelName, class)

Arguments modelName
Model name or handle

class
Parameter class to use for creating objects. Default:
Simulink.Parameter.

Description This function creates Simulink® parameter objects in the base
workspace for the variables listed in a model’s Tunable Parameters
dialog, then deletes the source information from the dialog. To preserve
the information, save the resulting Simulink parameter objects into
a MAT-file.

If class is specified, the parameter objects are of that class. Otherwise,
the parameter objects default to class Simulink.Parameter.

If a tunable variable is already defined as a numeric variable in the
base workspace, the variable will be replaced by a parameter object and
the original variable will be copied to the object’s Value property.

If a tunable variable is already defined as a Simulink parameter object,
the object will not be modified but the information for the variable will
still be deleted from the Tunable Parameters dialog.

If a tunable variable is defined as any other class of variable, the
variable will not be modified and the information for the variable will
not be deleted from the Tunable Parameters dialog.

See Also

4-212

ufix

Purpose Create MATLAB® structure describing unsigned generalized fixed-point
data type

Syntax a = ufix(TotalBits)

Description ufix(TotalBits) returns a MATLAB structure that describes the data
type of an unsigned generalized fixed-point data type with a word size
given by TotalBits.

ufix is automatically called when an unsigned generalized fixed-point
data type is specified in a block dialog box.

Note The default binary point is not included in this data type
description. Instead, the scaling must be explicitly defined in the block
dialog box.

Examples Define a 16-bit unsigned generalized fixed-point data type:

a = ufix(16)
a =

Class: 'FIX'
IsSigned: 0
MantBits: 16

See Also fixdt, float, sfix, sfrac, sint, ufrac, uint

4-213

ufrac

Purpose Create MATLAB® structure describing unsigned fractional data type

Syntax a = ufrac(TotalBits)
a = ufrac(TotalBits, GuardBits)

Description ufrac(TotalBits) returns a MATLAB structure that describes the
data type of an unsigned fractional number with a word size given by
TotalBits.

ufrac(TotalBits, GuardBits) returns a MATLAB structure that
describes the data type of an unsigned fractional number. The total
word size is given by TotalBits with GuardBits bits located to the left
of the binary point.

ufrac is automatically called when an unsigned fractional data type
is specified in a block dialog box.

The default binary point for this data type is assumed to lie immediately
to the left of all bits. If guard bits are specified, then they lie to the left
the default binary point.

Examples Define an 8-bit unsigned fractional data type with 4 guard bits. Note
that the range of this number is from 0 to (1 - 2-8).24 = 15.9375:

a = ufrac(8,4)
a =

Class: 'FRAC'
IsSigned: 0
MantBits: 8

GuardBits: 4

See Also fixdt, float, sfix, sfrac, sint, ufix, uint

4-214

uint

Purpose Create MATLAB® structure describing unsigned integer data type

Syntax a = uint(TotalBits)

Description uint(TotalBits) returns a MATLAB structure that describes the data
type of an unsigned integer with a word size given by TotalBits.

uint is automatically called when an unsigned integer is specified in
a block dialog box.

The default binary point for this data type is assumed to lie to the
right of all bits.

Examples Define a 16-bit unsigned integer:

a = uint(16)
a =

Class: 'INT'
IsSigned: 0
MantBits: 16

See Also fixdt, float, sfix, sfrac, sint, ufix, ufrac

4-215

unpack

Purpose Extract signal logging objects from signal logs and write them into
MATLAB® workspace

Syntax log.unpack
tsarray.unpack
log.unpack('systems')
log.unpack('all')

Description log.unpack or unpack(log) extracts the top level elements of the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named
log (e.g., logsout).

log.unpack('systems') or unpack(log, ’systems’) extracts
Simulink.Timeseries and Simulink.TsArray objects from the
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object
named log . This command does not extract Simulink.Timeseries
objects from Simulink.TsArray objects nor does it write intermediate
Simulink.ModelDataLogs or Simulink.SubsysDataLogs objects to
the MATLAB workspace.

log.unpack('all') or unpack(log, ’all’) extracts
all the Simulink.Timeseries objects contained by
the Simulink.ModelDataLogs, Simulink.TsArray, or
Simulink.SubsysDataLogs object named log .

tsarray.unpack extracts the time-series objects of class
Simulink.Timeseries from the Simulink.TsArray object named
tsarray.

See Also whos, who

4-216

view_mdlrefs

Purpose Display graph of model reference dependencies

Syntax view_mdlrefs('model_name')

Description view_mdlrefs('model_name') launches the Model Dependency Viewer,
which displays a graph of model reference dependencies for the model
specified by model_name. The nodes in the graph represent Simulink®

models. The directed lines indicate model dependencies.

The default display omits library blocks. You could see this same display
by opening model_name and choosing Tools > Model Dependencies >
Model Dependency Viewer > .mdl File Dependencies Excluding
Libraries from the model menu. Use View > Dependency Type to
see other dependency displays.

The Model Dependency Viewer is the same tool, and provides the
same options, whether you launch it by typing view_mdlrefs or by
using the Simulink GUI. See “Using the Model Dependency Viewer”
for details. To see a demo of the Model Dependency Viewer, type
sldemo_mdlref_depgraph in the memory integrity checking option is
enabled in the MATLAB® Command Window.

See Also find_mdlrefs

4-217

who

Purpose List contents of signal log

Syntax log.who
tsarray.who
log.who('systems')
log.who('all')

Description log.who or who(log) lists the names of the top-level signal logging
objects (i.e., objects of type Simulink.Timeseries, Simulink.TsArray,
Simulink.ModelDataLogs, or Simulink.SubsysDatalogs) contained by
log where log is the handle of a Simulink.ModelDataLogs object name.

tsarray.who or who(tsarray) lists the Simulink.TimeSeries objects
contained by the Simulink.TsArray object named tsarray.

log.who('systems') or who(log, 'systems') lists the names of all
signal logging objects contained by log except for Simulink.Timeseries
objects stored in Simulink.TsArray objects contained by log.

log.who('all') or who(log, 'all') lists the names of all signal
logging objects contained by log

See Also whos, unpack

4-218

whos

Purpose List names and types of simulink data logging objects contained by
Simulink.ModelDataLogs or Simulink.SubsysDataLogs object

Syntax log.whos
tsarray.whos
log.whos('systems')
log.whos('all')

Description log.whos or whos(log) lists the names and types of
the top-level signal logging objects (i.e., objects of type
Simulink.Timeseries, Simulink.TsArray, Simulink.ModelDataLogs,
or Simulink.SubsysDatalogs) contained by log where log is the
handle of a Simulink.ModelDataLogs object name.

tsarray.whos or whos(tsarray) lists the names and types of
Simulink.TimeSeries objects contained by the Simulink.TsArray
object named tsarray.

log.who('systems') or who(log, 'systems') lists the names
and types of all signal logging objects contained by log except for
Simulink.Timeseries objects stored in Simulink.TsArray objects
contained by log.

log.who('all') or who(log, 'all') lists the names and types of all
signal logging objects contained by log.

See Also who, unpack

4-219

whos

4-220

5

Mask Icon Drawing
Commands

Command Summary (p. 5-2) Brief descriptions of commands

Mask Icon Drawing Commands —
Alphabetical List (p. 5-3)

Icon commands listed in alphabetical
order

5 Mask Icon Drawing Commands

Command Summary
The following sections describe commands that you can use to draw the icons
that represent masked blocks in a block diagram.

Command Usage

color Change drawing color of subsequent mask icon
drawing commands.

disp Display text centered on mask icon.

dpoly Display transfer function on mask icon.

droots Display zero-pole representation on mask icon.

fprintf Display variable text on mask icon.

image Display image on mask icon.

patch Draw color patch of specified shape on mask icon.

plot Display graphics on mask icon.

port_label Display port label on mask icon.

text Display text at specified location on mask icon.

5-2

Mask Icon Drawing Commands — Alphabetical List

Mask Icon Drawing Commands — Alphabetical List

5-3

color

Purpose Change drawing color of subsequent mask icon drawing commands

Syntax color(colorstr)

Description color(colorstr) sets the drawing color of all subsequent mask
drawing commands to the color specified by the string colorstr.

colorstr must be one of the following supported color strings.

blue
green
red
cyan
magenta
yellow
black

Entering any other string or specifying the color using RGB values
results in a warning at the MATLAB® command prompt and the color
change is ignored. The specified drawing color does not influence the
color used by the patch or image drawing commands.

Examples The following commands

color('cyan');
droots([-1], [-2 -3], 4)
color('magenta')
port_label('input',1,'in')
port_label('output',1,'out')

draw the following mask icon.

5-4

color

See Also droots, port_label

5-5

disp

Purpose Display text on icon of masked subsystem

Syntax disp(text)
disp(text, 'texmode', 'on')

Description disp(text) displays text centered on the icon where text is any
MATLAB expression that evaluates to a string.

disp(text, 'texmode', 'on') allows you to use TeX formatting
commands in text. The TeX formatting commands in turn allow you
to include symbols and Greek letters in icon text. See “Mathematical
Symbols, Greek Letters, and TEX Characters” in the MATLAB
documentation for information on the TeX formatting commands
supported by Simulink® software.

Examples The following command

disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2,

\chi, \phi_3 = {\bfcool}', 'texmode','on')

draws the equation that appears on this masked block icon.

See Also fprintf, port_label, text

5-6

dpoly, droots

Purpose Display transfer function or zero-pole representation on icon of masked
subsystem

Syntax dpoly(num, den)
dpoly(num, den, ’character’)

droots(zero, pole, gain)
droots(zero, pole, gain,'z')
droots(zero, pole, gain,'z-')

Description dpoly(num, den) displays the transfer function whose numerator is
num and denominator is den.

dpoly(num, den, ’character’) allows you to specify the name of the
transfer function’s independent variable. The default is s.

droots(zero, pole, gain) displays the transfer function whose zero
is a zero, pole is pole, and gain is gain.

droots(zero, pole, gain,'z') and droots(zero, pole,
gain,'z-') express the equation in terms of z or 1/z.

When the icon is drawn, the initialization commands are executed and
the resulting equation is drawn on the icon:

• To display a continuous transfer function in descending powers of
s, enter

dpoly(num, den)

For example, for num = [0 0 1]; and den = [1 2 1] the icon looks
like this:

• To display a discrete transfer function in descending powers of z,
enter

5-7

dpoly, droots

dpoly(num, den, 'z')

For example, for num = [0 0 1]; and den = [1 2 1]; the icon
looks like this:

• To display a discrete transfer function in ascending powers of 1/z,
enter

dpoly(num, den, 'z-')

For example, for num and den as defined previously, the icon looks
like this:

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these
values:

z = []; p = [-1 -1]; k = 1;

If the parameters are not defined or have no values when you create
the icon, Simulink software displays three question marks (? ? ?) in
the icon. When the parameter values are entered in the mask dialog
box, Simulink software evaluates the transfer function and displays
the resulting equation in the icon.

5-8

dpoly, droots

See Also disp, port_label, text

5-9

fprintf

Purpose Display variable text centered on icon of masked subsystem

Syntax fprintf(text)
fprintf(format, var)

Description The fprintf command displays formatted text centered on the icon and
can display format along with the contents of var.

Note While this command is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

Examples This command

fprintf('Hello');

displays the string 'Hello' on the icon.

This command

fprintf('Juhi = %d',17);

uses the decimal notation format (%d) to display the variable 17.

See Also disp, port_label, text

5-10

image

Purpose Display image on icon of masked subsystem

Syntax image(a)
image(a, [x, y, w, h])
image(a, [x, y, w, h], rotation)

Description image(a) displays the image a, where a is an M-by-N-by-3 array of
RGB values. You can use the MATLAB commands imread and ind2rgb
to read and convert bitmap files (such as GIF) to the necessary matrix
format.

image(a, [x, y, w, h]) creates the image at the specified position
relative to the lower-left corner of the mask.

image(a, [x, y, w, h], rotation) allows you to specify whether
the image rotates ('on') or remains stationary ('off') as the icon
rotates. The default is 'off'.

Examples This command

image(imread('icon.tif'))

reads the icon image from a TIFF file named icon.tif in the MATLAB
path.

The following commands read and convert a GIF file, label.gif, to
the appropriate matrix format. You can type these commands in the
Initialization pane of the Mask Editor.

[data, map]=imread('label.gif');
pic=ind2rgb(data,map);

Then type the command

image(pic)

in the Icon pane of the Mask Editor to read the converted label image.

5-11

image

See Also patch, plot

5-12

patch

Purpose Draw color patch of specified shape on icon of masked subsystem

Syntax patch(x, y)
patch(x, y, [r g b])

Description patch(x, y) creates a solid patch having the shape specified by the
coordinate vectors x and y. The patch’s color is the current foreground
color.

patch(x, y, [r g b]) creates a solid patch of the color specified by
the vector [r g b], where r is the red component, g the green, and
b the blue. For example,

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

Examples This command

patch([0 .5 1], [0 1 0], [1 0 0])

creates a red triangle on the mask’s icon.

See Also image, plot

5-13

plot

Purpose Draw graph connecting series of points

Syntax plot(Y)
plot(X1,Y1,X2,Y2,...)

Description plot(Y) plots, for a vector Y, each element against its index. If Y is a
matrix, it plots each column of the matrix as though it were a vector.

plot(X1,Y1,X2,Y2,...) plots the vectors Y1 against X1, Y2 against
X2, and so on. Vector pairs must be the same length and the list must
consist of an even number of vectors.

Plot commands can include NaN and inf values. When NaNs or infs are
encountered, Simulink software stops drawing, then begins redrawing
at the next numbers that are not NaN or inf.

The appearance of the plot on the icon depends on the value of the
Drawing coordinates parameter. For more information, see “Icon
options” in in the Simulink documentation.

Simulink software displays three question marks (? ? ?) in the block
icon and issues warnings in these situations:

• When the values for the parameters used in the drawing commands
are not yet defined (for example, when the mask is first created and
values have not yet been entered in the mask dialog box)

• When a masked block parameter or drawing command is entered
incorrectly

5-14

plot

Examples This command

plot([0 1 5], [0 0 4])

generates the plot that appears on the icon for the Ramp block, in the
Sources library.

See Also image

5-15

port_label

Purpose Draw port label on icon of masked subsystem

Syntax port_label('port_type', port_number, 'label’)
port_label('port_type', port_number, 'label', 'texmode', 'on')

Description port_label('port_type', port_number, ’label') draws a label on
a port. Valid values for port_type include the following:

Value Description

input Simulink input port

output Simulink output port

lconn Physical Modeling connection port on the left side
of a masked subsystem

rconn Physical Modeling connection port on the right
side of a masked subsystem

The input argument port_number is an integer, and label is a string
specifying the port’s label.

Note Physical Modeling port labels are assigned based on the nominal
port location. If the masked subsystem has been rotated or flipped,
for example, a port labeled using 'lconn' as the port_type may not
appear on the left side of the block.

port_label('port_type', port_number,
'label','texmode','on') lets you use TeX formatting commands in
label. The TeX formatting commands allow you to include symbols
and Greek letters in the port label. See “Mathematical Symbols, Greek
Letters, and Tex Characters” in the MATLAB documentation for
information on the TeX formatting commands supported by Simulink
software.

5-16

port_label

Examples The command

port_label('input', 1, 'a')

defines a as the label of input port 1.

The commands

disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');

draw playing card symbols as the labels of the ports on a masked
subsystem.

See Also disp, fprintf, text

5-17

text

Purpose Display text at specific location on icon of masked subsystem

Syntax text(x, y, ’text')
text(x, y, ’text’, 'horizontalAlignment', ’halign’,

'verticalAlignment', ’valign’)
text(x, y, 'text', 'texmode', 'on')

Description The text command places a character string at a location specified
by the point (x,y). The units depend on the Drawing coordinates
parameter. For more information, see “Icon options”.

text(x,y, text, 'texmode', 'on') allows you to use TeX formatting
commands in text. The TeX formatting commands in turn allow you
to include symbols and Greek letters in icon text. See “Mathematical
Symbols, Greek Letters, and TEX Characters” in the MATLAB
documentation for information on the TeX formatting commands
supported by Simulink software.

You can optionally specify the horizontal and/or vertical alignment of
the text relative to the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

Option Aligns

'left' The left end of the text at the specified point

'right' The right end of the text at the specified point

'center' The center of the text at the specified point

The text command offers the following vertical alignment options.

Option Aligns

'base' The baseline of the text at the specified point

'bottom' The bottom line of the text at the specified point

'middle' The midline of the text at the specified point

5-18

text

Option Aligns

'cap' The capitals line of the text at the specified point

'top' The top of the text at the specified point

Note While this command is identical in name to its corresponding
MATLAB function, it provides only the functionality described above.

Examples The command

text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

centers foobar in the icon.

The command

text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')

draws a left-aligned equation on the icon.

See Also disp, fprintf, port_label

5-19

text

5-20

6

Simulink® Debugger
Commands

Command Summary (p. 6-2) Brief descriptions of commands

Simulink® Debugger Commands —
Alphabetical List (p. 6-5)

Simulink® debugger commands
listed in alphabetical order

6 Simulink® Debugger Commands

Command Summary
The following table lists the debugger commands. The table’s Repeat column
specifies whether pressing the Enter key at the command line repeats the
command. Detailed descriptions of the commands follow the table.

Command
Short
Form Repeat Description

animate ani No Enable/disable animation
mode.

ashow as No Show algebraic loop.

atrace at No Set algebraic loop trace level.

bafter ba No Insert breakpoint after
method.

break b No Insert breakpoint before
method.

bshow bs No Show specified block.

clear cl No Clear breakpoints from
model.

continue c Yes Continue simulation.

disp d Yes Display block’s I/O when
simulation stops.

ebreak eb No Break at recoverable solver
errors.

elist el No Display method execution
order.

emode em No Toggle between accelerated
and normal mode.

etrace et No Enable or disable method
tracing.

help ? or h No Display help for debugger
commands.

6-2

Command Summary

Command
Short
Form Repeat Description

nanbreak na No Set or clear nonfinite value
break mode.

next n Yes Go to start of next time step.

probe p No Display block data.

quit q No Abort simulation.

rbreak rb No Toggle solver reset
breakpoint.

run r No Run simulation to
completion.

stimes sti No Display model’s sample
times.

slist sli No Display model’s sorted lists.

states state No Display current state values.

status stat No Display debugging options in
effect.

step s Yes Advance simulation by one or
more methods.

stop sto No Stop simulation.

strace i No Set solver trace level.

systems sys No List model’s nonvirtual
systems.

tbreak tb No Set or clear time breakpoint.

trace tr Yes Display block’s I/O each time
block executes.

undisp und Yes Remove block from
debugger’s list of display
points.

6-3

6 Simulink® Debugger Commands

Command
Short
Form Repeat Description

untrace unt Yes Remove block from
debugger’s list of trace
points.

where w No Display current location of
simulation in simulation
loop.

xbreak x No Break when debugger
encounters step-size-limiting
state.

zcbreak zcb No Toggle breaking at
nonsampled zero-crossing
events.

zclist zcl No List blocks containing
nonsampled zero crossings.

6-4

Simulink® Debugger Commands — Alphabetical List

Simulink® Debugger Commands — Alphabetical List

6-5

animate

Purpose Enable or disable animation mode

Syntax animate [delay | stop]

Arguments delay Length in seconds between method calls (1 second by
default).

stop Disable animation mode.

Description animate without any arguments enables animation mode. animate
delay enables animation mode and specifies delay as the time delay in
seconds between method calls. animate stop disables animation mode.

See Also continue

6-6

ashow

Purpose Show algebraic loop

Syntax ashow <gcb | s:b | s#n | clear>

Arguments gcb Current block.

s:b The block whose system index is s and block index is b.

s#n The algebraic loop numbered n in system s.

clear Switch that clears loop coloring.

Description ashow without any arguments lists all of a model’s algebraic loops in the
MATLAB® Command Window. ashow gcb or ashow s:b highlights the
algebraic loop that contains the specified block. ashow s#n highlights
the nth algebraic loop in system s. The ashow clear command removes
algebraic loop highlights from the model diagram.

See Also atrace, slist

6-7

atrace

Purpose Set algebraic loop trace level

Syntax atrace level

Arguments level Trace level (0 = none, 4 = everything).

Description The atrace command sets the algebraic loop trace level for a simulation.

Command Displays for Each Algebraic Loop

atrace 0 No information

atrace 1 The loop variable solution, the number of iterations
required to solve the loop, and the estimated
solution error

atrace 2 Same as level 1

atrace 3 Level 2 plus Jacobian matrix used to solve loop

atrace 4 Level 3 plus intermediate solutions of the loop
variable

See Also states, systems

6-8

bafter

Purpose Insert breakpoint after specified method

Syntax bafter
bafter m:mid
bafter <sid:bid | gcb> [mth] [tid:TID]
bafter <s:sid | gcs> [mth] [tid:TID]
bafter mdl [mth] [tid:TID]

Arguments mid Method ID

sid:bid Block ID

gcb Currently selected block

sid System ID

gcs Currently selected system

mdl Currently selected model

mth A method name, e.g., Outputs.Major

TID Task ID

Description bafter inserts a breakpoint after the current method.

bafter m:mid inserts a breakpoint after the method specified by mid
(see “Method ID”).

bafter sid:bid inserts a breakpoint after each invocation of the
method of the block specified by sid:bid (see “Block ID”) in major
time steps. bafter gcb inserts a breakpoint after each invocation of a
method of the currently selected block (see gcb) in major times steps.

bafter s:sid inserts a breakpoint after each method of the root system
or nonvirtual subsystem specified by the system ID: sid.

6-9

bafter

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

bafter gcs inserts a breakpoint after each method of the currently
selected nonvirtual system.

bafter mdl inserts a breakpoint after each method of the currently
selected model.

The optional mth parameter allow you to set a breakpoint after a
particular block, system, or model method and task. For example,
bafter gcb Outputs sets a breakpoint after the Outputs method of
the currently selected block.

The optional TID parameter allows you to set a breakpoint after
invocation of a method by a particular task. For example, suppose that
the currently selected nonvirtual subsystem operates on task 2 and 3.
Then bafter gcs Outputs tid:2 sets a breakpoint after the invocation
of the subsystem’s Outputs method that occurs when task 2 is active.

See Also break, ebreak, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear,
where, slist, systems

6-10

break

Purpose Insert breakpoint before specified method

Syntax break
break m:mid
break <sid:bid | gcb> [mth] [tid:TID]
break <s:sid | gcs> [mth] [tid:TID]
break mdl [mth] [tid:TID]

Arguments mid Method ID

sid:bid Block ID

gcb Currently selected block

sid System ID

gcs Currently selected system

mdl Currently selected model

mth A method name, e.g., Outputs.Major

TID task ID

Description break inserts a breakpoint before the current method.

break m:mid inserts a breakpoint before the method specified by mid
(see “Method ID”).

break sid:bid inserts a breakpoint before each invocation of the
method of the block specified by sid:bid (see “Block ID”) in major
time steps. break gcb inserts a breakpoint before each invocation of a
method of the currently selected block (see gcb) in major times steps.

break s:sid inserts a breakpoint at each method of the root system or
nonvirtual subsystem specified by the system ID: sid.

6-11

break

Note The systems command displays the system IDs for all nonvirtual
systems in the currently selected model.

break gcs inserts a breakpoint at each method of the currently selected
nonvirtual system.

break mdl inserts a breakpoint at each method of the currently selected
model.

The optional mth parameter allow you to set a breakpoint at a particular
block, system, or model method. For example, break gcb Outputs sets
a breakpoint at the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the
invocation of a method by a particular task. For example, suppose that
the currently selected nonvirtual subsystem operates on task 2 and 3.
Then break gcs Outputs tid:2 sets a breakpoint at the invocation of
the subsystem’s Outputs method that occurs when task 2 is active.

See Also bafter, clear, ebreak, nanbreak, rbreak, systems, tbreak, where,
xbreak, zcbreak, slist

6-12

bshow

Purpose Show specified block

Syntax bshow s:b

Arguments s:b The block whose system index is s and block index is b.

Description The bshow command opens the model window containing the specified
block and selects the block.

See Also slist

6-13

clear

Purpose Clear breakpoints from model

Syntax clear
clear m:mid
clear id
clear <sid:bid | gcb>

Arguments mid Method ID

id Breakpoint ID

sid:bid Block ID

gcb Currently selected block

Description clear clears a breakpoint from the current method.

clear m:mid clears a breakpoint from the method specified by mid.

clear id clears the breakpoint specified by the breakpoint ID id.

clear sid:bid clears any breakpoints set on the methods of the block
specified by sid:bid.

clear gcb clears any breakpoints set on the methods of the currently
selected block.

See Also break, bafter, slist

6-14

continue

Purpose Continue simulation

Syntax continue

Description The continue command continues the simulation from the current
breakpoint. If animation mode is not enabled, the simulation continues
until it reaches another breakpoint or its final time step. If animation
mode is enabled, the simulation continues in animation mode to the
first method of the next major time step, ignoring breakpoints.

See Also run, stop, quit, animate

6-15

disp

Purpose Display block’s I/O when simulation stops

Syntax disp
disp gcb
disp s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The disp command registers a block as a display point. The debugger
displays the inputs and outputs of all display points in the MATLAB
Command Window whenever the simulation halts. Invoking disp
without arguments shows a list of display points. Use undisp to
unregister a block.

See Also undisp, slist, probe, trace

6-16

ebreak

Purpose Enable (or disable) breakpoint on solver errors

Syntax ebreak

Description This command causes the simulation to stop if the solver detects
a recoverable error in the model. If you do not set or disable this
breakpoint, the solver recovers from the error and proceeds with the
simulation without notifying you.

See Also break, bafter, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear,
where, slist, systems

6-17

elist

Purpose List simulation methods in order in which they are executed during
simulation

Syntax elist m:mid [tid:TID]
elist <gcs | s:sid> [mth] [tid:TID]
elist <gcb | sid:bid> [mth] [tid:TID]

Description elist m:mid lists the methods invoked by the system or nonvirtual
subsystem method corresponding to the method id mid (see the where
command for information on method IDs), e.g.,

The method list specifies the calling method followed by the methods
that it calls in the order in which they are invoked. The entry for the
calling method includes

• The name of the method

The name of the method is prefixed by the type of system that defines
the method, e.g., RootSystem.

• The name of the model or subsystem instance on which the method
is invoked

• The ID of the task that invokes the method

The entry for each called method includes

6-18

elist

• The ID (sid:bid) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that
contains the block (the sid). This allows Simulink® software to
assign the same block ID to blocks residing in different subsystems.

• The name of the method

The method name is prefixed with the type of block that defines the
method, e.g., Integrator.

• The name of the block instance on which the method is invoked

• The task that invokes the method

The optional task ID parameter (tid:TID) allows you to restrict the
displayed lists to methods invoked for a specified task. You can specify
this option only for system or atomic subsystem methods that invoke
Outputs or Update methods.

elist <gcs | s:sid> lists the methods executed for the currently
selected system (specified by the gcs command) or the system or
nonvirtual subsystem specified by the system ID sid, e.g.,

6-19

elist

The system ID of a model’s root system is 0. You can use the debugger’s
systems command to determine the system IDs of a model’s subsystems.

Note The elist and where commands use block IDs to identify
subsystems in their output. The block ID for a subsystem is not the
same as the system ID displayed by the systems command. Use the
elist sid:bid form of the elist command to display the methods
of a subsystem whose block ID appears in the output of a previous
invocation of the elist or where command.

elist <gcs | s:sid> mth lists methods of type mth to be executed for
the system specified by the gcs command or the system ID sid, e.g.,

Use elist gcb to list the methods invoked by the nonvirtual subsystem
currently selected in the model.

See Also where, slist, systems

6-20

emode

Purpose Toggle model execution between accelerated and normal mode

Syntax emode

Description Toggles the simulation between accelerated and normal mode when
using the Accelerator mode in Simulink software. See “Using the
Accelerator Mode with the Simulink Debugger” in “Using Simulink”
for more information.

6-21

etrace

Purpose Enable or disable method tracing

Syntax etrace level level-number

Description This command enables or disables method tracing, depending on the
value of level:

Level Description

0 Turn tracing off.

1 Trace model methods.

2 Trace model and system methods.

3 Trace model, system, and block methods.

When method tracing is on, the debugger prints a message at the
command line every time a method of the specified level is entered or
exited. The message specifies the current simulation time, whether
the simulation is entering or exiting the method, the method id and
name, and the name of the model, system, or block to which the method
belongs.

See Also elist, where, trace

6-22

help

Purpose Display help for debugger commands

Syntax help

Description The help command displays a list of debugger commands in the
command window. The list includes the syntax and a brief description
of each command.

6-23

nanbreak

Purpose Set or clear nonfinite value break mode

Syntax nanbreak

Description The nanbreak command causes the debugger to break whenever the
simulation encounters a nonfinite (NaN or Inf) value. If nonfinite break
mode is set, nanbreak clears it.

See Also break, bafter, ebreak, rbreak, tbreak, xbreak, zcbreak

6-24

next

Purpose Advance simulation to start of next method at current level in model’s
execution list

Syntax next

Description The next command advances the simulation to the start of the next
method at the current level in the model’s method execution list.

Note The next command has the same effect as the step over
command. See step for more information.

See Also step

6-25

probe

Purpose Display block data

Syntax probe
probe s:b
probe gcb
probe level level-type

Arguments s:b The block whose system index is s and block index is b.

gcb Currently selected block.

level-type The type of information displayed [io | all].

Description probe causes the debugger to enter an interactive probe mode. In this
mode, the debugger displays the I/O of any block you select with a click
of a mouse button. To exit probe mode, enter any command or press
the Enter key.

probe s:b displays the I/O of the block whose index is s:b.

probe gcb displays the I/O of the currently selected block.

probe level level-type specifies the type of information displayed,
depending on the value of level-type:

Level Displays

io Block’s I/O

all All information regarding a block’s current state,
including inputs and outputs, states, and zero
crossings

By default, level-type is set to all.

See Also disp, trace

6-26

quit

Purpose Abort simulation

Syntax quit

Description The quit command terminates the current simulation.

See Also stop

6-27

rbreak

Purpose Break when simulation requires solver reset

Syntax rbreak

Description This command enables (or disables) a solver reset breakpoint if the
breakpoint is disabled (or enabled). The breakpoint causes the debugger
to halt the simulation whenever an event that requires a solver reset
occurs. The halt occurs before the solver is reset.

See Also break, bafter, ebreak, nanbreak, tbreak, xbreak, zcbreak

6-28

run

Purpose Run simulation to completion

Syntax run

Description The run command runs the simulation from the current breakpoint to
its final time step. It ignores breakpoints and display points.

See Also continue, stop, quit

6-29

slist

Purpose Display sorted list of model’s root system and of each of its nonvirtual
subsystems

Syntax slist

Description The slist command displays the sorted list of a model’s root system
and each of its nonvirtual subsystems. For example, the sorted list
for the vdp model’s root system is

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]

0:0 'vdp/x1' (Integrator)

0:1 'vdp/Out1' (Outport)

0:2 'vdp/x2' (Integrator)

0:3 'vdp/Out2' (Outport)

0:4 'vdp/Scope' (Scope)

0:5 'vdp/Fcn' (Fcn)

0:6 'vdp/Product' (Product)

0:7 'vdp/Mu' (Gain)

0:8 'vdp/Sum' (Sum)

For each system (root or nonvirtual), the slist command displays a
title line followed by an entry for each block in the order in which the
blocks appear in the sorted list. The title line specifies the name of the
system, the number of nonvirtual blocks that the system contains, and
the number of blocks in the system that have direct feedthrough ports.
Each block entry lists the block’s id and the name and type of the block.
The block id consists of a system index and a block index separated by a
colon (s:b). The block index is the position of the block in the sorted list.
The system index is the order in which Simulink software generated
the system’s sorted list. The system index has no special significance.
It simply allows blocks that appear in the same position in different
sorted lists to have unique identifiers.

A sorted list is a list of a root system or nonvirtual subsystem’s blocks
sorted according to data dependencies and other criteria. Simulink
software uses sorted lists to create block method execution lists (see
elist) for root system and nonvirtual subsystem methods that invoke

6-30

slist

the corresponding methods of the blocks that the root system or
subsystem contains. In general, root system and nonvirtual subsystem
methods invoke the block methods in the same order as the blocks
appear in the sorted list. However, significant exceptions occur. For
example, execution lists for multitask models group all blocks operating
at the same rate (i.e., in the same task) together with slower groups
appearing later than faster groups. The grouping of methods by task
can result in an order of block method execution that differs from the
order in which blocks appear in the sorted list. However, within groups,
methods execute in the same order as the corresponding blocks appear
in the sorted list.

See Also systems, elist

6-31

states

Purpose Display current state values

Syntax states

Description The states command displays a list of the current states of the model.
The display lists the index, current value, system:block:element ID,
state vector name, and block name for each state.

Example The following command displays information about the states for the
hardstop demo:

(sldebug @41): >> states

Continuous States:

Idx Value (system:block:element Name 'BlockName')

0 -0.5 (0:1:0 CSTATE 'hardstop/position')

1 100 (0:9:0 CSTATE 'hardstop/velocity')

6-32

status

Purpose Display debugging options in effect

Syntax status

Description The status command displays a list of the debugging options in effect.

6-33

step

Purpose Advance simulation by one or more methods

Syntax step [in into]
step over
step out
step top
step blockmth

Description This command advances the simulation

• Into (step [in into]), over (step over), or out of the method at
which the simulation is currently stopped (step out)

• To the top of the simulation loop (step top), i.e., to the start of the
first method executed at the start of the next time step

• To the next method that operates on a block (step blockmth)

The following diagram illustrates the effect of various forms of the
step command.

6-34

step

If this command advances the simulation to the start of a block method,
the debugger points the debug pointer at the block on which the method
operates.

See Also next, where, elist

6-35

stimes

Purpose Display sample times defined by model being debugged

Syntax stimes

Description This command displays information about the sample times defined by
this model, including the sample time’s period, offset, and task ID.

Example The following command displays the sample times for the f14 demo:

(sldebug @0): >> stimes

--- Sample times for 'f14' [Number of sample times = 3]

1. [0 , 0] tid=0 (continuous sample time)

2. [0 , 1] tid=1 (continuous but fixed in minor step)

3. [0.1 , 0] tid=2

6-36

stop

Purpose Stop simulation

Syntax stop

Description The stop command stops the simulation.

See Also continue, run, quit

6-37

strace

Purpose Set solver trace level

Syntax strace level

Arguments level Trace level (0 = none, 1 = everything).

Description The strace command causes the solver to display diagnostic
information in the MATLAB Command Window, depending on the value
of level. Valid values are 0 (no information) or 1 (maximum detail).

Command Displays

strace 0 No information

strace 1 Information about time steps, integration steps,
zero crossings, and solver resets

When diagnostic tracing is on, the debugger displays the sizes of major
and minor time steps:

[TM = 13.21072088374186] Start of Major Time Step

[Tm = 13.21072088374186] Start of Minor Time Step

The debugger also displays integration information, including the time
step of the integration method, the step size of the integration method,
the outcome of the integration step, the normalized error, and the index
of the state:

[Tm = 13.21072088374186] [H = 0.2751116230148764] Begin Integration Step

[Tf = 13.48583250675674] [Hf = 0.2751116230148764] Fail [Er = 1.0404e+000]

[Ix = 1]

[Tm = 13.21072088374186] [H = 0.2183536061326544] Retry

[Ts = 13.42907448987452] [Hs = 0.2183536061326539] Pass [Er = 2.8856e-001]

[Ix = 1]

6-38

strace

When a zero crossing is detected, the debugger displays information
about the iterative search algorithm used to identify when the zero
crossing occurred. This includes the time step of the zero crossing, the
step size of the zero crossing detection algorithm, the length of the time
interval bracketing the zero crossing, and a flag denoting the rising or
falling direction of the zero crossing:

[Tz = 3.615333333333301] Detected 1 Zero Crossing Event 0[F]

Begin iterative search to bracket zero crossing event

[Tz = 3.621111157580072] [Hz = 0.005777824246771424] [Iz = 4.2222e-003] 0[F]

[Tz = 3.621116982080098] [Hz = 0.005783648746797265] [Iz = 4.2164e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 4.2163e-003] 0[F]

[Tz = 3.621116987943544] [Hz = 0.005783654610242994] [Iz = 1.1804e-011] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.8962e-012] 0[F]

[Tz = 3.621116987949452] [Hz = 0.005783654616151157] [Iz = 5.1514e-014] 0[F]

End iterative search to bracket zero crossing event

When solver resets occur, the debugger displays the time at which the
solver was reset:

[Tr = 6.246905153573676] Process Solver Reset

[Tr = 6.246905153573676] Reset Zero Crossing Cache

[Tr = 6.246905153573676] Reset Derivative Cache

For more information about the notation displayed by strace, type the
following command at the sldebug prompt:

help time

See Also atrace, etrace, states, trace, zclist

6-39

systems

Purpose List model’s nonvirtual systems

Syntax systems

Description The systems command lists a model’s nonvirtual systems in the
MATLAB Command Window.

See Also slist

6-40

tbreak

Purpose Set or clear time breakpoint

Syntax tbreak

tbreak t

Description The tbreak command sets a breakpoint at the specified time step. If
a breakpoint already exists at the specified time, tbreak clears the
breakpoint. If you do not specify a time, tbreak toggles a breakpoint
at the current time step.

See Also break, bafter, ebreak, xbreak, nanbreak, zcbreak, rbreak

6-41

trace

Purpose Display block’s I/O each time block executes

Syntax trace gcb
trace s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The trace command registers a block as a trace point. The debugger
displays the I/O of each registered block each time the block executes.

See Also disp, probe, untrace, slist, strace

6-42

undisp

Purpose Remove block from debugger’s list of display points

Syntax undisp gcb
undisp s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The undisp command removes the specified block from the debugger’s
list of display points.

See Also disp, slist

6-43

untrace

Purpose Remove block from debugger’s list of trace points

Syntax untrace gcb
untrace s:b

Arguments s:b The block whose system index is s and block index is b.

gcb Current block.

Description The untrace command removes the specified block from the debugger’s
list of trace points.

See Also trace, slist

6-44

where

Purpose Display current location of simulation in simulation loop

Syntax where [detail]

Description The where command displays the current location of the simulation in
the simulation loop, for example,

The display consists of a list of simulation nodes with the last entry
being the node that is about to be entered or exited. Each entry contains
the following information:

• Method ID

The method ID identifies a specific invocation of a method.

• A symbol specifying its state:

- >> (active)

- >|(about to be entered)

- <|(about to be exited)

• Name of the method invoked (e.g., RootSystem.Start)

• Name of the block or system on which the method is invoked (e.g.,
Sum)

• System and block ID (sid:bid) of the block on which the method
is invoked

6-45

where

For example, 0:8 indicates that the specified method operates on
block 8 of system 0.

where detail, where detail is any nonnegative integer, includes
inactive nodes in the display.

See Also step

6-46

xbreak

Purpose Break when debugger encounters step-size-limiting state

Syntax xbreak

Description The xbreak command pauses execution of the model when the debugger
encounters a state that limits the size of the steps that the solver takes.
If xbreak mode is already on, xbreak turns the mode off.

See Also break, bafter, ebreak, zcbreak, tbreak, nanbreak, rbreak

6-47

zcbreak

Purpose Toggle breaking at nonsampled zero-crossing events

Syntax zcbreak

Description The zcbreak command causes the debugger to break when a
nonsampled zero-crossing event occurs. If zero-crossing break mode is
already on, zcbreak turns the mode off.

See Also break, bafter, xbreak, tbreak, nanbreak, zclist

6-48

zclist

Purpose List blocks containing nonsampled zero crossings

Syntax zclist

Description The zclist command displays a list of blocks in which nonsampled zero
crossings can occur. The command displays the list in the MATLAB
Command Window.

See Also zcbreak

6-49

zclist

6-50

7

Data Object Classes

Class Summary (p. 7-2) Brief description of data object
classes

Classes — Alphabetical List (p. 7-4) Data object classes listed in
alphabetical order

7 Data Object Classes

Class Summary
The following table briefly describes the purpose of each Simulink® data
object class. See “Working with Data Objects” in Using Simulink for general
information on creating and using Simulink data objects.

Class Purpose

EventData Provide information about block method
execution events.

Simulink.AliasType Specify alternate name for existing data
type.

Simulink.Annotation Specify properties of model annotation

Simulink.BlockComp-
DworkData

Provide post-compilation information about
block’s DWork vector.

Simulink.BlockCompInput-
PortData

Provide post-compilation information about
block input port.

Simulink.BlockCompOutput-
PortData

Provide post-compilation information about
block output port.

Simulink.BlockData Provide run-time information about
block-related data, such as block parameters.

Simulink.BlockPortData Describe block input or output port.

Simulink.BlockPreComp-
InputPortData

Provide precompilation information about
block input port.

Simulink.BlockPreComp-
OutputPortData

Provide precompilation information about
block output port.

Simulink.Bus Describe signal bus.

Simulink.BusElement Describe element of signal bus.

Simulink.ConfigSet Access model configuration set.

Simulink.ConfigSetRef Link a model to a configuration set that is
stored independently of any model

Simulink.ModelAdvisor Run the Model Advisor programmatically.

Simulink.ModelDataLogs Store model’s signal logs.

7-2

Class Summary

Class Purpose

Simulink.ModelWorkspace Access model’s workspace.

Simulink.MSFcnRunTime-
Block

Get run-time information about Level-2
M-file S-function block.

Simulink.NumericType Describe numeric data type.

Simulink.Parameter Describe value of block parameter.

Simulink.ParamRTWInfo Specify information needed to generate code
for parameter.

Simulink.RunTimeBlock Allow Level-2 M-file S-function and other
M-file programs to get information about
block while simulation is running.

Simulink.ScopeDataLogs Log data displayed by Scope viewer.

Simulink.Signal Describes value of block output.

Simulink.StructElement Describe element of data structure.

Simulink.StructType Describe data structure.

Simulink.SubsysDataLogs Store subsystem’s signal logs.

Simulink.TimeInfo Provide information about time data in
Simulink.Timeseries object.

Simulink.Timeseries Log for elementary signal.

Simulink.TsArray Log for composite signal.

7-3

7 Data Object Classes

Classes — Alphabetical List

7-4

EventData

Purpose Provide information about block method execution events

Description Simulink® software creates an instance of this class when a block
method execution event occurs during simulation and passes it to any
listeners registered for the event (see add_exec_event_listener).
The instance specifies the type of event that occurred and the block
whose method execution triggered the event. See “Accessing Block Data
During Simulation” in Using Simulink for more information.

Parent None

Children None

Property
Summary

Name Description

“Type” Type of method execution event that occurred.

“Source” Block that triggered the event.

Properties
Type

Description
Type of method execution event that occurred. Possible values are:

Event Occurs...

'PreOutputs' Before a block’s Outputs method executes.

'PostOutputs' After a block’s Outputs method executes.

'PreUpdate' Before a block’s Update method executes.

'PostUpdate' After a block’s Update method executes.

'PreDerivatives' Before a block’s Derivatives method executes.

'PostDerivatives' After a block’s Derivatives method executes.

Data Type
string

7-5

EventData

Access
RO

Source

Description
Block that triggered the event

Data Type
Simulink.RunTimeBlock

Access
RO

7-6

Simulink.AliasType

Purpose Create alias for signal and/or parameter data type

Description This class allows you to designate MATLAB® variables as aliases for
signal and parameter data types. You do this by creating instances of
this class and assigning them to variables in the MATLAB or model
workspaces (see “Creating a Data Type Alias” on page 7-7). The
MATLAB variable to which a Simulink.AliasType object is assigned
is called a data type alias. The data type to which an alias refers is
called its base type. Simulink software allows you to set the BaseType
property of the object that the variable references, thereby designating
the data type for which it is an alias.

Simulink software lets you use aliases instead of actual type names
in dialog boxes and set_param commands to specify the data types of
Simulink block outputs and parameters. Using aliases to specify signal
and parameter data types can greatly simplify global changes to the
signal and parameter data types that a model specifies. In particular,
changing the data type of all signals and parameters whose data type is
specified by an alias requires only changing the base type of the alias.
By contrast, changing the data types of signals and parameters whose
data types are specified by an actual type name requires respecifying
the data type of each signal and parameter individually.

Note Suppose you specify an instance of the Simulink.AliasType
class as the value of a Simulink.Parameter object’s Data type
property. If you enter the parameter object in a subsystem’s mask, the
subsystem displays the data type’s base type instead of its alias name.

Creating a Data Type Alias

You can use either the Model Explorer or MATLAB commands (see
“MATLAB® Commands for Creating Data Type Aliases” on page 7-8)
to create a data type alias.

To use the Model Explorer to create an alias:

7-7

Simulink.AliasType

1 Select Base Workspace (i.e., the MATLAB workspace) in the Model
Explorer’s Model Hierarchy pane.

You must create data type aliases in the MATLAB workspace. If you
attempt to create an alias in a model workspace, Simulink software
displays an error.

2 Select Simulink.AliasType from the Model Explorer’s Add menu.

Simulink software creates an instance of a Simulink.AliasType
object and assigns it to a variable named Alias in the MATLAB
workspace.

3 Rename the variable to a more appropriate name, for example, a
name that reflects its intended usage.

To change the name, edit the name displayed in the Name field in
the Model Explorer’s Contents pane.

4 Enter the name of the data type that this alias represents in the
Base type field in the Model Explorer’s Dialog pane.

You can specify the name of any existing standard or user-defined
data type in this field. Skip this step if the desired base type is
double (the default).

5 Use the MATLAB save command to save the newly created alias in a
MAT-file that can be loaded by the models in which it is used.

MATLAB Commands for Creating Data Type Aliases

Use the following syntax to create a data type alias at the MATLAB
command line or in a MATLAB program

ALIAS = Simulink.AliasType;

where ALIAS is the name of the variable that you want to serve as the
alias. For example, the following line creates an alias names MyFloat.

MyFloat = Simulink.AliasType;

7-8

Simulink.AliasType

The following notations get and set the properties of a data type alias,
respectively,

PROPVALUE = ALIAS.PROPNAME;
ALIAS.PROPNAME = PROPVALUE;

where ALIAS is the name of the alias, PROPNAME is the name of the alias
object’s properties, and PROPVALUE is the property’s value. For example,
the following code saves the current value of MyFloat’s BaseType
property and assigns it a new value.

old = MyFloat.BaseType;
MyFloat.BaseType = 'single';

See “Properties” on page 7-11 for information on the names, permitted
values, and usage of the properties of data type alias objects.

Data Type Aliases in the Generated Code

You can cause data type aliases to appear in the code generated for a
model using any of the following methods.

• Specifying the signal data type of a block in the model as a
Simulink.AliasType via the Block Parameters dialog box.

• Creating a Simulink.Signal object that uses the
Simulink.AliasType as its data type. Use this signal
object as the name of a signal in the model and specify that the
signal name must resolve to an object in the MATLAB workspace.
See “Signal Objects” in the Real-Time Workshop® User’s Guide for
more information.

• Creating a Simulink.Parameter object that uses the
Simulink.AliasType as its data type. Use this parameter object as a
block parameter in the model. See“Generated Code for Parameter
Data Types” in the Real-Time Workshop User’s Guide for more
information.

7-9

Simulink.AliasType

Note If a data type is assigned both in a block’s Block Parameters
dialog box and using a Simulink.Signal object on the signal feeding
into the block, the code is always generated using the data type in the
dialog box.

Parent None

Children None.

Property
Dialog
Box

Base type
The data type to which this alias refers. The default is double. To
specify another data type, select the data type from the adjacent
pull-down list of standard data types or enter the data type’s
name in the edit field. Note that you can, with one exception,
specify a nonstandard data type, e.g., a data type defined by a
Simulink.NumericType object, by entering the data type’s name
in the edit field. The exception is a Simulink.NumericType whose
Category is Fixed-point: unspecified scaling.

7-10

Simulink.AliasType

Note Fixed-point: unspecified scaling is a partially
specified type whose definition is completed by the block that uses
the Simulink.NumericType. Forbidding its use in alias types
avoids creating aliases that have different base types depending
on where they are used.

Header file
Name of a user-supplied C header file that defines a data type
having the same name as this alias (i.e., as the MATLAB variable
that references this alias object). If this field is not empty, code
generated from this model defines the alias type by including the
specified header file. If this field is empty, the generated code
defines the alias type itself.

Description
Describes the usage of the data type referenced by this alias.

Properties Name Description

BaseType A string specifying the name of a standard or custom
data type. (Base Type)

Description A string that describes the usage of the data type.
May be a null string. (Description)

HeaderFile A string that specifies the name of a C header file
that defines a data type having the same name as the
alias. (Header File)

7-11

Simulink.Annotation

Purpose Specify properties of model annotation

Description Instances of this class specify the properties of annotations. You can
use getCallbackAnnotation in an annotation callback function to get
the Simulink.Annotation instance for the annotation associated with
the callback function. You can use find_system and get_param to get
the Simulink.Annotation instance associated with any annotation in
a model. For example, the following code gets the annotation object
for the first annotation in the currently selected model and turns on
its drop shadow

ah = find_system(gcs, 'FindAll', 'on', 'type', 'annotation');

ao = get_param(ah(1), 'Object');

ao.DropShadow = 'on';

Children None.

Property
Summary

Property Description Values

Text String specifying text of
annotation. Same as Name.

string

ClickFcn Specifies MATLAB code to
be executed when a user
single-clicks this annotation.
Simulink software stores
the code entered in this
field with the model. See
“Associating Click Functions
with Annotations” for more
information.

string

Description String that describes this
annotation.

string

7-12

Simulink.Annotation

Property Description Values

FontAngle String specifying the angle
of the annotation’s font.
The default value, 'auto',
specifies use of the model’s
preferred font angle.

'normal' | 'italic' |
'oblique' | {'auto'}

FontName String specifying name of
annotation’s font. The default
value, 'auto', specifies use of
the model’s preferred font.

string

FontSize Integer specifying size of
annotation’s font in points.
The default value, -1, specifies
use of the model’s preferred
font size.

real {'-1'}

FontWeight String specifying the weight
of the annotation’s font.
The default value, 'auto',
specifies use of the model’s
preferred font weight.

'light' | 'normal' | 'demi' |
'bold' | {'auto'}

Handle Annotation handle. real

HiliteAncestors For internal use.

Name String specifying text of
annotation. Same as Text.

string

Selected String specifying whether
this annotation is currently
selected ('on’) or not selected
('off').

{'on'} | 'off'

Parent String specifying parent name
of annotation object.

string

Path Path to the annotation. string

7-13

Simulink.Annotation

Property Description Values

Position Two-element vector specifying
the x-y coordinates of this
annotation relative to the
top, left corner of the block
diagram, e.g., [236 83].

vector [left bottom]
not enclosed in quotation marks.
The maximum value for a
coordinate is 32767.

Horizontal-
Alignment

String specifying the
horizontal alignment of this
annotation, e.g., 'center'.

{'center'} | 'left'|'right'

VerticalAlignment String specifying the vertical
alignment of this annotation,
e.g., 'middle'.

{'middle'} |
'top'|'cap'|'baseline'|'bottom'

ForegroundColor String specifying foreground
color of this annotation.

RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue, and
alpha values of the color normalized
to the range 0.0 to 1.0, delineated
with commas. The alpha value is
optional and ignored.

Block background color can also be
'black', 'white', 'red', 'green',
'blue', 'cyan', 'magenta',
'yellow', 'gray', 'lightBlue',
'orange', 'darkGreen'.

7-14

Simulink.Annotation

Property Description Values

BackgroundColor String specifying background
color of this annotation.

RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue, and
alpha values of the color normalized
to the range 0.0 to 1.0, delineated
with commas. The alpha value is
optional and ignored.

Block background color can also be
'black', 'white', 'red', 'green',
'blue', 'cyan', 'magenta',
'yellow', 'gray', 'lightBlue',
'orange', 'darkGreen'.

DropShadow String specifying whether
to display a drop shadow.
Options are 'on' or 'off'.

'on' | {'off'}

TeXMode String specifying whether to
render TeX markup. Options
are 'on' or 'off'.

'on' | {'off'}

Type Annotation type. This is
always 'annotation'

string

LoadFcn String specifying M-code
to be executed when the
model containing this
annotation is loaded. See
“Annotation Callback
Functions” in the online
Simulink documentation.

string

7-15

Simulink.Annotation

Property Description Values

DeleteFcn String specifying M-code
to be executed before
deleting this annotation.
See “Annotation Callback
Functions” in the online
Simulink documentation.

string

RequirementInfo For internal use. string

Tag User-specified text that is
assigned to the annotation’s
Tag parameter and saved with
the annotation.

string

UseDisplayText-
AsClickCallback

String specifying whether to
use the contents of the Text
property as this annotation’s
click function. Options are
'on' or 'off'.

If set to 'on', the text of the
annotation is interpreted as a
valid MATLAB expression and
run. If set to 'off', clicking
on the annotation runs the
click function, if there is one.
If there is no click function,
clicking the annotation has no
effect.

See “Associating
Click Functions with
Annotations” in the Simulink
documentation for more
information.

'on' | {'off'}

UserData Any data that you want to
associate with this annotation.

vector

7-16

Simulink.BlockCompDworkData

Purpose Provide postcompilation information about block’s DWork vector

Description Simulink software returns an instance of this class when an M-file
program, e.g., a Level-2 M-file S-function, invokes the “Dwork” on page
7-134 method of a block’s run-time object after the model containing the
block has been compiled.

Parent Simulink.BlockData

Children None

Property
Summary

Name Description

“Usage” on page 7-17 Usage type of this DWork vector.

“UsedAsDiscState” True if this DWork vector is being used to
store the values of a block’s discrete states.

Properties
Usage

Description
Returns a string indicating how this DWork vector is used. Permissible
values are:

• DWork

• DState

• Scratch

• Mode

Data Type
string

Access
RW for M-file S-function blocks, RO for other blocks.

7-17

Simulink.BlockCompDworkData

UsedAsDiscState

Description
True if this DWork vector is being used to store the values of a block’s
discrete states.

Data Type
Boolean

Access
RW for M-file S-function blocks, RO for other blocks.

7-18

Simulink.BlockCompInputPortData

Purpose Provide postcompilation information about block input port

Description Simulink software returns an instance of this class when an M-file
program, e.g., a Level-2 M-file S-function, invokes the “InputPort”
on page 7-135 method of a block’s run-time object after the model
containing the block has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“DirectFeedthrough” True if this port has direct feedthrough.

“Overwritable” True if this port is overwritable.

Properties
DirectFeedthrough

Description
True if this input port has direct feedthrough.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks.

Overwritable

Description
True if this input port is overwritable.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks.

7-19

Simulink.BlockCompOutputPortData

Purpose Provide postcompilation information about block output port

Description Simulink software returns an instance of this class when an M-file
program, e.g., a Level-2 M-file S-function, invokes the “OutputPort”
on page 7-136 method of a block’s run-time object after the model
containing the block has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“Reusable” Specifies whether an output port’s memory
is reusable.

Properties
Reusable

Description
Specifies whether an output port’s memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

Data Type
string

Access
RW for M-file S functions, RO for other blocks.

7-20

Simulink.BlockData

Purpose Provide run-time information about block-related data, such as block
parameters

Description This class defines properties that are common to objects that provide
run-time information about a block’s ports and work vectors.

Parent None

Children Simulink.BlockPortData, Simulink.BlockCompDworkData

Property
Summary

Name Description

“AliasedThroughDataType”
on page 7-22

Fundamental base data type.

“AliasedThroughDataTypeID”
on page 7-23

Fundamental base data type ID.

“Complexity” Numeric type (real or complex) of the
block data.

“Data” The block data.

“DataAsDouble” The block data in double form.

“Datatype” Data type of the block data.

“DatatypeID” Index of the data type of the block
data.

“Dimensions” Dimensions of the block data.

“Name” Name of the block data.

“Type” Type of block data (e.g., a parameter).

7-21

Simulink.BlockData

Properties
AliasedThroughDataType

Description
Data type aliases allow a data type (B) to be recursively aliased to
another alias type or BaseType (A). If alias type A is aliased to another
alias type that is aliased to another alias type and so forth, this property
allows the alias type to be iteratively searched (aliased through) until
the type is no longer an alias type and that final result is the value of
the property returned. For example, assume that you have created the
Simulink Alias types A and B as follows:

A=Simulink.AliasType('double')

A =
Simulink.AliasType

Description: ''
HeaderFile: ''

BaseType: 'double'
B=Simulink.AliasType('A')

B =
Simulink.AliasType

Description: ''
HeaderFile: ''

BaseType: 'A'

If the data type of an item of block data is B, this property returns the
base type A instead of B.

Data Type
string

Access
RO

7-22

Simulink.BlockData

AliasedThroughDataTypeID

Description
Index of the data type alias returned by the AliasedThroughDataType
property.

Data Type
integer

Access
RO

Complexity

Description
Numeric type (real or complex) of the block data.

Data Type
string

Access
RW for M-file S functions, RO for other blocks.

Data

Description
The block data.

Data Type
The data type specified by the “Datatype” or “DatatypeID” properties of
this object.

Access
RW

7-23

Simulink.BlockData

DataAsDouble

Description
The block data’s in double form.

Data Type
double

Access
RO

Datatype

Description
Data type of the values of the block-related object.

Data Type
string

Access
RO

DatatypeID

Description
Index of the data type of the values of the block-related object. Enter
the numeric value for the desired data type, as follows:

Data Type Value

'inherited' -1

'double' 0

'single' 1

'int8' 2

'uint8' 3

'int16' 4

'uint16' 5

7-24

Simulink.BlockData

Data Type Value

'int32' 6

'uint32' 7

'boolean' or fixed-point data types 8

Data Type
integer

Access
RW for M-file S functions, RO for other blocks

Dimensions

Description
Dimensions of the block-related object, e.g., parameter or DWork vector.

Data Type
array

Access
RW for M-file S functions, RO for other blocks

Name

Description
Name of block-related object, e.g., a block parameter or DWork vector.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

Type

Description
Type of block data. Possible values are:

7-25

Simulink.BlockData

Type Description

'BlockPreCompInputPortData' This object contains data for an
input port before the model is
compiled.

'BlockPreCompOutputPortData' This object contains data for an
output port before the model is
compiled.

'BlockCompInputPortData' This object contains data for an
input port after the model is
compiled.

'BlockCompOutputPortData' This object contains data for an
output port after the model is
compiled.

'BlockPreCompDworkData' This object contains data for a
DWork vector before the model is
compiled.

'BlockCompDworkData' This object contains data for a
DWork vector after the model is
compiled.

'BlockDialogPrmData' This object describes a dialog box
parameter of a Level-2 M-file
S-function.

'BlockRuntimePrmData' This object describes a run-time
parameter of a Level-2 M-file
S-function.

'BlockCompContStatesData' This object describes the
continuous states of the block at
the current time step.

'BlockDerivativesData' This object describes the
derivatives of the block’s
continuous states at the current
time step.

7-26

Simulink.BlockData

Data Type
string

Access
RO

7-27

Simulink.BlockPortData

Purpose Describe block input or output port

Description This class defines properties that are common to objects that provide
run-time information about a block’s ports.

Parent Simulink.BlockData

Children Simulink.BlockPreCompInputPortData, Simulink.BlockPreComp-
OutputPortData, Simulink.BlockCompInputPortData,
Simulink.BlockCompOutputPortData

Property
Summary

Name Description

“IsBus” True if this port is connected to a bus.

“IsSampleHit” True if this port produces output or
accepts input at the current simulation
time step.

“SampleTime” Sample time of this port.

“SampleTimeIndex” Sample time index of this port.

“SamplingMode” Sampling mode of the port.

Properties
IsBus

Description
True if this port is connected to a bus.

Data Type
Boolean

Access
RO

7-28

Simulink.BlockPortData

IsSampleHit

Description
True if this port produces output or accepts input at the current
simulation time step.

Data Type
Boolean

Access
RO

SampleTime

Description
Sample time of this port.

Data Type
[period offset] where period and offset are values of type double.
See “Specifying Sample Time” for more information.

Access
RW for M-file S functions, RO for other blocks

SampleTimeIndex

Description
Sample time index of this port.

Data Type
integer

Access
RO

SamplingMode

Description
Sampling mode of the port. Valid values are:

7-29

Simulink.BlockPortData

Value Description

'frame' Port accepts or outputs frame-based
signals. The use of frame-based signals
requires a Signal Processing Blockset™
license.

'inherited' Sampling mode is inherited from the port
to which this port is connected.

'sample' Port accepts or outputs sampled data.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

7-30

Simulink.BlockPreCompInputPortData

Purpose Provide precompilation information about block input port

Description Simulink software returns an instance of this class when an M-file
program, e.g., a Level-2 M-file S-function, invokes the “InputPort”
on page 7-135 method of a block’s run-time object before the model
containing the block has been compiled.

Parent Simulink.BlockPortData

Children None

Property
Summary

Name Description

“DirectFeedthrough” True if this port has direct feedthrough.

“Overwritable” True if this port is overwritable.

Properties
DirectFeedthrough

Description
True if this input port has direct feedthrough.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks

Overwritable

Description
True if this input port is overwritable.

Data Type
Boolean

Access
RW for M-file S functions, RO for other blocks

7-31

Simulink.BlockPreCompOutputPortData

Purpose Provide precompilation information about block output port

Description Simulink software returns an instance of this class when an M-file
program, e.g., a Level-2 M-file S-function, invokes the “OutputPort”
on page 7-136 method of a block’s run-time object before the model
containing the block has been compiled.

Parent Simulink.BlockPortData

Children none

Property
Summary

Name Description

“Reusable” Specifies whether an output port’s memory is
reusable.

Properties
Reusable

Description
Specifies whether an output port’s memory is reusable. Options are:
NotReusableAndGlobal and ReusableAndLocal.

Data Type
string

Access
RW for M-file S functions, RO for other blocks

7-32

Simulink.Bus

Purpose Specify properties of signal bus

Description Objects of this class (in conjunction with objects of the
Simulink.BusElement class) specify the properties of a signal bus. You
can use these objects to enable Simulink software to check the validity
of buses connected to the inputs of blocks in your model. You do this by
entering the name of a bus object defining a bus in the Bus object
field of a block’s parameter dialog box. When you update the model’s
diagram or start a simulation of the model, Simulink software checks
whether the buses connected to the blocks have the properties specified
by the bus objects. If not, Simulink software halts and displays an
error message.

You can use the Model Explorer’s Add > Simulink Bus command (see
“Using the Model Explorer to Create Data Objects”), the Simulink
Bus Editor (see “Using Bus Objects”), or MATLAB commands (see
“Working with Data Objects”) to create bus objects in the base MATLAB
workspace. If you attempt to create an alias in a model workspace,
Simulink software displays an error. You must use the Bus Editor or the
MATLAB command line to set the properties of a bus object. Simulink
software also provides a set of utility functions for creating and saving
bus objects. See the documentation for the following functions for more
information:

• Simulink.Bus.save

• Simulink.Bus.createObject

• Simulink.Bus.cellToObject

7-33

Simulink.Bus

Property
Dialog
Box

Bus elements
Table that displays the properties of the bus’s elements. You
cannot edit this table. You must use either the Simulink Bus
Editor (see “Using Bus Objects” in Using Simulink) or MATLAB
commands to add or delete bus elements or change the properties
of existing bus elements. To launch the bus editor, click the
Launch Bus Editor button at the bottom of this dialog box or
select Bus Editor from the model editor’s Tools menu.

Header file
Name of a C header file that declares the structure of this bus.
This field is intended for use by Real-Time Workshop software
(see “Code Generation with User-Defined Data Types” Real-Time
Workshop® Embedded Coder™ User’s Guide). Simulink software
ignores this field.

Description
Description of this structure. This field is intended for you to use
to document this bus. Simulink software does not use this field.

7-34

Simulink.Bus

Properties Name Access Description

Description RW String that describes this bus. This
property is intended for user use.
Simulink software does not use it.
(Description)

Elements RW An array of Simulink.BusElement
objects that define the names,
data types, dimensions, and other
properties of the bus’s elements. The
elements must have unique names.
(Bus elements)

HeaderFile RW String that specifies the name of a C
header file that declares the structure
of this bus. This property is intended
for use by Real-Time Workshop
software. Simulink does not use it.
(Header file)

See Also Simulink.BusElement

7-35

Simulink.BusElement

Purpose Describe element of signal bus

Description Objects of this class define elements of buses defined by objects of the
Simulink.Bus class.

Property
Summary

Name Description

“Complexity” Numeric type of this bus element.

“DataType” Data type of this bus element.

“Dimensions” Dimensions of this bus element.

“Name” Name of this bus element.

“SampleTime” Sample time of this bus element.

“SamplingMode” Sampling mode of this bus element.

Property
Dialog
Box

Properties
Complexity

Numeric type ('real' or 'complex') of this element. Must be 'real'
if this bus element is itself a bus.

Data Type: string

7-36

Simulink.BusElement

Access: RW

DataType

Name of the data type of this element. The value of this field can be
the name of a

• built-in Simulink data type, e.g., double or uint8

• Simulink.NumericType object, with one exception. The exception
is a Simulink.NumericType whose Category is Fixed-point:
unspecified scaling.

Note Fixed-point: unspecified scaling is a partially specified
type whose definition is completed by the block that uses the
Simulink.NumericType. Forbidding its use for bus elements avoids
creating bus elements that have different data types depending on
where they are used.

• Simulink.Bus object. This allows you to create bus objects that
specify hierarchical buses, i.e., buses that contain other buses.

Click the Show data type assistant button to display the
Data Type Assistant, which helps you set the Data type parameter.
(See “Using the Data Type Assistant” in Using Simulink.)

Data Type: string

Access: RW

Dimensions

A vector specifying the dimensions of this element. Must be 1 if this
element is itself a bus.

Data Type: array.

7-37

Simulink.BusElement

Access: RW

Name

Name of this element.

Data Type: string

Access: RW

SampleTime

Size of the interval between times when this signal’s value must be
recomputed. Must be -1 (inherited) if this bus element is itself a bus
or if the bus that includes this element passes through a block that
changes the bus’s sample time, such as a Rate Transition block. See
“Specifying Sample Time” for more information.

Data Type: double

Access: RW

SamplingMode

Sampling mode of this element. Must be sample-based if this element
is itself a bus. This field is intended to be used by applications based
on Simulink models.

Data Type: string

Access: RW

See Also Simulink.Bus

7-38

Simulink.ConfigSet

Purpose Access model configuration set

Description Instances of this handle class allow you to write programs to create,
modify, and attach configuration sets to models. See “Configuration
Sets” and “Configuration Set API” for more information.

Property
Summary

Name Description

“Components” Components of the configuration set.

“Description” Description of the configuration set.

“Name” Name of the configuration set.

“SimulationMode” Mode used for simulation with this
configuration.

Note You can use the Model Configuration dialog box to set the
Name and Description properties of a configuration set. See “Model
Configuration Dialog” for more information.

Method
Summary

Name Description

“attachComponent” Attach a component to a configuration set.

“copy” Create a copy of a configuration set.

“getComponent” Get a component of a configuration set.

“getFullName” Get the full pathname of a configuration set.

“getModel” Get the handle of the model that owns a
configuration set.

“get_param” Get the value of a configuration set parameter.

“isActive” Determine whether a configuration set is the
active set of the model that owns it.

7-39

Simulink.ConfigSet

Name Description

“isValidParam” Determine whether a specified parameter is a
valid parameter of a configuration set.

“setPropEnabled” Prevent or allow a user to change a parameter.

“set_param” Set the value of a configuration set parameter.

Properties
Components

Description
Array of Simulink.ConfigComponent objects representing the
components of the configuration set, e.g., solver parameters, data
import/export parameters, etc.

Data Type
array

Access
RW

Description

Description
Description of the configuration set. You can use this property to
provide additional information about a configuration set, such as its
purpose. This field can remain blank.

Data Type
string

Access
RW

Name

Description
Configuration set’s name. This name represents the configuration set in
the Model Explorer.

7-40

Simulink.ConfigSet

Data Type
string

Access
RW

SimulationMode

Description
Model’s simulation mode. Valid values are normal, accelerator, or
external.

Data Type
string

Access
RW

Methods
attachComponent

Purpose
Attach a component to this configuration set.

Syntax
attachComponent(component)

Arguments
component

Instance of Simulink.ConfigComponent class.

Description
This method replaces a component in this configuration set with a
component having the same name.

Example
The following example replaces the solver component of the active
configuration set of model A with the solver component of the active
configuration set of model B.

7-41

Simulink.ConfigSet

hCs = getActiveConfigSet('B');
hSolverConfig = hCs.getComponent('Solver');
hSolverConfig = hSolverConfig.copy;
hCs = getActiveConfigSet('A');
hCs.attachComponent(hSolverConfig);

copy

Purpose
Create a copy of this configuration set.

Syntax
copy

Description
This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration sets.
This is because Simulink.ConfigSet is a handle class. See “Handle
Versus Value Classes” in Using Simulink for more information.

getComponent

Purpose
Get a component of this configuration set.

Syntax
getComponent(componentName)

Arguments
componentName

String specifying the name of the component to be returned.

Description
Returns the specified component. Omit the argument to get a list of the
names of the components that this configuration set contains.

7-42

Simulink.ConfigSet

Example
The following code gets the solver component of the active configuration
set of the currently selected model.

hCs = getActiveConfigSet(gcs);
hSolverConfig = hCs.getComponent('Solver');

The following code displays the names of the components of the
currently selected model’s active configuration set at the MATLAB
command line.

hCs = getActiveConfigSet(gcs);
hCs.getComponent

getFullName

Purpose
Get the full pathname of a configuration set.

Syntax
getFullName

Description
This method returns a string specifying the full pathname of a
configuration set, e.g., 'vdp/Configuration'.

getModel

Purpose
Get the model that owns this configuration set.

Syntax
getModel

Description
Returns a handle to the model that owns this configuration set.

7-43

Simulink.ConfigSet

Example
The following command opens the block diagram of the model that owns
the configuration set referenced by the MATLAB workspace variable
hCs.

open_system(hCs.getModel);

get_param

Purpose
Get the value of a configuration set parameter.

Syntax
get_param(paramName)

Arguments
paramName

String specifying the name of the parameter whose value is to
be returned.

Description
This method returns the value of the specified parameter. Specifying
paramName as 'ObjectParameters' returns the names of the valid
parameters in the configuration set.

Example
The following command gets the name of the solver used by the selected
model’s active configuration.

hAcs = getActiveConfigSet(bdroot);
hAcs.get_param('SolverName');

Note You can also use the get_param model construction command
to get the values of parameters of a model’s active configuration set,
e.g., get_param(bdroot, 'SolverName') gets the solver name of the
currently selected model.

7-44

Simulink.ConfigSet

isActive

Purpose
Determine whether this configuration set is its model’s active
configuration set.

Syntax
isActive

Description
Returns true if this configuration set is the active configuration set of
the model that owns this configuration set.

isValidParam

Purpose
Determine whether a specified parameter is a valid parameter of this
configuration set. A parameter is valid if it is compatible with other
parameters in the configuration set. For example, if SolverType is set
to 'variable-step', FixedStep is an invalid parameter.

Syntax
isValidParam(paramName)

Arguments
paramName

String specifying the name of the parameter whose validity is
to be determined.

Description
This method returns true if the specified parameter is a valid parameter
of this configuration set; otherwise, it returns false.

Example
The following code sets the parameter StopTime only if it is a valid
parameter of the currently selected model’s active configuration set.

hAcs = getActiveConfigSet(gcs);
if hAcs.isValidParam('StopTime')
set_param('StopTime', '20');

7-45

Simulink.ConfigSet

end

setPropEnabled

Purpose
Enable a configuration set parameter to be changed.

Syntax
setPropEnabled(paramName, isEnabled)

Arguments
paramName

Name of the parameter whose value is to be set.

isEnabled
Specify as true to enable parameter; as false, to disable the
parameter.

Description
This method sets the enabled status the parameter specified by
paramName to the value specified by isEnabled. Disabling a parameter
prevents the user from changing it.

Example
The following code prevents the user from setting the simulation stop
time of the currently selected model.

hAcs = getActiveConfigSet(gcs);
hAcs.setPropEnabled('StopTime', false);

set_param

Purpose
Set the value of a configuration set parameter.

Syntax
set_param(paramName, paramValue)

7-46

Simulink.ConfigSet

Arguments
paramName

Name of the parameter whose value is to be set.

paramValue
Value to assign to the parameter.

Description
This method sets the configuration set parameter specified by
paramName to the value specified by paramValue.

Example
The following command sets the simulation stop time of the selected
model’s active configuration.

hAcs = getActiveConfigSet(gcs);
hAcs.set_param('StopTime', '20');

Note You can also use the set_param model construction command to
set the parameters of the active configuration set, e.g., set_param(gcs,
'StopTime', '20') sets the simulation stop time of the currently
selected model.

7-47

Simulink.ConfigSetRef

Purpose Link model to configuration set stored independently of any model

Description Instances of this handle class allow a model to reference configuration
sets that exist outside any model. See “Configuration Sets”,
“Configuration Set API”, and “Referencing Configuration Sets” for more
information.

Property
Summary

Name Description

“Description” Description of the configuration reference.

“Name” Name of the configuration reference.

“WSVarName” Name of the workspace variable that
contains the referenced configuration set.

Note You can use the Configuration Reference dialog box to set
the Name, Description, and WSVarName properties of a configuration
reference. See “Creating and Attaching a Configuration Reference”
for details.

Method
Summary

Name Description

“copy” Create a copy of a configuration reference.

“getFullName” Get the full pathname of a configuration
reference.

“getModel” Get the handle of the model that owns a
configuration reference.

“get_param” Get the value of a configuration set parameter
indirectly through a configuration reference.

“getRefConfigSet” Get the configuration set specified by a
configuration reference.

7-48

Simulink.ConfigSetRef

Name Description

“isActive” Determine whether a configuration reference
is the active configuration object of the model.

“refresh” Update configuration reference after any
change to properties or configuration set
availability.

Properties
Description

Description
Description of the configuration reference. You can use this property to
provide additional information about a configuration reference, such as
its purpose. This field can remain blank.

Data Type
string

Access
RW

Name

Description
Name of the configuration reference. This name represents the
configuration reference in the GUI.

Data Type
string

Access
RW

WSVarName

Description
Name of the workspace variable that contains the referenced
configuration set.

7-49

Simulink.ConfigSetRef

Data Type
string

Access
RW

Methods
copy

Purpose
Create a copy of this configuration reference.

Syntax
copy

Description
This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration
references. This is because Simulink.ConfigSetRef is a handle class.
See “Handle Versus Value Classes” for more information.

getFullName

Purpose
Get the full pathname of a configuration reference.

Syntax
getFullName

Description
This method returns a string specifying the full pathname of a
configuration reference, e.g., 'vdp/Configuration'.

getModel

Purpose
Get the model that owns this configuration reference.

7-50

Simulink.ConfigSetRef

Syntax
getModel

Description
Returns a handle to the model that owns this configuration reference.

Example
The following command opens the block diagram of the model that owns
the configuration set referenced by the MATLAB workspace variable
hCr.

open_system(hCr.getModel);

get_param

Purpose
Get the value of a configuration set parameter indirectly through a
configuration reference.

Syntax
get_param(paramName)

Arguments
paramName

String specifying the name of the parameter whose value is to
be returned.

Description
This method returns the value of the specified parameter from the
configuration set to which the configuration reference points. To obtain
this value, the method uses the value of WSVarName to retrieve the
configuration set, then retrieves the value of paramName from that
configuration set. Specifying paramName as 'ObjectParameters'
returns the names of all valid parameters in the configuration set. If a
valid configuration set is not attached to the configuration reference,
the method returns unreliable values.

The inverse method, set_param, is not defined for configuration
references. To obtain a parameter value through a configuration
reference, you must first use the getRefConfigSet method to retrieve

7-51

Simulink.ConfigSetRef

the configuration set from the reference, then use set_param directly on
the configuration set itself.

You can also use the get_param model construction command to get
the values of parameters of a model’s active configuration set, e.g.,
get_param(bdroot, 'SolverName') gets the solver name of the
currently selected model.

Example
The following command gets the name of the solver used by the selected
model’s active configuration.

hAcs = getActiveConfigSet(bdroot);
hAcs.get_param('SolverName');

getRefConfigSet

Purpose
Get the configuration set specified by a configuration reference

Syntax
getRefConfigSet

Description
Returns a handle to the configuration set specified by the WSVarName
property of a configuration reference.

isActive

Purpose
Determine whether this configuration set is its model’s active
configuration set.

Syntax
isActive

Description
Returns true if this configuration set is the active configuration set of
the model that owns this configuration set.

7-52

Simulink.ConfigSetRef

refresh

Purpose
Update configuration reference after any change to properties or
configuration set availability

Syntax
refresh

Description
Updates a configuration reference after using the API to change any
property of the reference, or after providing a configuration set that did
not exist at the time the set was originally specified in WSVarName. If
you omit executing refresh after any such change, the configuration
reference handle will be stale, and using it will give incorrect results.

7-53

Simulink.ModelAdvisor

Purpose Run Model Advisor from M-file

Description Use instances of this class in M-file programs to run the Model Advisor,
for example, to perform a standard set of checks. MATLAB software
creates an instance of this object for each model that you open in the
current MATLAB session. To get a handle to a model’s Model Advisor
object, execute the following command

ma = Simulink.ModelAdvisor.getModelAdvisor(model);

where model is the name of the model or subsystem that you want to
check. Your program can then use the Model Advisor object’s methods
to initialize and run the Model Advisor’s checks.

About IDs

Many Simulink.ModelAdvisor object methods require or return IDs.
An ID is a string that identifies a Model Advisor check, task, or group.
ID must remain constant. A Simulink.ModelAdvisor object includes
methods that enable you to retrieve the ID or IDs for all checks, tasks,
and groups, checks belonging to groups and tasks, the active check, and
selected checks, tasks and groups. See the Simulink.ModelAdvisor
“Method Summary” for more information.

Syntax

ma = Simulink.ModelAdvisor

Arguments

ma
A variable representing the Simulink.ModelAdvisor object you
create.

Method
Summary

Name Description

“closeReport” Close Model Advisor report.

“deselectCheck” Deselect checks.

7-54

Simulink.ModelAdvisor

Name Description

“deselectCheckAll” Deselect all checks.

“deselectCheckForGroup” Deselect a group of checks.

“deselectCheckForTask” Deselect checks that belong
to a specified task or set of
tasks.

“deselectTask” Deselect tasks.

“deselectTaskAll” Deselect all tasks.

“displayReport” Display Model Advisor
report.

“exportReport” Copy report to a specified
location.

“getBaselineMode” Get baseline mode setting for
the Model Advisor.

“getCheckAll” Get the IDs of the checks
performed by the Model
Advisor.

“getCheckForGroup” Get checks belonging to a
check group.

“getCheckForTask” Get checks belonging to a
task.

“getCheckResult” Get check results.

“getCheckResultData” Get check result data.

“getCheckResultStatus” Get pass/fail status of a check
or set of checks.

“getGroupAll” Get the IDs of the groups of
tasks performed by the Model
Advisor.

7-55

Simulink.ModelAdvisor

Name Description

“getInputParameters” on page 7-66 Get input parameters of a
check.

“getListViewParameters” on page
7-67

Get list view parameters of a
check.

“getModelAdvisor” Get the Model Advisor for a
model or subsystem.

“getSelectedCheck” Get selected checks.

“getSelectedSystem” on page 7-69 Get path of system currently
targeted by the Model
Advisor.

“getSelectedTask” Get selected tasks.

“getTaskAll” Get the IDs of the tasks
performed by the Model
Advisor.

“Simulink.ModelAdvisor.reportExists” Determine whether a report
exists for a system or
subsystem.

“runCheck” Run selected checks.

“runTask” Run checks for selected tasks.

“selectCheck” Select checks.

“selectCheckAll” Select all checks.

“selectCheckForGroup” Select a group of checks.

“selectCheckForTask” Select checks that belong to a
specified task.

“selectTask” Select tasks.

“selectTaskAll” Select all tasks.

“setActionEnable” on page 7-75 Set enable/disable status for
a check action.

7-56

Simulink.ModelAdvisor

Name Description

“setBaselineMode” Set baseline mode for the
Model Advisor.

“setCheckErrorSeverity” on page 7-76 Set severity of a check failure.

“setCheckResult” Set result for the currently
running check.

“setCheckResultData” Set result data for the
currently running check.

“setCheckResultStatus” Set pass/fail status for the
currently running check.

“setListViewParameters” on page 7-80 Set list view parameters for
a check.

“verifyCheckRan” Verify that checks have run.

“verifyCheckResult” Generate a baseline set of
check results or compare the
current set of results to the
baseline results.

“verifyCheckResultStatus” Verify that a model has
passed or failed a set of
checks.

“verifyHTML” Generate a baseline report or
compare the current report
to a baseline report.

Methods closeReport
Purpose
Close Model Advisor report.

Syntax
closeReport

7-57

Simulink.ModelAdvisor

Description
Closes the report associated with this Model Advisor object, which
closes the Model Advisor window.

See Also
“displayReport”

deselectCheck
Purpose
Deselect a check.

Syntax
success = deselectCheck(ID)

Arguments
ID

String or cell array that specifies the IDs of the checks to be
deselected

success
True (1) if the check is deselected.

Description
This method deselects the checks specified by ID.

Note This method cannot deselect disabled checks.

See Also
“getCheckAll”, “deselectCheckForGroup”, “selectCheck”

deselectCheckAll
Purpose
Deselect all checks.

Syntax
success = deselectCheckAll

7-58

Simulink.ModelAdvisor

Arguments
success

True (1) if all checks are deselected.

Description
Deselects all checks that are not disabled.

See Also
“selectCheckAll”

deselectCheckForGroup
Purpose
Deselect a group of checks.

Syntax
success = deselectCheckForGroup(groupName)

Arguments
groupName

String or cell array that specifies the names of the groups to be
deselected

success
True (1) if the method succeeds in deselecting the specified group.

Description
Deselects a specified group of checks.

See Also
“selectCheckForGroup”

deselectCheckForTask
Purpose
Deselect checks that belong to a specified task or set of tasks.

Syntax
success = deselectCheckForTask(ID)

7-59

Simulink.ModelAdvisor

Arguments
ID

String or cell array of strings that specify the IDs of tasks whose
checks are to be deselected.

success
True (1) if the specified tasks are deselected.

Description
Deselects checks belonging to the tasks specified by the ID argument.

See Also
“getTaskAll”, “selectCheckForTask”

deselectTask
Purpose
Deselect a task.

Syntax
success = deselectTask(ID)

Arguments
ID

String or cell array that specifies the ID of tasks to be deselected

success
True (1) if the method succeeded in deselecting the specified tasks

Description
Deselects the tasks specified by ID.

See Also
“selectTask”, “getTaskAll”

deselectTaskAll
Purpose
Deselect all tasks.

Syntax
success = deselectTaskAll

7-60

Simulink.ModelAdvisor

Arguments
success

True (1) if this method succeeds in deselecting all tasks

Description
Deselects all tasks.

See Also
“selectTaskAll”

displayReport
Purpose
Display report in Model Advisor.

Syntax
displayReport

Description
Displays the report associated with this Model Advisor object in the
Model Advisor window. The report includes the most recent results
of running checks on the system associated with this Model Advisor
object and the current selection status of checks, groups, and tasks
for the system.

See Also
“Simulink.ModelAdvisor.reportExists”

exportReport
Purpose
Create a copy of a report generated by Model Advisor.

Syntax
[success message] = exportReport(destination)

Arguments
destination

Path name of copy to be made of the report file.

success
True (1) if this method succeeded in creating a copy of the report
at the specified location.

7-61

Simulink.ModelAdvisor

message
Empty if the copy was successful; otherwise, the reason the copy
did not succeed.

Description
This method creates a copy of the last report generated by the Model
Advisor and stores the copy at the specified location.

See Also
“Simulink.ModelAdvisor.reportExists”

getBaselineMode
Purpose
Determine whether the Model Advisor is in baseline data generation
mode.

Syntax
mode = getBaselineMode

Arguments
mode

Boolean value indicating baseline mode

Description
The mode output variable returns true if the Model Advisor is in baseline
data mode. Baseline mode causes the Model Advisor’s verification
methods, e.g., “verifyHTML”, to generate baseline data.

See Also
“setBaselineMode”, “verifyHTML”, “verifyCheckResult”,
“verifyCheckResultStatus”

getCheckAll
Purpose
Get the IDs of all checks.

Syntax
IDs = getCheckAll

7-62

Simulink.ModelAdvisor

Arguments
IDs

Cell array of strings specifying the IDs of all checks performed by
the Model Advisor

Description
Returns a cell array of strings specifying the IDs of all checks performed
by the Model Advisor.

See Also
“getTaskAll”, “getGroupAll”

getCheckForGroup
Purpose
Get checks that belong to a check group.

Syntax
IDs = getCheckForTask(groupName)

Arguments
groupName

String specifying the name of a group

IDs
Cell array of IDs

Description
Returns a cell array of IDs of the tasks belonging to the group specified
by groupName.

See Also
“getCheckForTask”

getCheckForTask
Purpose
Get the checks that belong to a task.

Syntax
checkIDs = getCheckForTask(taskID)

7-63

Simulink.ModelAdvisor

Arguments
taskID

ID of a task

checkIDs
Cell array of IDs of checks belonging to the specified task

Description
Returns a cell array of IDs of the checks belonging to the task specified
by taskID.

See Also
“getCheckForGroup”

getCheckResult
Purpose
Get the results of running a check or set of checks.

Syntax
result = getCheckResult(ID)

Arguments
ID

ID of a check or cell array of check IDs

result
A check result or cell array of check results

Description
Gets check results for the specified checks. The format of the results
depends on the checks that generated the data.

Note This method is intended for accessing check results generated
by custom checks created with the Model Advisor’s customization
API, an optional feature available with Simulink® Verification and
Validation™ software (see the online Simulink Verification and
Validation documentation for more information).

7-64

Simulink.ModelAdvisor

See Also
“getCheckResultData”, “getCheckResultStatus”

getCheckResultData
Purpose
Get the data resulting from running a check or set of checks.

Syntax
result = getCheckResultData(ID)

Arguments
ID

Check ID or cell array of check IDs

result
Data from a check result or cell array of data from check results

Description
Gets the check result data for the specified checks. The format of the
data depends on the checks that generated the data.

Note This method is intended for accessing check result data generated
by custom checks created with the Model Advisor’s customization
API, an optional feature available with Simulink Verification and
Validation software (see the online Simulink Verification and Validation
documentation for more information).

See Also
“getCheckResult”, “getCheckResultStatus”

getCheckResultStatus
Purpose
Get the pass/fail status of a check or set of checks.

Syntax
result = getCheckResultStatus(ID)

7-65

Simulink.ModelAdvisor

Arguments
ID

Check ID or cell array of check IDs

result
Boolean or a cell array of Boolean values indication the pass/fail
status of a check or set of checks

Description
Invoke this method after running a set of checks to determine whether
the checks passed or failed.

See Also
“getCheckResult”, “getCheckResultData”

getGroupAll
Purpose
Get all groups of checks performed by the Model Advisor.

Syntax
IDs = getGroupAll

Arguments
IDs

Cell array of IDs of all groups of checks performed by the Model
Advisor.

Description
Returns a cell array of IDs of all groups of checks performed by the
Model Advisor.

See Also
“getCheckAll”, “getTaskAll”

getInputParameters
Purpose
Get input parameters of a check.

Syntax
params = obj.getInputParameters(check_ID)

7-66

Simulink.ModelAdvisor

Arguments
params

A cell array of ModelAdvisor.InputParameter objects.

obj
A variable representing the Simulink.ModelAdvisor object.

check_ID
A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check
callback function.

Description
Returns the input parameters associated with a check.

Note This method is intended for accessing custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
ModelAdvisor.InputParameter

getListViewParameters
Purpose
Get list view parameters of a check.

Syntax
params = obj.getListViewParameters(check_ID)

Arguments
params

A cell array of ModelAdvisor.ListViewParameter objects.

7-67

Simulink.ModelAdvisor

obj
A variable representing the Simulink.ModelAdvisor object.

check_ID
A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check
callback function.

Description
Returns the list view parameters associated with a check.

Note This method is intended for accessing custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
“setListViewParameters” on page 7-80,
ModelAdvisor.ListViewParameter

getModelAdvisor
Purpose
Get a Model Advisor object for a system or subsystem.

Syntax
obj = Simulink.ModelAdvisor.getModelAdvisor(system)
obj = Simulink.ModelAdvisor.getModelAdvisor(system, 'new')

Arguments
system

Name of model for which the Model Advisor is to be gotten

'new'
Required when changing Model Advisor working scope from
one system to another without closing the previous session.

7-68

Simulink.ModelAdvisor

Alternatively, you can close the previous session before invoking
getModelAdvisor, in which case 'new' can be omitted.

obj
Model Advisor object

Description
This static method (see “Static Methods”) creates and returns an
instance of Simulink.ModelAdvisor class for the model or subsystem
specified by system.

getSelectedCheck
Purpose
Get the currently selected checks.

Syntax
IDs = getSelectedCheck

Arguments
IDs

Cell array of IDs of currently selected checks

Description
Returns the checks currently selected in the Model Advisor.

See Also
“getSelectedTask”

getSelectedSystem
Purpose
Get system currently targeted by the Model Advisor.

Syntax
path = getSelectedSystem

Arguments
path

Path of the system selected system

7-69

Simulink.ModelAdvisor

Description
Gets the path of the system currently targeted by the Model
Advisor, i.e., the system or subsystem most recently selected for
checking either interactively by the user or programmatically via
Simulink.ModelAdisor.getModelAdvisor.

See Also
“getModelAdvisor”

getSelectedTask
Purpose
Get selected tasks.

Syntax
IDs = getSelectedTask

Arguments
IDs

Cell array of IDs of currently selected tasks.

Description
Returns the tasks currently selected in the Model Advisor.

See Also
“getSelectedCheck”

getTaskAll
Purpose
Get the tasks performed by the Model Advisor.

Syntax
IDs = getTaskAll

Arguments
IDs

Cell array of IDs of tasks performed by the Model Advisor.

Description
Returns a cell array of IDs of tasks performed by the Model Advisor.

7-70

Simulink.ModelAdvisor

See Also
“getCheckAll”, “getGroupAll”

Simulink.ModelAdvisor.reportExists
Purpose
Determine whether a report exists for a model or subsystem.

Syntax
exists = reportExists('system')

Arguments
'system'

String specifying path name of a system or subsystem

exists
True (1) if a report exists for system

Description
This method returns true (1) if a report file exists for the model
(system) or subsystem specified by system in the slprj/modeladvisor
subdirectory of the MATLAB working directory.

See Also
“exportReport”

runCheck
Purpose
Run the currently selected checks.

Syntax
success = runCheck

Arguments
success

True (1) if the checks were run.

Description
Runs the checks currently selected in the Model Advisor. Invoking
this method is equivalent to selecting the Run Advisor button on the
Model Advisor window.

7-71

Simulink.ModelAdvisor

See Also
“selectCheck”

runTask
Purpose
Run the currently selected tasks.

Syntax
success = runTask

Arguments
success

True (1) if the tasks were run.

Description
Runs the tasks currently selected in the Model Advisor. Invoking this
method is equivalent to selecting the Run Selected Checks button on
the Model Advisor window.

See Also
“selectTask”

selectCheck
Purpose
Select a check.

Syntax
success = selectCheck(ID)

Arguments
ID

ID or cell array of IDs of checks to be selected

success
True (1) if this method succeeded in selecting the specified checks

Description
This method cannot select a check that is disabled.

See Also
“selectCheckAll”, “selectCheckForGroup”, “deselectCheck”

7-72

Simulink.ModelAdvisor

selectCheckAll
Purpose
Select all checks.

Syntax
success = selectCheckAll

Arguments
success

True (1) if this method succeeded in selecting all checks.

Description
Selects all checks that are not disabled.

See Also
“selectCheck”, “selectCheckForGroup”, “deselectCheck”

selectCheckForGroup
Purpose
Select a group of checks.

Syntax
success = selectCheckForGroup(ID)

Arguments
ID

ID or cell array of group IDs

success
True (1) if this method succeeded in selecting the specified groups

Description
Selects the groups specified by ID.

See Also
“deselectCheckForGroup”

selectCheckForTask
Purpose
Select checks that belong to a specified task or set of tasks.

7-73

Simulink.ModelAdvisor

Syntax
success = selectCheckForTask(ID)

Arguments
ID

ID or cell array of IDs of tasks whose checks are to be selected

success
True (1) if this method succeeded in selecting the checks for the
specified tasks

Description
Selects checks belonging to the tasks specified by the ID argument.

See Also
“deselectCheckForTask”

selectTask
Purpose
Select a task.

Syntax
success = selectTask(ID)

Arguments
ID

ID or cell array of IDs of the task to be selected

success
True (1) if this method succeeds in selecting the specified tasks

Description
Selects a task.

See Also
“deselectTask”

selectTaskAll
Purpose
Select all tasks.

7-74

Simulink.ModelAdvisor

Syntax
success = selectTaskAll

Arguments
success

True (1) if this method succeeds in selecting all tasks

Description
Selects all tasks.

See Also
“deselectTaskAll”

setActionEnable
Purpose
Set enable/disable status for check action

Syntax
obj.setActionEnable(value)

Arguments
obj

A variable representing the Simulink.ModelAdvisor object.

value
Boolean value indicating whether the Action box is enabled or
disabled.

• true — Enable the Action box.

• false — Disable the Action box.

Description
The setActionEnable method specifies the enables or disables the
Action box. Only a check callback function can invoke this method.

7-75

Simulink.ModelAdvisor

Note This method is intended for accessing custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
ModelAdvisor.Action

setBaselineMode
Purpose
Set the baseline data generation mode for the Model Advisor.

Syntax
setBaselineMode(mode)

Arguments
mode

Boolean value indicating setting of Model Advisor’s baseline mode,
either on (true) or off (false)

Description
Sets the Model Advisor’s baseline mode to mode. Baseline mode causes
the Model Advisor’s verify methods to generate baseline comparison
data for verifying the results of a Model Advisor run.

See Also
“getBaselineMode”, “verifyCheckResult”, “verifyHTML”

setCheckErrorSeverity
Purpose
Set severity of a check failure.

Syntax
obj.setCheckErrorSeverity(value)

7-76

Simulink.ModelAdvisor

Arguments
obj

A variable representing the Simulink.ModelAdvisor object.

value
Integer indicating severity of failure.

• 0 — Check Result = Warning

• 1 — Check Result = Failed

Description
Sets result status for a currently running check that fails to value.
Only a check callback function can invoke this method.

Note This method is intended for accessing custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
“setCheckResultStatus”

setCheckResult
Purpose
Set the result for the currently running check.

Syntax
success = setCheckResult(result)

Arguments
result

String or cell array that specifies the result of the currently
running task

success
True (1) if this method succeeds in setting the check result

7-77

Simulink.ModelAdvisor

Description
Sets the check result for the currently running check. Only the check’s
callback function can invoke this method.

Note This method is intended for use with custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
“getCheckResult”, “setCheckResultData”, “setCheckResultStatus”

setCheckResultData
Purpose
Set the result data for the currently running check.

Syntax
success = setCheckResultData(data)

Arguments
data

Result data to be set

success
True (1) if this method succeeds in setting the result data for the
current check

Description
Sets the check result data for the currently running check. Only the
check’s callback function can invoke this method.

7-78

Simulink.ModelAdvisor

Note This method is intended for use with custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
“getCheckResultData”, “setCheckResult”, “setCheckResultStatus”

setCheckResultStatus
Purpose
Set the pass/fail status for the currently running check.

Syntax
success = setCheckResultStatus(status)

Arguments
status

Boolean value that indicates the status of the check that just ran,
either pass (true) or fail (false)

success
True (1) if the status was set.

Description
Sets the pass/fail status for the currently running check to status.
Only the check’s callback function can invoke this method.

Note This method is intended for use with custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

7-79

Simulink.ModelAdvisor

See Also
“getCheckResultStatus”, “setCheckResult”, “setCheckResultData”,
“setCheckErrorSeverity” on page 7-76

setListViewParameters
Purpose
Specify list view parameters for a check.

Syntax
obj.setListViewParameters(check_ID, params)

Arguments
obj

A variable representing the Simulink.ModelAdvisor object.

check_ID
A string that uniquely identifies the check.

You can omit the check_ID if you use the method inside a check
callback function.

params
A cell array of ModelAdvisor.ListViewParameter objects.

Description
Set the list view parameters for the check.

Note This method is intended for accessing custom checks created
with the Model Advisor’s customization API, an optional feature
available with Simulink Verification and Validation software (see the
online Simulink Verification and Validation documentation for more
information).

See Also
“getListViewParameters” on page 7-67,
ModelAdvisor.ListViewParameter

7-80

Simulink.ModelAdvisor

verifyCheckRan
Purpose
Verify that the Model Advisor has run a set of checks.

Syntax
[success, missingChecks, additionalChecks] =
verifyCheckRan(IDs)

Arguments
IDs

Cell array of IDs of checks to verify

success
Boolean value specifying whether the checks ran

missingChecks
Cell array of IDs for specified checks that ran

additionalChecks
Cell array of IDs for unspecified checks that ran

Description
The output variable success returns true if all the checks specified
by IDs have run. If not, success returns false, missingChecks lists
specified checks that did not run. The additionalChecks argument
lists unspecified checks that ran.

See Also
“verifyCheckResultStatus”

verifyCheckResult
Purpose
Generate a baseline Model Advisor check results file or compare the
current check results to the baseline check results.

Syntax
[success message] = verifyCheckResult(baseline, checkIDs)

Arguments
baseline

Pathname of the baseline check results MAT-file

7-81

Simulink.ModelAdvisor

checkIDs
Cell array of check IDs.

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

Description
If the Model Advisor is in baseline mode (see “setBaselineMode”), this
method stores the most recent results of running the checks specified
by checkIDs in a MAT-file at the location specified by baseline. If the
method is unable to store the check results at the specified location, it
returns false in the output variable success and the reason for the
failure in the output variable message. If the Model Advisor is not
in baseline mode, this method compares the most recent results of
running the checks specified by checkIDs with the report specified by
baseline. If the current results match the baseline results, this method
returnstrue as the value of the success output variable.

Note You must run the checks specified by checkIDs (see “runCheck”)
before invoking verifyCheckResult.

This method enables you to compare the most recent check results
generated by the Model Advisor with a baseline set of check results. You
can use the method to generate the baseline report as well as perform
current-to-baseline result comparisons. To generate a baseline report,
put the Model Advisor in baseline mode, using “setBaselineMode”. Then
invoke this method with the baseline argument set to the location where
you want to store the baseline results. To perform a current-to-baseline
report comparison, first ensure that the Model Advisor is not in baseline
mode (see “getBaselineMode”). Then invoke this method with the path
of the baseline report as the value of the baseline input argument.

7-82

Simulink.ModelAdvisor

See Also
“setBaselineMode”, “getBaselineMode”, “runCheck”,
“verifyCheckResultStatus”

verifyCheckResultStatus
Purpose
Verify that a model has passed or failed a set of checks.

Syntax
[success message] = verifyCheckResultStatus(baseline,
checkIDs)

Arguments
baseline

Array of Boolean variables

checkIDs
Cell array of check IDs.

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

Description
This method compares the pass/fail (true/false) statuses from the most
recent running of the checks specified by checkIDs with the Boolean
values specified by status. If the statuses match the baseline, this
method returns true as the value of the success output variable.

Note You must run the checks specified by checkIDs (see “runCheck”)
before invoking verifyCheckResultStatus.

See Also
“runCheck”

7-83

Simulink.ModelAdvisor

verifyHTML
Purpose
Generate a baseline Model Advisor report or compare the current report
to a baseline report.

Syntax
[success message] = verifyHTML(baseline)

Arguments
baseline

Pathname of a Model Advisor report

success
Boolean value specifying whether the method succeeded

message
String specifying an error message

Description
If the Model Advisor is in baseline mode (see “setBaselineMode”), this
method stores the report most recently generated by the Model Advisor
at the location specified by baseline. If the method is unable to store
a copy of the report at the specified location, it returns false in the
output variable success and the reason for the failure in the output
variable message. If the Model Advisor is not in baseline mode, this
method compares the report most recently generated by the Model
Advisor with the report specified by baseline. If the current report has
exactly the same content as the baseline report, this method returns
true as the value of the success output variable.

This method enables you to compare a report generated by the Model
Advisor with a baseline report to determine if they differ. You can
use the method to generate the baseline report as well as perform
current-to-baseline report comparisons. To generate a baseline report,
put the Model Advisor in baseline mode. Then invoke this method
with the baseline argument set to the location where you want to
store the baseline report. To perform a current-to-baseline report
comparison, first ensure that the Model Advisor is not in baseline mode

7-84

Simulink.ModelAdvisor

(see “getBaselineMode”). The invoke this method with the path of the
baseline report as the value of the baseline input argument.

See Also
“setBaselineMode”, “getBaselineMode”, “verifyCheckResult”

7-85

Simulink.ModelDataLogs

Purpose Container for model’s signal data logs

Description Simulink software creates instances of this class to contain signal logs
that it creates while simulating a model (see “Logging Signals”). In
particular, Simulink software creates an instance of this class for a
top-level model and for each model referenced by the top-level model
that contains signals to be logged. Simulink software assigns the
ModelDataLogs object for the top-level model to a variable in the
MATLAB workspace. The name of the variable is the name specified
in the Signal logging name field on the Data Import/Export pane
of the model’s Configuration Parameters dialog box. The default
value is logsout.

A ModelDataLogs object has a variable number of properties. The first
property, named Name, specifies the name of the model whose signal
data the object contains or, if the model is a referenced model, the name
of the Model block that references the model. The remaining properties
reference objects that contain signal data logged during simulation of
the model. The objects may be instances of any of the following types of
objects:

• Simulink.Timeseries

Log for a signal in this model.

• Simulink.TsArray

Container for the logs of the elements of a root-level composite signal
(e.g., a Mux or Bus Creator signal) in this model.

• Simulink.ModelDataLogs

Container for the logs of a model referenced by this model.

• Simulink.SubsysDataLogs

Container for the signal logs of a subsystem of this model.

• Simulink.ScopeDataLogs

Container for data displayed on Scope signal viewers (see “Visualizing
Simulation Results” in Using Simulink).

7-86

Simulink.ModelDataLogs

The names of the properties identify the data being logged as follows:

• For signal data logs, the name of the signal

• For a subsystem or model log container, the name of the subsystem or
model, respectively

• For a scope viewer data log, the name specified on the viewer’s
parameter dialog box

Note If a name contains spaces, the ModelDataLogs objects specifies
its name as ('name') where name is the actual name, e.g., ('Brake
Subsystem').

Consider, for example, the following model.

7-87

Simulink.ModelDataLogs

As indicated by the testpoint icons, this model specifies that Simulink
software should log the signals named step and scope in the model’s
root system and the signal named clk in the subsystem named Delayed
Out. After simulation of this model, the MATLAB workspace contains
the following variable:

>> logsout

7-88

Simulink.ModelDataLogs

logsout =

Simulink.ModelDataLogs (siglgex):
Name Elements Simulink Class

scope 2 TsArray
step 1 Timeseries
('Delayed Out') 2 SubsysDataLogs

The logsout variable contains the signal data logged during the
simulation. You can use fully qualified object names or the Simulink
unpack command to access the signal data stored in logsout. For
example, to access the amplitudes of the clk signal in the Delayed Out
subsystem, enter

>> data = logsout.('Delayed Out').clk;

or

>> logsout.unpack('all');
>> data = clk;

You can use a custom logging name or signal name when logging a
signal. If you choose to use the signal name, and that signal name is a
multiline one, seen in the following:

include an sprintf('\n') between the two lines of the signal name
when accessing the logged data. For example,

logsout.(['scope' sprintf('\n') '(delayed out)'])

See Also Simulink.Timeseries, Simulink.TsArray,
Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, unpack

7-89

Simulink.ModelWorkspace

Purpose Describe model workspace

Description Instances of this class describe model workspaces. Simulink software
creates an instance of this class for each model that you open during a
Simulink session. See “Using Model Workspaces” in Using Simulink
for more information.

Property
Summary

Name Access Description

DataSource RW Specifies the source used to initialize this
workspace. Valid values are

• 'MDL-File'

• 'MAT-File'

• 'M-Code'

FileName RW Specifies the name of the MAT-file
used to initialize this workspace.
Simulink software ignores this property
if DataSource is not 'MAT-File'.

MCode RW A string specifying M code used to
initialize this workspace. Simulink
software ignores this property if
DataSource is not 'M-Code'.

Method
Summary

Name Description

“assignin” Assign a value to a variable in the model’s
workspace.

“clear” Clear the model’s workspace.

“evalin” Evaluate an expression in the model’s
workspace.

7-90

Simulink.ModelWorkspace

Name Description

“reload” Reload the model workspace from the
workspace’s data source.

“save” Save the model’s workspace to a specified
MAT-file.

“saveToSource” Save the workspace to the MAT-file that the
workspace designates as its data source.

“whos” List the variables in the model workspace.

Methods
assignin

Purpose
Assign a value to a variable in the model’s workspace.

Syntax
assignin('varname', varvalue)

Arguments
varname

Name of the variable to be assigned a value.

varvalue
Value to be assigned the variable.

Description
This method assigns the value specified by varvalue to the variable
whose name is varname.

See also
“evalin”

clear

Purpose
Clear the model’s workspace.

7-91

Simulink.ModelWorkspace

Syntax
clear

Description
This method empties the workspace of its variables.

evalin

Purpose
Evaluate an expression in the model’s workspace.

Syntax
evalin('expression')

Arguments
expression

A MATLAB expression to be evaluated.

Description
This method evaluates expression in the model workspace.

See also
“assignin”

reload

Purpose
Reload the model workspace from the workspace’s data source.

Syntax
reload

Description
This method reloads the model workspace from the data source specified
by its DataSource parameter.

See also
“saveToSource”

7-92

Simulink.ModelWorkspace

save

Purpose
Save the model’s workspace to a specified MAT-file.

Syntax
save('filename')

Arguments
filename

Name of a MAT-file.

Description
This method saves the model’s workspace to the MAT-file specified by
filename.

Note This method allows you to save the workspace to a file other than
the file specified by the workspace’s FileName property. If you want to
save the model workspace to the file specified by the file’s FileName
property, it is simpler to use the workspace’s saveToSource method.

Example
hws = get_param('mymodel','modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'workspace';
hws.assignin('roll', 30);
hws.saveToSource;
hws.assignin('roll', 40);
hws.save('workspace_test.mat');

See also
“reload”, “saveToSource”

7-93

Simulink.ModelWorkspace

saveToSource

Purpose
Save the workspace to the MAT-file that it designates as its data source.

Syntax
saveToSource

Description
This method saves the model workspace designated by its FileName
property.

Example
hws = get_param('mymodel','modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'params';
hws.assignin('roll', 30);
hws.saveToSource;

See also
“save”, “reload”

whos

Purpose
List the variables in the model workspace.

Syntax
whos

Description
This method lists the variables in the model’s workspace. The listing
includes the size and class of the variables.

7-94

Simulink.ModelWorkspace

Example
>> hws = get_param('mymodel','modelworkspace');
>> hws.assignin('k', 2);
>> hws.whos

Name Size Bytes Class

k 1x1 8 double array

7-95

Simulink.MSFcnRunTimeBlock

Purpose Get run-time information about Level-2 M-file S-function block

Description This class allows a Level-2 M-file S-function or other M program to
obtain information from Simulink software and provide information to
Simulink software about a Level-2 M-file S-function block. Simulink
software creates an instance of this class for each Level-2 M-file
S-function block in a model. Simulink software passes the object to the
callback methods of Level-2 M-File S-Functions when it updates or
simulates a model, allowing the callback methods to get and provide
block-related information to Simulink software. See “Writing Level-2
M-File S-Functions” in Writing S-Functions for more information.

You can also use instances of this class in M-file programs to
obtain information about Level-2 M-File S-Function blocks during a
simulation. See “Accessing Block Data During Simulation” in Using
Simulink for more information.

The Level-2 M-file S-Function template
matlabroot/toolbox/simulink/blocks/msfuntmpl.m shows how
to use a number of the following methods.

Parent
Class

Simulink.RunTimeBlock

Derived
Classes

None

Property
Summary

Name Description

“AllowSignalsWithMoreThan2D” Enable Level-2 M-file
S-function to use
multidimensional signals.

7-96

Simulink.MSFcnRunTimeBlock

Name Description

“DialogPrmsTunable” Specifies which of the
S-function’s dialog
parameters are tunable.

“NextTimeHit” Time of the next sample hit
for variable sample time
S-functions.

Method
Summary

Name Description

“AutoRegRuntimePrms” Register this block’s
dialog parameters as
run-time parameters.

“AutoUpdateRuntimePrms” Update this block’s
run-time parameters.

“IsDoingConstantOutput” Determine whether
the current simulation
stage is the constant
sample time stage.

“IsMajorTimeStep” Determine whether
the current simulation
time step is a major
time step.

“IsSampleHit” Determine whether the
current simulation time
is one at which a task
handled by this block is
active.

“IsSpecialSampleHit” Determine whether the
current simulation time
is one at which multiple
tasks handled by this
block are active.

7-97

Simulink.MSFcnRunTimeBlock

Name Description

“RegBlockMethod” Register a callback
method for this block.

“RegisterDataTypeFxpBinaryPoint” Register fixed-point
data type with binary
point-only scaling.

“RegisterDataTypeFxpFSlopeFixExpBias” Register fixed-point
data type with [Slope
Bias] scaling specified
in terms of fractional
slope, fixed exponent,
and bias.

“RegisterDataTypeFxpSlopeBias” Register data type with
[Slope Bias] scaling.

“SetAccelRunOnTLC” Specify whether to
use this block’s TLC
file to generate the
simulation target for
the model that uses it.

“SetPreCompInpPortInfoToDynamic” Set precompiled
attributes of this
block’s input ports
to be inherited.

“SetPreCompOutPortInfoToDynamic” Set precompiled
attributes of this
block’s output ports
to be inherited.

“SetPreCompPortInfoToDefaults” Set precompiled
attributes of this
block’s ports to the
default values.

7-98

Simulink.MSFcnRunTimeBlock

Name Description

“SetSimViewingDevice” Specify whether block
is a viewer.

“WriteRTWParam” Write custom
parameter information
to Real-Time Workshop
file.

Properties
AllowSignalsWithMoreThan2D

Description
Allow Level-2 M-file S-functions to use multidimensional signals. You
must set the AllowSignalsWithMoreThan2D property in the setup
method.

Data Type
Boolean

Access
RW

DialogPrmsTunable

Description
Specifies whether a dialog parameter of the S-function is tunable.
Tunable parameters are registered as run-time parameters when you
call the “AutoRegRuntimePrms” method. Note that SimOnlyTunable
parameters are not registered as run-time parameters. For example,
the following lines initializes three dialog parameters where the first
is tunable, the second in not tunable, and the third is tunable only
during simulation.

block.NumDialogPrms = 3;

block.DialogPrmsTunable = {'Tunable','Nontunable','SimOnlyTunable'};

Data Type
array

7-99

Simulink.MSFcnRunTimeBlock

Access
RW

NextTimeHit

Description
Time of the next sample hit for variable sample-time S-functions.

Data Type
double

Access
RW

Methods
AutoRegRuntimePrms

Purpose
Register a block’s tunable dialog parameters as run-time parameters.

Syntax
AutoRegRuntimePrms;

Description
Use in the PostPropagationSetup method to register this block’s
tunable dialog parameters as run-time parameters.

AutoUpdateRuntimePrms

Purpose
Update a block’s run-time parameters.

Syntax
AutoRegRuntimePrms;

Description
Automatically update the values of the run-time parameters during a
call to ProcessParameters.

7-100

Simulink.MSFcnRunTimeBlock

See the S-function
matlabroot/toolbox/simulink/simdemos/adapt_lms.m in the
Simulink model sldemo_msfcn_lms.mdl for an example.

IsDoingConstantOutput

Purpose
Determine whether this is in the constant sample time stage of a
simulation.

Syntax
bVal = IsDoingConstantOutput;

Description
Returns true if this is the constant sample time stage of a simulation,
i.e., the stage at the beginning of a simulation where Simulink software
computes the values of block outputs that cannot change during the
simulation (see “Constant Sample Time” in Using Simulink). Use this
method in the Outputs method of an S-function with port-based sample
times to avoid unnecessarily computing the outputs of ports that have
constant sample time, i.e., [inf, 0].

function Outputs(block)
.
.

if block.IsDoingConstantOutput
ts = block.OutputPort(1).SampleTime;
if ts(1) == Inf
%% Compute port's output.
end

end
.
.
%% end of Outputs

See “Specifying Port-Based Sample Times” in Writing S-Functions for
more information.

7-101

Simulink.MSFcnRunTimeBlock

IsMajorTimeStep

Purpose.
Determine whether current time step is a major or a minor time step.

Syntax
bVal = IsMajorTimeStep;

Description
Returns true if the current time step is a major time step; false, if it is
a minor time step. This method can be called only from the Outputs
or Update methods.

IsSampleHit

Purpose
Determine whether the current simulation time is one at which a task
handled by this block is active.

Syntax
bVal = IsSampleHit(stIdx);

Arguments
stIdx

Global index of the sample time to be queried.

Description
Use in Outputs or Update block methods when the M-file S-function
has multiple sample times to determine whether a sample hit has
occurred at stIdx. The sample time index stIdx is a global index for
the Simulink model. For example, consider a model that contains
three sample rates of 0.1, 0.2, and 0.5, and an M-file S-function block
that contains two rates of 0.2 and 0.5. In the M-file S-function,
block.IsSampleHit(0) returns true for the rate 0.1, not the rate 0.2.

This block method is similar to ssIsSampleHit for C-MEX S-functions,
however ssIsSampleHit returns values based on only the sample
times contained in the S-function. For example, if the model described

7-102

Simulink.MSFcnRunTimeBlock

above contained a C-MEX S-function with sample rates of 0.2 and 0.5,
ssIsSampleHit(S,0,tid) returns true for the rate of 0.2.

Use port-based sample times to avoid using the global sample time
index for multi-rate systems (see Simulink.BlockPortData).

IsSpecialSampleHit

Purpose
Determine whether the current simulation time is one at which multiple
tasks implemented by this block are active.

Syntax
bVal = IsSpecialSampleHit(stIdx1,stIdx1);

Arguments
stIdx1

Index of sample time of first task to be queried.

stIdx2
Index of sample time of second task to be queried.

Description
Use in Outputs or Update block methods to ensure the validity of data
shared by multiple tasks running at different rates. Returns true if a
sample hit has occurred at stIdx1 and a sample hit has also occurred
at stIdx2 in the same time step (similar to ssIsSpecialSampleHit for
C-Mex S-functions).

RegBlockMethod

Purpose
Register a block callback method.

Syntax
RegBlockMethod(methName, methHandle);

Arguments
methName

Name of method to be registered.

7-103

Simulink.MSFcnRunTimeBlock

methHandle
MATLAB function handle of the callback method to be registered.

Description
Registers the block callback method specified by methName and
methHandle. Use this method in the setup function of a Level-2 M-file
S-function to specify the block callback methods that the S-function
implements.

RegisterDataTypeFxpBinaryPoint

Purpose
Register fixed-point data type with binary point-only scaling.

Syntax
dtID = RegisterDataTypeFxpBinaryPoint(isSigned, wordLength,
fractionalLength, obeyDataTypeOverride);

Arguments
isSigned

true if the data type is signed.

false if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

fractionalLength
Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be
ignored.

7-104

Simulink.MSFcnRunTimeBlock

Description
This method registers a fixed-point data type with Simulink software
and returns a data type ID. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods defined for instances of this class, such as “DatatypeSize”.

Use this function if you want to register a fixed-point data type with
binary point-only scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use “RegisterDataTypeFxpFSlopeFixExpBias” to register a data type
with [Slope Bias] scaling by specifying the word length, fractional
slope, fixed exponent, and bias.

• Use “RegisterDataTypeFxpSlopeBias” to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink® Fixed Point™ license is checked out.

RegisterDataTypeFxpFSlopeFixExpBias

Purpose
Register fixed-point data type with [Slope Bias] scaling specified in
terms of fractional slope, fixed exponent, and bias

Syntax
dtID = RegisterDataTypeFxpFSlopeFixExpBias(isSigned,
wordLength, fractionalSlope, fixedExponent, bias,
obeyDataTypeOverride);

Arguments
isSigned

true if the data type is signed.

false if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

7-105

Simulink.MSFcnRunTimeBlock

fractionalSlope
Fractional slope of the data type.

fixedExponent
Exponent of the slope of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be
ignored.

Description
This method registers a fixed-point data type with Simulink software
and returns a data type ID. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access
methods defined for instances of this class, such as “DatatypeSize”.

Use this function if you want to register a fixed-point data type by
specifying the word length, fractional slope, fixed exponent, and bias.
Alternatively, you can use one of the other fixed-point registration
functions:

• Use “RegisterDataTypeFxpBinaryPoint” to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpSlopeBias” to register a data type with
[Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point license is checked out.

7-106

Simulink.MSFcnRunTimeBlock

RegisterDataTypeFxpSlopeBias

Purpose
Register data type with [Slope Bias] scaling.

Syntax
dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength,
totalSlope, bias, obeyDataTypeOverride);

Arguments
isSigned

true if the data type is signed.

false if the data type is unsigned.

wordLength
Total number of bits in the data type, including any sign bit.

totalSlope
Total slope of the scaling of the data type.

bias
Bias of the scaling of the data type.

obeyDataTypeOverride
true indicates that the Data Type Override setting for the
subsystem is to be obeyed. Depending on the value of Data Type
Override, the resulting data type could be True Doubles, True
Singles, ScaledDouble, or the fixed-point data type specified by
the other arguments of the function.

false indicates that the Data Type Override setting is to be
ignored.

Description
This method registers a fixed-point data type with Simulink software
and returns a data type ID. The data type ID can be used to specify
the data types of input and output ports, run-time parameters, and
DWork states. It can also be used with all the standard data type access

7-107

Simulink.MSFcnRunTimeBlock

methods defined for instances of this class, such as “DatatypeSize” on
page 7-133.

Use this function if you want to register a fixed-point data type with
[Slope Bias] scaling. Alternatively, you can use one of the other
fixed-point registration functions:

• Use “RegisterDataTypeFxpBinaryPoint” to register a data type with
binary point-only scaling.

• Use “RegisterDataTypeFxpFSlopeFixExpBias” to register a data
type by specifying the word length, fractional slope, fixed exponent,
and bias

If the registered data type is not one of the Simulink built-in data types,
a Simulink Fixed Point license is checked out.

SetAccelRunOnTLC

Purpose
Specify whether to use block’s TLC file to generate code for the
Accelerator mode of Simulink software.

Syntax
SetAccelRunOnTLC(bVal);

Arguments
bVal

May be 'true' (use TLC file) or 'false' (run block in interpreted
mode).

Description
Specify if the block should use its TLC file to generate code
that runs with the accelerator. If this option is 'false',
the block runs in interpreted mode. See the S-function
matlabroot/toolbox/simulink/blocks/msfcn_times_two.m in the
Simulink model msfcndemo_timestwo.mdl for an example.

7-108

Simulink.MSFcnRunTimeBlock

SetPreCompInpPortInfoToDynamic

Purpose
Set precompiled attributes of this block’s input ports to be inherited.

Syntax
SetPreCompInpPortInfoToDynamic;

Description
Initialize the compiled information (dimensions, data type, complexity,
and sampling mode) of this block’s input ports to be inherited. See the
S-function matlabroot/toolbox/simulink/simdemos/adapt_lms.m in
the Simulink model sldemo_msfcn_lms.mdl for an example.

SetPreCompOutPortInfoToDynamic

Purpose
Set precompiled attributes of this block’s output ports to be inherited.

Syntax
SetPreCompOutPortInfoToDynamic;

Description
Initialize the compiled information (dimensions, data type, complexity,
and sampling mode) of the block’s output ports to be inherited. See the
S-function matlabroot/toolbox/simulink/simdemos/adapt_lms.m in
the Simulink model sldemo_msfcn_lms.mdl for an example.

SetPreCompPortInfoToDefaults

Purpose
Set precompiled attributes of this block’s ports to the default values.

Syntax
SetPreCompPortInfoToDefaults;

Description
Initialize the compiled information (dimensions, data type, complexity,
and sampling mode) of the block’s ports to the default values. By default,
a port accepts a real scalar sampled signal with a data type of double.

7-109

Simulink.MSFcnRunTimeBlock

SetSimViewingDevice

Purpose
Specify whether this block is a viewer.

Syntax
SetSimViewingDevice(bVal);

Arguments
bVal

May be 'true' (is a viewer) or 'false' (is not a viewer).

Description
Specify if the block is a viewer/scope. If this flag is specified, the block
will be used only during simulation and automatically stubbed out in
generated code.

WriteRTWParam

Purpose
Write a custom parameter to the Real-Time Workshop information file
used for code generation.

Syntax
WriteRTWParam(pType, pName, pVal)

Arguments
pType

Type of the parameter to be written. Valid values are 'string'
and 'matrix'.

pName
Name of the parameter to be written.

pVal
Value of the parameter to be written.

Description
Use in the WriteRTW method of the M-file S-function to write out custom
parameters. These parameters are generally settings used to determine

7-110

Simulink.MSFcnRunTimeBlock

how code should be generated in the TLC file for the S-function. See the
S-function matlabroot/toolbox/simulink/simdemos/adapt_lms.m in
the Simulink model sldemo_msfcn_lms.mdl for an example.

7-111

Simulink.NumericType

Purpose Specify data type

Description This class lets you specify a data type. To do this,

1 Create an instance of this class in the MATLAB base workspace. If
you attempt to create a numeric type in a model workspace, Simulink
software displays an error.

2 Set object’s properties to the properties of the custom data type

3 Assign the data type to all signals and parameters of your model that
you want to conform to the data type.

Assigning a data type in this way allows you to change the data types of
the signals and parameters in your model by changing the properties of
the object that describe them. You do not have to change the model itself.

Property
Dialog
Box

Data type mode
Data type of this numeric type. The options are

7-112

Simulink.NumericType

Option Description

Boolean Same as the MATLAB boolean type.

Double Same as the MATLAB double type.

Single Same as the MATLAB single type.

Fixed-point:
unspecified
scaling

A fixed-point data type with unspecified
scaling.

Fixed-point:
binary point
scaling

A fixed-point data type with binary-point
scaling.

Fixed-point:
slope and bias
scaling

A fixed-point data type with slope and
bias scaling.

Selecting a category causes Simulink software to disable other
controls on the dialog box (see below) that apply to the category
and to disable controls that do not apply. Selecting a fixed-point
category may, depending on the other dialog box options that
you select, cause the model to run only on systems that have a
Simulink Fixed Point option installed.

Is alias
If this option is selected, Simulink software uses the name of the
workspace variable that references this object as the name of
the data type. Otherwise, Simulink software uses the category
of the data type as its name, or, if the category is a fixed-point
category, Simulink software generates a name that encodes the
type’s properties, using the encoding specified by the Simulink
Fixed Point product.

Header file
Name of a user-supplied C header file that defines a data type
having the same name as this numeric type (i.e., as the MATLAB
variable that references this object). If this field is not empty, code
generated from this model defines the numeric type by including

7-113

Simulink.NumericType

the specified header file. If this field is empty, the generated code
defines the numeric type itself.

Description
Description of this data type. This field is intended for use in
documenting this data type. Simulink software ignores it.

Signed
Specifies whether the data type is signed or unsigned. This option
is enabled only for fixed-point data type categories.

Word-Length
Word length in bits of the fixed-point data type. This option is
enabled only for fixed-point data type categories.

Fraction length
Number of bits to the right of the binary point. This option is
enabled only if the data type category is Fixed-point: binary
point scaling.

7-114

Simulink.NumericType

Slope
Slope for slope and bias scaling. This option is enabled only if the
data type category is Fixed-point: slope and bias scaling.

Bias
Bias for slope and bias scaling. This option is enabled only if the
data type category is Fixed-point: slope and bias scaling.

7-115

Simulink.NumericType

Properties

Name Access Description

Bias RW Bias used for slope and bias scaling of
a fixed-point data type. This field is
intended for use by the Simulink Fixed
Point product. (Bias)

7-116

Simulink.NumericType

Name Access Description

DataTypeMode RW String that specifies the data type of
this numeric type. Valid values are
'Double', 'Boolean', 'Single',
'Fixed-point: unspecified
scaling', 'Fixed-point: binary
point scaling', and 'Fixed-point:
slope and bias scaling'. (Data type
mode)

Description RW Description of this data type. (Description)

FixedExponent RW Exponent used for binary point scaling.
This property equals -FractionLength.
Setting this property causes Simulink
software to set the FractionLength
and Slope properties accordingly, and
vice versa. This property applies only if
the data type category is Fixed-point:
binary point scaling or Fixed-point:
slope and bias scaling. It does not
appear on the object’s Property dialog box,
but can be accessed from the MATLAB
command prompt.

FractionLength RW Integer that specifies the size in
bits of the fractional portion of the
fixed-point number. This property equals
-FixedExponent. Setting this property
causes Simulink software to set the
FixedExponent property accordingly, and
vice versa. This field is intended for use
by the Simulink Fixed Point product.
(Fraction length)

7-117

Simulink.NumericType

Name Access Description

IsAlias RW Integer that specifies whether to use the
name of this object as the name of the data
type that it specifies. Valid values are 1
(yes) or 0 (no). (Is alias)

Signed RW Integer that specifies whether this data
type is signed or unsigned. Valid values
are 1 (yes) or 0 (no). (Signed)

Slope RW Slope for slope and bias scaling of
fixed-point numbers. This property
equals SlopeAdjustmentFactor
* 2^FixedExponent. If
SlopeAdjustmentFactor is 1.0, Simulink
software displays the value of this field as
2^SlopeAdjustmentFactor. Otherwise,
it displays it as a numeric value.
Setting this property causes Simulink
software to set the FixedExponent and
SlopeAdjustmentFactor properties
accordingly, and vice versa. This property
appears only if Category is Fixed-point:
slope and bias scaling. (Slope)

7-118

Simulink.NumericType

Name Access Description

SlopeAdjustmentFactor RW Slope for slope and bias scaling of
fixed-point numbers. Setting this property
causes Simulink software to adjust the
Slope property accordingly, and vice versa.
This property applies only if Category
is Fixed-point: slope and bias
scaling. It does not appear on the object’s
Property dialog box, but can be accessed
from the MATLAB command prompt.

WordLength RW Integer that specifies the word size of
this data type. This field is intended for
use by the Simulink Fixed Point product.
This property appears only if Category is
Fixed-point. (Word Length)

7-119

Simulink.Parameter

Purpose Specify value, value range, data type, and other properties of block
parameter

Description This class enables you to create workspace objects that you can then
use as the values of block parameters, e.g., the value of a Gain block’s
Gain parameter. You can create a Simulink.Parameter object in the
base MATLAB workspace or a model workspace. However, to create the
object in a model workspace, you must set the object’s storage class
to Auto.

Parameter objects let you specify not only the value of a parameter but
also other information about the parameter, such as the parameter’s
purpose, its dimensions, its minimum and maximum values, etc.
Some Simulink products use this information. For example, Simulink
and Real-Time Workshop products use information specified by
Simulink.Parameter objects to determine whether the parameter
is tunable (see “Changing the Values of Block Parameters During
Simulation” in Using Simulink).

The Simulink software performs range checking of parameter values.
The software alerts you when the parameter object’s value lies outside a
range that corresponds to its specified minimum and maximum values
and data type.

7-120

Simulink.Parameter

Property
Dialog
Box

Value
Value of the parameter. You can use MATLAB expressions
to specify the numeric type, dimensions, and data type of the
parameter (see “Data Types Supported by Simulink”). You
can also specify fixed-point values for block parameters (see
“Specifying Fixed-Point Values Directly” in the Simulink Fixed
Point documentation). The following examples illustrate this
syntax.

Expression Description

single(1.0) Specifies a single-precision value of 1.0

7-121

Simulink.Parameter

Expression Description

int8(2) Specifies an 8-bit integer of value 2

int32(3+2i) Specifies a complex value whose real
and imaginary parts are 32-bit integers

fi(2.3,true,16,3) Specifies a signed fixed-point numeric
object having a value of 2.3, a word
length of 16 bits, and a fraction length
of 3.

Note If you specify a typed expression as the parameter object’s
Value property, it overrides the current setting of the Data type
property.

Data type
Data type of the parameter. You can either select a data type
from the adjacent pulldown menu or enter a string. If you select
auto (the default), the block that references the parameter object
determines the data type of the variable used to represent this
parameter in code generated from the model. If you enter a string,
it must evaluate to one of the following:

• A built-in data type that Simulink software supports (see “Data
Types Supported by Simulink”).

• A Simulink.NumericType object

• A Simulink.AliasType object

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter. (See “Using the Data Type Assistant” in Using
Simulink.)

7-122

Simulink.Parameter

Note If you specify a parameter object’s data type using the
Data type property, it overrides any typed expression in the
Value property and changes the value to be untyped.

Units
Measurement units in which this value is expressed, e.g., inches.
This field is intended for use in documenting this parameter.
Simulink software ignores it.

Dimensions
Dimensions of the parameter. Simulink software determines the
dimensions from the entry in the Value field of this parameter.
You cannot set this field yourself.

Complexity
Numeric type (i.e., real or complex) of the parameter. Simulink
software determines the numeric type of this parameter from the
entry in the Value field of this parameter. You cannot set this
field yourself.

Minimum
Minimum value that the parameter can have. Specify a value
that evaluates to a scalar, real number with double data type.
The Simulink software generates a warning if the parameter
value is less than the minimum value or if the minimum value
is outside the range of the parameter data type. When updating
the diagram or starting a simulation, Simulink generates an error
in these cases.

Maximum
Maximum value that the parameter can have. Specify a value that
evaluates to a scalar, real number with double data type. The
Simulink software generates a warning if the parameter value
is greater than the maximum value or if the maximum value is
outside the range of the parameter data type. When updating the
diagram or starting a simulation, Simulink generates an error
in these cases.

7-123

Simulink.Parameter

Storage class
Storage class of this parameter. Simulink code generation
products use this property to allocate memory for this parameter
in generate code. See “Tunable Parameter Storage Classes” in
Real-Time Workshop User’s Guide for more information.

Alias
Alternate name for this parameter. Simulink software ignores
this setting.

Description
Description of this parameter. This field is intended for use in
documenting this parameter. Simulink software ignores it.

Properties Name Access Description

Value RW Value of this parameter. (Value)

DataType RW String specifying the data type of this
parameter. (Data type)

Dimensions RO Vector specifying the dimensions of this
parameter. (Dimensions)

Complexity RO String specifying the numeric type of this
parameter. Valid values are 'real’ or
'complex'. (Complexity)

Min RW Minimum value that this parameter can
have. (Minimum)

Max RW Maximum value that this parameter can
have. (Maximum)

DocUnits RW Measurement units in which this
parameter’s value is expressed. (Units)

7-124

Simulink.Parameter

Name Access Description

RTWInfo RW Information used by Real-Time Workshop
software for generating code for this
parameter. The value of this property
is an object of Simulink.ParamRTWInfo
class.

Description RW String that describes this parameter.
This property is intended for user use.
Simulink software itself does not use it.
(Description)

7-125

Simulink.ParamRTWInfo

Purpose Specify information needed to generate code for parameter

Description Simulink software creates an instance of this class for each instance of a
Simulink.Parameter object that it creates. Simulink software uses the
Simulink.ParamRTWInfo object to store information needed to generate
code for the parameter specified by the Simulink.Parameter object.

You can set the properties of an instance of this class via the RTWInfo
property or the property dialog box of the Simulink.Parameter object
that uses it. For example, the following MATLAB expression sets the
StorageClass property of a Simulink.ParamRTWInfo object used by a
parameter object name gain.

gain.RTWInfo.StorageClass = 'ExportedGlobal';

Property
Dialog
Box

Use the Simulink.Parameter property dialog box to set the
StorageClass and Alias properties of objects of this class.

Properties Name Description

Alias Alternate name for this parameter.

CustomAttributes Custom storage class attributes of this
parameter. See “Custom Storage Classes” in
the Real-Time Workshop Embedded Coder
documentation for more information.

CustomStorageClass Custom storage class of this parameter.

StorageClass Storage class of this parameter. See
“Tunable Parameter Storage Classes” in the
Real-Time Workshop documentation for more
information.

7-126

Simulink.RunTimeBlock

Purpose Allow Level-2 M-file S-function and other M-file programs to get
information about block while simulation is running

Description This class allows a Level-2 M-file S-function or other M program
to obtain information about a block. Simulink software creates an
instance of this class or a derived class for each block in a model.
Simulink software passes the object to the callback methods of Level-2
M-file S-functions when it updates or simulates a model, allowing the
callback methods to get block-related information from and provide
such information to Simulink software. See “Writing Level-2 M-File
S-Functions” in Writing S-Functions for more information. You can also
use instances of this class in M-file programs to obtain information
about blocks during a simulation. See “Accessing Block Data During
Simulation” in the Simulink documentation for more information.

Note Simulink.RunTimeBlock objects do not support MATLAB sparse
matrices. For example, the following line of code attempts to assign a
sparse identity matrix to the run-time object’s output port data. This
line of code in a Level-2 M-file S-function produces an error:

block.Outport(1).Data = speye(10);

Parent
Class

None

Derived
Classes

Simulink.MSFcnRunTimeBlock

Property
Summary

Name Description

“BlockHandle” Block’s handle.

“CurrentTime” Current simulation time.

7-127

Simulink.RunTimeBlock

Name Description

“NumDworks” Number of discrete work vectors used by the
block.

“NumOutputPorts” Number of block output ports.

“NumContStates” Number of block’s continuous states.

“NumDworkDiscStates” Number of block’s discrete states

“NumDialogPrms” Number of parameters that can be entered
on S-function block’s dialog box.

“NumInputPorts” Number of block’s input ports.

“NumRuntimePrms” Number of run-time parameters used by
block.

“SampleTimes” Sample times at which block produces
outputs.

Method
Summary

Name Description

“ContStates” Get a block’s continuous states.

“DataTypeIsFixedPoint” Determine whether a data type is
fixed point.

“DatatypeName” Get name of a data type supported
by this block.

“DatatypeSize” Get size of a data type supported by
this block.

“Derivatives” Get a block’s continuous state
derivatives.

“DialogPrm” Get a parameter entered on an
S-function block’s dialog box.

“Dwork” Get one of a block’s DWork vectors.

7-128

Simulink.RunTimeBlock

Name Description

“FixedPointNumericType” Determine the properties of a
fixed-point data type.

“InputPort” Get one of a block’s input ports.

“OutputPort” Get one of a block’s output ports.

“RuntimePrm” Get one of the run-time parameters
used by a block.

Properties
BlockHandle

Description
Block’s handle.

Access
RO

CurrentTime

Description
Current simulation time.

Access
RO

NumDworks

Description
Number of data work vectors.

Access
RW

See Also
ssGetNumDWork

7-129

Simulink.RunTimeBlock

NumOutputPorts

Description
Number of output ports.

Access
RW

See Also
ssGetNumOutputPorts

NumContStates

Description
Number of continuous states.

Access
RW

See Also
ssGetNumContStates

NumDworkDiscStates

Description
Number of discrete states. In an M-file S-function, you need to use
DWorks to set up discrete states.

Access
RW

See Also
ssGetNumDiscStates

NumDialogPrms

Description
Number of parameters declared on the block’s dialog. In the case
of the S-function, it returns the number of parameters listed as a
comma-separated list in the S-function parameters dialog field.

7-130

Simulink.RunTimeBlock

Access
RW

See Also
ssGetNumSFcnParams

NumInputPorts

Description
Number of input ports.

Access
RW

See Also
ssGetNumInputPorts

NumRuntimePrms

Description
Number of run-time parameters used by this block. See “Run-Time
Parameters” for more information.

Access
RW

See Also
ssGetNumSFcnParams

SampleTimes

Description
Block’s sample times.

Access
RW for M-file S-functions, RO for all other blocks.

7-131

Simulink.RunTimeBlock

Methods
ContStates

Purpose
Get a block’s continuous states.

Syntax
states = ContStates();

Description
Get vector of continuous states.

See Also
ssGetContStates

DataTypeIsFixedPoint

Purpose
Determine whether a data type is fixed point.

Syntax
bVal = DataTypeIsFixedPoint(dtID);

Arguments
dtID

Integer value specifying the ID of a data type.

Description
Returns true if the specified data type is a fixed-point data type.

DatatypeName

Purpose
Get the name of a data type.

Syntax
name = DatatypeName(dtID);

Arguments
dtID

7-132

Simulink.RunTimeBlock

Integer value specifying ID of a data type.

Description
Returns the name of the data type specified by dtID.

See Also
“DatatypeSize”

DatatypeSize

Purpose
Get the size of a data type.

Syntax
size = DatatypeSize(dtID);

Arguments
dtID

Integer value specifying the ID of a data type.

Description
Returns the size of the data type specified by dtID.

See Also
“DatatypeName”

Derivatives

Purpose
Get derivatives of a block’s continuous states.

Syntax
derivs = Derivatives();

Description
Get vector of state derivatives.

See Also
ssGetdX

7-133

Simulink.RunTimeBlock

DialogPrm

Purpose
Get an S-function’s dialog parameters.

Syntax
param = DialogPrm(pIdx);

Arguments
pIdx

Integer value specifying the index of the parameter to be returned.

Description
Get the specified dialog parameter. In the case of the S-function, each
DialogPrm corresponds to one of the elements in the comma-separated
list of parameters in the S-function parameters dialog field.

See Also
ssGetSFcnParam, “RuntimePrm”

Dwork

Purpose
Get one of a block’s DWork vectors.

Syntax
dworkObj = Dwork(dwIdx);

Arguments
dwIdx

Integer value specifying the index of a work vector.

Description
Get information about the DWork vector specified by dwIdx where
dwIdx is the index number of the work vector. This method returns an
object of type Simulink.BlockCompDworkData.

7-134

Simulink.RunTimeBlock

See Also
ssGetDWork

FixedPointNumericType

Purpose
Get the properties of a fixed-point data type.

Syntax
eno = FixedPointNumericType(dtID);

Arguments
dtID

Integer value specifying the ID of a fixed-point data type.

Description
Returns an object of Embedded.Numeric class that contains the
attributes of the specified fixed-point data type.

Note Embedded.Numeric is also the class of the numerictype objects
created by Fixed-Point Toolbox™ software. For information on the
properties defined by Embedded.Numeric class, see numerictype Object
Properties in the "Property Reference" in the Fixed-Point Toolbox User’s
Guide.

InputPort

Purpose
Get an input port of a block.

Syntax
port = InputPort(pIdx);

Arguments
pIdx

7-135

Simulink.RunTimeBlock

Integer value specifying the index of an input port.

Description
Get the input port specified by pIdx, where pIdx is the index number of
the input port. For example,

port = rto.InputPort(1)

returns the first input port of the block represented by the run-time
object rto.

This method returns an object of type Simulink.BlockPreComp-
InputPortData or Simulink.BlockCompInputPortData, depending on
whether the model that contains the port is uncompiled or compiled.
You can use this object to get and set the input port’s uncompiled or
compiled properties, respectively.

See Also
ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData,
Simulink.BlockCompInputPortData, “OutputPort”

OutputPort

Purpose
Get an output port of a block.

Syntax
port = OutputPort(pIdx);

Arguments
pIdx

Integer value specifying the index of an output port.

Description
Get the output port specified by pIdx, where pIdx is the index number
of the output port. For example,

port = rto.InputPort(1)

7-136

Simulink.RunTimeBlock

returns the first output port of the block represented by the run-time
object rto.

This method returns an object of type Simulink.BlockPreComp-
OutputPortData or Simulink.BlockCompOutputPortData, depending
on whether the model that contains the port is uncompiled or compiled,
respectively. You can use this object to get and set the output port’s
uncompiled or compiled properties, respectively.

See Also
ssGetInputPortSignalPtrs, Simulink.BlockPreComp-
OutputPortData, Simulink.BlockCompOutputPortData

RuntimePrm

Purpose
Get an S-function’s run-time parameters.

Syntax
param = RuntimePrm(pIdx);

Arguments
pIdx

Integer value specifying the index of a run-time parameter.

Description
Get the run-time parameter whose index is pIdx.

See Also
ssGetRunTimeParamInfo

7-137

Simulink.ScopeDataLogs

Purpose Log data displayed by Scope viewer

Description Simulink software creates instances of this class to log data displayed
on Scope viewers (see “Visualizing Simulation Results” in the Simulink
documentation). In particular, if you have enabled data logging for a
model, Simulink software creates an instance of this class for each scope
viewer enabled for logging in the model and assigns it to a property of
the model’s Simulink.ModelDataLogs object. The instance created for
each viewer has a Name property whose value is the name specified on
the History pane of the viewer’s parameter dialog box (see Scope for
more information). The instance also has an axes property for each
of the scope’s axes labeled Axes1, Axes2, etc. The value of each axes
property is itself a Simulink.ScopeDataLogs object that contains
Simulink.Timeseries objects, one for each signal displayed on the axes.
The time series objects contain the signal data displayed on the axes.

Consider, for example, the following model:

This model displays signals out1 and out2 on a scope viewer that has
only one set of axes.

7-138

Simulink.ScopeDataLogs

The model enables data logging for the scope viewer under the variable
name ScopeData and for the model as a whole under the default
variable name logsout.

7-139

Simulink.ScopeDataLogs

After simulation of the model, the MATLAB workspace contains
a Simulink.ModelDataLogs object named logsout containing
a Simulink.ScopeDataLogs object that in turn contains a
Simulink.ScopeDataLogs object that contains Simulink.Timeseries
objects that contain the times series data for signals out1 and out 2.

You can use Simulink data object dot notation to access the data, e.g.,

>> logsout.ScopeData.axes1

ans =

Simulink.ScopeDataLogs (axes1):
Name Elements Simulink Class

out1 1 Timeseries
out2 1 Timeseries

7-140

Simulink.Signal

Purpose Specify attributes of signal

Description This class enables you to create workspace objects that you can use to
specify the attributes that a signal or discrete state should have, for
example, its data type, numeric type, dimensions, and so on. You can
create a Simulink.Signal object in the base MATLAB workspace or a
model workspace. However, to create the object in a model workspace,
you must set the object’s storage class to Auto.

Objects of this class allow you to specify the signal or discrete state
attributes by giving the signal or discrete state the same name as the
workspace variable that references the Simulink.Signal object. You
can use signal objects both for specifying and checking signal properties.

Using Signal Objects to Specify Signal Properties

You can use signal objects to assign values to properties left unassigned
by signal sources, i.e., that are assigned a value of -1 (inherited) or
auto. To do this for a particular signal, create a signal object that has
the same name as the signal and set the properties of the object that
correspond to the properties left unspecified by the signal source.

You can also use a Signal Specification block to specify properties
left unspecified by a signal source. The advantage of using signal objects
is that it allows you to change signal property values without having to
edit the model and it simplifies the model’s diagram. The advantage of
a Signal Specification block is that it displays the values assigned to the
signal’s properties on the block diagram itself.

7-141

Simulink.Signal

The following model illustrates the respective advantages of the two
ways of assigning attributes to a signal.

7-142

Simulink.Signal

In this example, the signal object named s1 specifies the sample time
and data type of the signal emitted by input port In1 and a Signal
Specification block specifies the sample time and data type of the signal
emitted by input port In2. As this example illustrates, you have to
display the signal object in the Model Explorer to determine many of its
properties whereas the Signal Specification block displays the property
values on the diagram itself. On the other hand, the use of a signal
object to specify the sample time and data type properties of signal s1
allows you to change the sample time or data type without having to edit
the model. For example, you could use the Model Explorer, the MATLAB
command line, or an M-file program to change these properties.

Using Signal Objects to Check Signal Properties

You can use signal objects to ensure that signal sources assign desired
properties to a signal or state. This enables you to quickly determine
whether the actual attributes of your model’s signals are the attributes
you intend them to have. To do this, create a Simulink.Signal object
that has the same name as the signal or state to be validated and that
specifies the desired properties. Then, whenever you update or run the
diagram containing the signal or state, the Simulink engine checks
the properties of the signal’s or state’s source against the properties
specified by the Simulink.Signal object. If the source specifies a
value other than inherited or auto for the properties, and the values
specified by the source and the Simulink.Signal object differ, the
Simulink engine displays an error message.

The engine checks the following properties whenever you update or
run the diagram:

• Data type

• Dimensions

• Complexity

• Sample time

• Sampling mode

7-143

Simulink.Signal

The engine checks the minimum and maximum values of the signal
or state only when you run the simulation, not when the diagram
is updated. In addition, to enable checking for the minimum and
maximum values of a signal or state, you must set the Simulation
range checking diagnostic on the Data Validity pane to either
warning or error.

Property
Dialog
Box

Data type
Data type of the signal. The default entry, auto, specifies that
Simulink software should determine the data type. Use the
adjacent pulldown list to specify built-in data types (e.g., uint8).

7-144

Simulink.Signal

To specify a custom data type, enter a MATLAB expression that
specifies the type, e.g., a base workspace variable that references
a Simulink.NumericType object.

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter. (See “Using the Data Type Assistant” in Using
Simulink.)

Dimensions
Dimensions of this signal. Valid values are -1 (the default)
specifying any dimensions, N specifying a vector signal of size N,
or [M N] specifying an MxN matrix signal.

Complexity
Numeric type of the signal. Valid values are auto (determined by
Simulink software), real, or complex.

Sample time
Rate at which the value of this signal should be computed. See
“Specifying Sample Time” in the Simulink documentation for
information on how to specify the sample time.

Sample mode
Sample mode of this signal. Simulink software ignores the setting
of this field.

Minimum
Minimum value that the signal should have. Specify a value
that evaluates to a scalar, real number with double data type.
Simulink software uses this value in the following ways:

• When updating the diagram or starting a simulation, Simulink
generates an error if the signal’s initial value is less than the
minimum value or if the minimum value is outside the range of
the signal’s data type.

• When the Simulation range checking diagnostic is enabled,
Simulink alerts you during simulation if the signal’s value is
less than the minimum value (see “Simulation range checking”).

7-145

Simulink.Signal

Maximum
Maximum value that the signal should have. Specify a value
that evaluates to a scalar, real number with double data type.
Simulink software uses this value in the following ways:

• When updating the diagram or starting a simulation, Simulink
generates an error if the signal’s initial value is greater than
the maximum value or if the maximum value is outside the
range of the signal’s data type.

• When the Simulation range checking diagnostic is enabled,
Simulink alerts you during simulation if the signal’s value
is greater than the maximum value (see “Simulation range
checking”).

Initial value
Signal or state value before a simulation takes its first time step.
You can specify any MATLAB string expression that evaluates to
a double numeric scalar value or array.

Valid:

1.5
[1 2 3]
1+0.5

foo = 1.5;
s1.InitialValue = 'foo';

Invalid:

uint(1)
foo = '1.5';
s1.InitialValue = 'foo';

If necessary, Simulink software converts the initial value to
ensure type, complexity, and dimension consistency with the
corresponding block parameter value. If you specify an invalid
value or expression, an error message appears when you update

7-146

Simulink.Signal

the model. Also, Simulink performs range checking of the initial
value. The software alerts you when the signal’s initial value lies
outside a range that corresponds to its specified minimum and
maximum values and data type.

Initial value settings for signal objects that represent the following
signals and states override the corresponding block parameter
initial values if undefined (specified as []):

• Output signals of conditionally executed subsystems and Merge
blocks

• Block states

Units
Measurement units in which the value of this signal is expressed,
e.g., inches. This field is intended for use in documenting this
signal. Simulink software ignores it.

Storage class
Storage class of this signal. See “Tunable Parameter Storage
Classes” in the Real-Time Workshop User’s Guide for more
information.

Alias
Alternate name for this signal. Simulink software ignores this
setting. This property is used for code generation.

Description
Description of this signal. This field is intended for use in
documenting this signal. This property is used by the Simulink
Report Generator and for code generation.

Properties Name Access Description

DataType RW String specifying the data type of this
signal. (Data type)

7-147

Simulink.Signal

Name Access Description

Description RW Description of this signal. This field is
intended for use in documenting this
signal. (Description)

Dimensions RW Scalar or vector specifying the
dimensions of this signal. (Dimensions)

Complexity RW String specifying the numeric type of
this signal. Valid values are 'auto',
'real', or 'complex'. (Complexity)

Min RW Minimum value that this signal can
have. (Minimum)

Max RW Maximum value that this signal can
have. (Maximum)

DocUnits RW Measurement units in which this
signal’s value is expressed. (Units)

RTWInfo RW Information used by Real-Time
Workshop software for generating code
for this signal. The value of this property
is an object of Simulink.ParamRTWInfo
class.

SampleTime RW Rate at which this signal should be
updated. (Sample time)

Sampling
Mode

RW Sampling mode of this signal. (Sample
mode)

7-148

Simulink.StructElement

Purpose Describe element of data structure

Description Objects of this class describe elements of structures described by objects
of the Simulink.StructType class.

Property
Dialog
Box

Name
Specify a name for the element.

Data type
Specify a data type for this element. You can either select a data
type from the adjacent pulldown list or enter a string. If you enter
a string, it must evaluate to one of the following:

• A built-in data type supported by Simulink software (see “Data
Types Supported by Simulink”)

• A Simulink.NumericType object

• A Simulink.AliasType object

Click the Show data type assistant button to
display the Data Type Assistant, which helps you set the Data
type parameter. (See “Using the Data Type Assistant” in Using
Simulink.)

7-149

Simulink.StructElement

Dimensions
Specify a vector that represents the dimensions of the element.

Complexity
Specify the numeric type (i.e., real or complex) of this element.

Properties Name Access Description

Name RW String specifying the name of this element.
(Name)

DataType RW String that specifies the name of the data
type of this element. (Data type)

Complexity RW String that specifies the numeric type
('real' or 'complex') of this element.
(Complexity)

Dimensions RW A vector specifying the dimensions of this
element. (Dimensions)

See Also Simulink.StructType

7-150

Simulink.StructType

Purpose Describe data structure used as value of signal or parameter

Description An object of this class describes a signal whose values are data
structures (i.e., aggregates of data of different types as opposed to
arrays of values of the same type). This class is intended to support
development and use of custom blocks (e.g., S-Function blocks) that
accept or output data structures. The class allows users of such blocks
to determine the structure of the signals connected to them.

You can use either the Model Explorer or the MATLAB command line
to create an instance of this class. You must create structure types in
the MATLAB workspace. If you attempt to create a structure type in a
model workspace, Simulink software displays an error.

To define the elements of a structure, create an array of instances
of Simulink.StructElement at the MATLAB command line and
assign the array as the value of the structure’s Elements property. For
example, the following commands define a structure that contains a
floating point and an integer element.

v = Simulink.StructElement;
v.Name = 'v';
v.DataType = 'single';
n = Simulink.StructElement;
n.Name = 'n';
n.DataType = 'uint8';

s = Simulink.StructType;
s.Elements = [v n];

You can use a structure type object to specify the data type of Inport and
Signal Specification blocks. To do this, enter the name of the variable
that references the structure type object as the data type in the block’s
parameter dialog box.

The Simulink S-function API lets you create S-functions capable of
generating and manipulating signal structures (see the simstruc.h
header file for more information). You can connect signal structures

7-151

Simulink.StructType

created by S-function blocks to any standard Simulink block that
accepts any data type. This includes virtual blocks and the Switch block
configured to require the same data type on all its data inputs.

Property
Dialog
Box

Struct elements
Table that displays the properties of the structure’s elements. You
cannot edit this table. To add or delete this structure’s elements
or change the properties of elements, you must use MATLAB
commands, e.g.,

state.Elements(1).DataType = 'double';

7-152

Simulink.StructType

Header file
Name of a C header file that declares this structure. This field
is intended for use by Real-Time Workshop software. Simulink
software ignores it.

Description
Description of this structure. This field is intended for you to use
to document this structure. Simulink software itself does not use
this field.

Properties Name Access Description

Elements RW An array of Simulink.StructElement
objects that define the names, data types,
dimensions, and numeric types of the
structure’s elements. The elements must
have unique names. (Struct elements)

Description RW String that describes this structure.
This property is intended for user use.
Simulink software itself does not use it.
(Description)

HeaderFile RW String that specifies the name of a C
header file that declares this structure.
(Header file)

See Also Simulink.StructElement

7-153

Simulink.SubsysDataLogs

Purpose Log signals in subsystem

Description Simulink software creates instances of this class to contain logs for
signals belonging to a subsystem (see “Logging Signals” in the Simulink
documentation). Objects of this class have a variable number of
properties. The first property, named Name, is the name of the subsystem
whose log data this object contains. The remaining properties are signal
log or signal log container objects containing the data logged for the
subsystem specified by this object’s Name property.

Consider, for example, the following model.

After simulation of this model, the MATLAB workspace contains a
Simulink.ModelDataLogs object, named logsout, that contains a
Simulink.SubsysDataLogs object, named Gain, that contains the log
data for signals a and g in the subsystem named Gain.

>> logsout.Gain

ans =

Simulink.SubsysDataLogs (Gain):
Name Elements Simulink Class

7-154

Simulink.SubsysDataLogs

a 1 Timeseries
g 2 TsArray

You can use either fully qualified log names or the unpack command
to access the signal logs contained by a SubsysDataLogs object. For
example, to access the amplitudes logged for signal a in the preceding
example, you could enter the following at the MATLAB command line:

>> data = logsout.Gain.a.Data;

or

>> logsout.unpack('all');
data = a.Data;

See Also Simulink.ModelDataLogs, Simulink.Timeseries, Simulink.TsArray,
unpack

7-155

Simulink.TimeInfo

Purpose Provide information about time data in Simulink.Timeseries object

Description Simulink software creates instances of these objects to describe the time
data that it includes in Simulink.Timeseries objects.

Properties Name Access Description

Units RW The units, e.g., 'seconds', in which the
time series data are expressed in the
associated Simulink.Timeseries object.

Start RW If the associated signal is not in a
conditionally executed subsystem, this
field contains the simulation time of
the first signal value recorded in the
associated Simulink.Timeseries object.
If the signal is in a conditionally executed
subsystem, this field contains an array of
times when the system became active.

End RW If the associated signal is not in a
conditionally executed subsystem, this
field contains the simulation time of the
last signal value recorded in the associated
Simulink.Timeseries object. If the signal
is in a conditionally executed subsystem,
this field contains an array of times when
the system became inactive.

7-156

Simulink.TimeInfo

Name Access Description

Increment RW The interval between simulation times
at which signal data is logged in the
associated Simulink.Timeseries object.
If the signal is aperiodic (continuous signal
with variable-step solver), this property
has a value of NaN. A signal is periodic if it
has a discrete sample time (not continuous
or constant) or is continuous with a
fixed-step solver.

Length W The number of signal samples recorded
in the associated Simulink.Timeseries
object, i.e., the length of the arrays
referenced by the object’s Time and Data
properties.

See Also Simulink.Timeseries

7-157

Simulink.Timeseries

Purpose Log signal data

Description Simulink software creates instances of this class to store signal data
that it logs while simulating a model (see “Logging Signals” in the
Simulink documentation).

Note The MATLAB Time Series Tools can import and manipulate
instances of this class. See Using Time Series Tools in the MATLAB
Data Analysis documentation for further details.

Properties Name Access Description

Name RW Name of this signal log.

BlockPath RW Path of the block that output the signal
logged in this signal log.

PortIndex RW Index of the output port that emitted the
signal logged in this signal log.

SignalName RW Name of the signal logged in this signal
log.

ParentName RW Name of the parent of the signal recorded
in this log, if the signal is an element of a
composite signal; otherwise, the same as
SignalName.

TimeInfo RW An object of Simulink.TimeInfo class
that describes the time data in this log.

Time RW An array containing the simulation times
at which signal data was logged.

Data RW An array containing the signal data.

See Also Simulink.ModelDataLogs, Simulink.TimeInfo, unpack

7-158

Simulink.TsArray

Purpose Log composite virtual signals

Description Simulink software creates instances of this class to contain the data
that it logs for a composite virtual signal, e.g., the output of a Mux
or of a virtual Bus Creator block (see “Logging Signals”). Objects of
the Simulink.TsArray class have a variable number of properties.
The first property, called Name, specifies the log name of the composite
signal. The remaining properties reference logs for the elements of the
composite signal, i.e., Simulink.Timeseries objects for elementary
signals and Simulink.TSArray objects for elements that are themselves
composite signals, e.g., a bus. The name of each property is the log
name of the corresponding signal.

Consider, for example, the following model.

This model specifies that Simulink software should log the values of the
composite signal b2 during simulation. After simulation of this model,
the MATLAB workspace contains a Simulink.ModelDataLogs object,
named logsout, that contains a Simulink.TsArray object, named b2,
that contains the logs for the elements of b2, i.e., for the elementary
signal x1 and the bus signal b1. Entering the fully qualified name of the
Simulink.TsArray object, i.e., logsout.b2, at the MATLAB command
line reveals the structure of the signal log for this model.

7-159

Simulink.TsArray

>> logsout.b2
Simulink.TsArray (untitled/Bus Creator1):

Name Elements Simulink Class

x1 1 Timeseries
b1 2 TsArray

You can use either fully qualified log names or the unpack command to
access the signal logs contained by a Simulink.TsArray object. For
example, to access the amplitudes logged for signal x1 in the preceding
example, you could enter the following at the MATLAB command line:

>> data = logsout.b2.x1.Data;

or

>> logsout.unpack('all');
data = x1.Data;

See Also Simulink.ModelDataLogs, Simulink.Timeseries, unpack

7-160

8

Model and Block
Parameters

Model Parameters (p. 8-2) Parameters specific to models.

Common Block Parameters (p. 8-66) Parameters that all blocks have.

Block-Specific Parameters (p. 8-79) Parameters that a specific block has.

Mask Parameters (p. 8-185) Parameters of a masked subsystem.

8 Model and Block Parameters

Model Parameters

In this section...

“About Model Parameters” on page 8-2

“Examples of Setting Model Parameters” on page 8-65

About Model Parameters
The following sections list parameters that you can set for Simulink® models
and blocks, using the set_param command.

This table lists and describes parameters that describe a model. The
parameters appear in the order they are defined in the model file, as described
in Chapter 9, “Model File Format”. The table also includes model callback
parameters (see “Using Callback Functions”). The Description column
indicates where you can set the value on the Configuration Parameters dialog
box. Examples showing how to change parameters follow the table (see
“Examples of Setting Model Parameters” on page 8-65).

Parameter values must be specified as quoted strings. The string contents
depend on the parameter and can be numeric (scalar, vector, or matrix), a
variable name, a filename, or a particular value. The Values column shows
the type of value required, the possible values (separated with a vertical line),
and the default value, enclosed in braces.

Model Parameters

Parameter Description Values

AbsTol Absolute error tolerance.
Setting for the Absolute
tolerance on the Solver
pane of the Configuration
Parameters dialog box.

string {'auto'}

AccelVerboseBuild Determines if Simulink®

Accelerator™ mode displays
progress information during
code generation.

string {'off'}|'on'

8-2

Model Parameters

Model Parameters (Continued)

Parameter Description Values

AlgebraicLoopMsg Specifies diagnostic action
to take when there is an
algebraic loop. Set by the
Algebraic loop option on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

AnalyticLinearization For internal use.

ArrayBoundsChecking Setting for the Array bounds
exceeded diagnostic on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

ArtificialAlgebraic-
LoopMsg

Setting for the Minimize
algebraic loop diagnostic
on the Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

AssertControl Setting for the Model
Verification block enabling
diagnostic on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'UseLocalSettings'}
| 'EnableAll' |
'DisableAll'

AutoInsertRateTranBlk Setting for the Automatically
handle rate transition
for data transfer control
on the Solver pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

8-3

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

BlockDescription-
StringDataTip

Specifies whether to display
the user description string
for a block as a data tip. Set
by the User Description
String command on the model
editor’s View->Block Data
Tips Options menu.

'on' | {'off'}

BlockDiagramType Type of block diagram (read
only).

'model' | 'library'

BlockNameDataTip Specifies whether to display
the block name as a data
tip. Set by the Block Name
command on the model editor’s
View->Block Data Tips
Options menu.

'on' | {'off'}

BlockParametersDataTip Specifies whether to display a
block’s parameter in a data tip.
Set by the Parameter Names
and Values command on the
model editor’s View->Block
Data Tips Options menu.

'on' | {'off'}

BlockPriorityViolationMsg Setting for the Block priority
violation diagnostic on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

BlockReduction Enables block reduction
optimization. Set by the
Block reduction option on
the Optimization pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

8-4

Model Parameters

Model Parameters (Continued)

Parameter Description Values

BlockReductionOpt See BlockReduction
parameter for more
information.

Blocks Names of the blocks that this
model contains.

cell array {{}}

BooleanDataType Enable Boolean mode. Set
by the Implement logic
signals as boolean data
(vs. double) option on the
Optimization pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

Browser Deprecated.

BrowserHandle Deprecated.

BrowserLookUnderMasks Show masked subsystems in
the Model Browser. Set by the
Show Masked Subsystems
command on the model editor’s
View->Model Browser
Options menu.

'on' | {'off'}

BrowserShowLibraryLinks Show library links in the
Model Browser. Set by
the Show Library Links
command on the model editor’s
View->Model Browser
Options menu.

'on' | {'off'}

BusObjectLabelMismatch Set by the Element name
mismatch diagnostic on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning'|
'error'

BufferReusableBoundary For internal use.

8-5

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

BufferReuse Enable reuse of block I/O
buffers. Set by the Reuse
block outputs option on the
Optimization pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

CheckExecutionContext-
RuntimeOutputMsg

Set by the Check runtime
output of execution context
option on the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

CheckExecutionContext-
PreStartOutputMsg

Set by the Check
preactivation output
of execution context
option on the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

CheckForMatrixSingularity See
CheckMatrixSingularityMsg
parameter for more
information.

CheckMatrixSingularityMsg Set by the Division by
singular matrix option on the
Data Validity Diagnostic
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

8-6

Model Parameters

Model Parameters (Continued)

Parameter Description Values

CheckModelReference-
TargetMessage

Message behavior when the
Never rebuild targets
diagnostic is set to never
in the Model Referencing
pane of the Configuration
Parameters dialog box.

'none' | 'warning' |
{'error'}

CheckSSInitialOutputMsg Enable checking for undefined
initial subsystem output. Set
by the Check undefined
subsystem initial output
option on the Compatibility
Diagnostics pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

CloseFcn Close callback. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Using
Simulink documentation for
further information.

command or variable

ConditionallyExecute-
Inputs

Enable conditional input
branch execution optimization.
Set by the Conditional input
branch execution control
on the Optimization pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

ConfigurationManager Configuration manager for
this model.

string {'None'}

8-7

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ConsecutiveZCsStepRelTol Relative tolerance associated
with the time difference
between zero crossing events.
Set by the Consecutive zero
crossings relative tolerance
option on the Solver pane of
the Configuration Parameters
dialog box.

string {'10*128*eps'}

ConsistencyChecking Consistency checking.
Set by the Solver data
inconsistency option on the
Solver Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

CovCompData If CovHTMLOptions
is set to off, and
CovCumulativeReport is set
to on, this parameter specifies
cvdata objects containing
additional model coverage
data to include in the model
coverage report.
Specified by the Additional
data to include in report
(cvdata objects) field in the
Report pane of the Coverage
Settings dialog box.

string

8-8

Model Parameters

Model Parameters (Continued)

Parameter Description Values

CovCumulativeReport If CovHTMLReporting is set to
on, this parameter allows the
CovCumulativeReport and
CovCompData parameters to
specify the number of coverage
results displayed in the model
coverage report.
If set to on, display the
coverage results for the last
simulation in the report.
If set to off, display the
coverage results from
successive simulations in
the report. Set by the radial
buttons Cumulative runs
(on)/Last runs (off) in the
Report pane of the Coverage
Settings dialog box.

'on' | {'off'}

CovCumulativeVarName If
covSaveCumulativeToWorkSpace
Var is set to on, model
coverage saves the results of
successive simulations in the
workspace variable specified
by this property. Entered in
the field below the selected
Save cumulative results in
workspace variable check
box on the Results pane of the
Coverage Settings dialog box.

string
{'covCumulativeData'}

8-9

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CovHTMLOptions If CovHTMLReporting is set to
on, use this parameter to select
from a set of display options for
the resulting model coverage
report. In the Report pane of
the Coverage Settings dialog
box, select Settings to receive
a dialog box for selecting these
options.

String of appended character
sets separated by a space.
HTML options are enabled
or disabled through a value
of 1 or 0, respectively, in
the following character sets
(default values shown):

• '-aTS=1'

Include each test in the
model summary

• '-bRG=1'

Produce bar graphs in the
model summary

• '-bTC=0'

Use two color bar graphs
(red, blue)

• '-hTR=0'

Display hit/count ratio in
the model summary

• '-nFC=0'

Do not report fully covered
model objects

• '-scm=1'

Include cyclomatic
complexity numbers in
summary

• '-bcm=1'

Include cyclomatic
complexity numbers in
block details

8-10

Model Parameters

Model Parameters (Continued)

Parameter Description Values

CovHtmlReporting Set to on to tell Simulink
software to create an HTML
report containing the coverage
data in the MATLAB® Help
browser at the end of the
simulation. Set by the
Generate HTML report
check box on the Report pane
of the Coverage Settings dialog
box.

{'on'} | 'off'

CovMetricSettings Selects coverage metrics for
coverage report. Coverage
metrics are enabled by
selecting the check boxes for
individual coverages in the
Coverage Metrics section
of the Coverage pane of
the Coverage Settings dialog
box. Options 's' and 'w'
are enabled by selecting
the check boxes Treat
Simulink logic blocks as
short-circuited and Warn
when unsupported blocks
exist in model, respectively,
in the Options pane of the
Coverage Settings dialog
box. Option 'e' is disabled
by selecting the check box
Display coverage results
using model coloring in the
Results pane of the Coverage
Settings dialog box.

string {'dw'}

Each order-independent
character in the string enables
a coverage metric or option as
follows:

• 'd'

Enable decision coverage

• 'c'

Enable condition coverage

• 'm'

Enable MCDC coverage

• 't'

Enable lookup table
coverage

• 'r'

Enable signal range
coverage

8-11

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

• 's'

Treat Simulink logic blocks
as short-circuited

• 'w'

Warn when unsupported
blocks exist in model

• 'e'

Eliminate model coloring
for coverage results

CovNameIncrementing If
CovSaveSingleToWorkspaceVar
is set to on, setting this
parameter to on tells Model
Coverage to increment the
workspace variable specified
in CovSaveName to store
the results succeeding
simulations. Entered in the
Increment variable name
with each simulation check
box below the selected Save
last run in workspace
variable check box on the
Results pane of the Coverage
Settingsdialog box.

'on' | {'off'}

8-12

Model Parameters

Model Parameters (Continued)

Parameter Description Values

CovPath Model path of the subsystem
for which Simulink software
gathers and reports coverage
data. Set by browsing
for the path in Coverage
Instrumentation Path on
the Coverage pane of the
Coverage Settings dialog box.

string {'/'}

CovReportOnPause Specifies that when you pause
during simulation the model
coverage report appears in
updated form with coverage
results up to the current pause
or stop time. Set by selecting
the Update results on pause
check box on the Results pane
of the Coverage Settings dialog
box.

{'on'} | 'off'

covSaveCumulativeTo-
WorkspaceVar

If set to on, causes Model
Coverage to accumulate
and save the results of
successive simulations in
the workspace variable in
CovCumulativeVarName.
Set by selecting the Save
cumulative results in
workspace variable check
box on the Results pane of the
Coverage Settings dialog box.

{'on'} | 'off'

8-13

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

CovSaveName If
CovSaveSingleToWorkspaceVar
is set to on, Model Coverage
saves the results of the
last simulation run in the
workspace variable specified
by this property. Entered in
the field below the selected
Save last run in workspace
variable check box on the
Results pane of the Coverage
Settings dialog box.

string {'covdata'}

CovSaveSingleTo-
WorkspaceVar

If enabled, tells Model
Coverage to save the results of
the last simulation run in the
workspace variable specified
by the CovSaveName property.
Set by selecting the Save last
run in workspace variable
check box on the Results pane
of the Coverage Settings dialog
box.

{'on'} | 'off'

Created Date and time model was
created.

string

Creator Name of model creator. string {''}

CurrentBlock For internal use.

CurrentOutputPort For internal use.

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

8-14

Model Parameters

Model Parameters (Continued)

Parameter Description Values

Decimation Decimation factor. Set by the
Decimation field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string {'1'}

DeleteChildFcn Delete child callback. string {''}

Description Description of this model. Set
by the Description pane of
the Model Properties dialog
box.

string

Dirty If the parameter is on, the
model has unsaved changes.

'on' | {'off'}

DiscreteInherit-
ContinuousMsg

Specifies diagnostic action to
take when a Unit Delay block
inherits a continuous sample
time. Set by the Discrete
used as continuous control
on the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

DisplayBdSearchResults For internal use.

DisplayBlockIO For internal use.

DisplayCallgraph-
Dominators

For internal use

DisplayCompileStats For internal use.

DisplayCondInputTree For internal use.

DisplayCondStIdTree For internal use.

DisplayErrorDirections For internal use.

DisplayInvisibleSources For internal use.

8-15

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

DisplaySortedLists For internal use.

DisplayVectorAnd-
FunctionCounts

For internal use.

DisplayVect-
PropagationResults

For internal use.

Echo For internal use.

EnableOverflowDetection For internal use.

ExecutionContextIcon Toggles display of execution
context icons on this model’s
block diagram.

'on' | {'off'}

ExpressionFolding Enables expression folding.
Set by the Eliminate
superfluous temporary
variables option on the
Optimization pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

ExternalInput Names of MATLAB workspace
variables used to designate
data and times to be loaded
from the workspace. Set by
the Input option on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

scalar or vector {'[t, u]'}

ExtMode... Parameters whose names
start with ExtMode apply
to Simulink External Mode.
See External Mode in the
Real-Time Workshop®User’s
Guide for more information.

8-16

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ExtrapolationOrder Extrapolation order
of the ode14x implicit
fixed-step solver. Set by
the Extrapolation order
control on the Solver pane of
the Configuration Parameters
dialog box.

1 | 2 | 3 | {4}

FcnCallInpInside-
ContextMsg

Specifies diagnostic action to
take when Simulink software
has to compute any of a
function-call subsystem’s
inputs directly or indirectly
during execution of a call to a
function-call subsystem. Set
by the Context-dependent
inputs control on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

{'Use local settings'} |
'Enable All' | 'Disable
All'

FileName For internal use.

FinalStateName Names of final states to be
saved to the workspace. Set by
the Final states option on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string {'xFinal'}

FixedStep Fixed step size. Set by
the Fixed step size
(fundamental sample
time) field on the Solver
pane of the Configuration
Parameters dialog box.

string {'auto'}

FixPtInfo For internal use.

8-17

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

FollowLinksWhen-
OpeningFromGotoBlocks

Specifies whether to search
for Goto tags in libraries
referenced by the model when
opening the From block dialog
box.

'on' | {'off'}

ForceArrayBoundsChecking For internal use.

ForceConsistencyChecking For internal use.

ForceModelCoverage For internal use.

ForwardingTable Specifies the forwarding
table for this library. See
“Forwarding Tables” in the
Simulink documentation for
more information.

{{'old_path_1',
'new_path_1'} ...
{'old_path_n',
'new_path_n'}}

ForwardingTableString For internal use.

GridSpacing Spacing of model editor grid in
pixels.

integer {20}

Handle Handle of this model’s block
diagram.

double

HiliteAncestors For internal use.

HiliteFcnCallInp-
InsideContext

Enables highlighting of
Function-Call Subsystems
when one or more inputs
depend on source blocks that
appear in their own calling
context.

'on' | {'off'}

IgnoreBidirectionalLines For internal use.

8-18

Model Parameters

Model Parameters (Continued)

Parameter Description Values

InheritedTsInSrcMsg Message behavior when the
sample time is inherited.
Set by the Source block
specifies -1 sample time
control on the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

InitFcn Function that is called when
this model is first compiled for
simulation.

string {''}

InitialState Initial state name or values.
Set by the Initial state field
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

variable or vector
{'xInitial'}

InitialStep Initial step size. Set by
the Initial step size field
on the Solver pane of the
Configuration Parameters
dialog box.

string {'auto'}

InlineParams Enable inline of parameters
in generated code. Set by the
Inline parameters check box
on the Optimization pane of
the Configuration Parameters
dialog box.

'on' | {'off'}

8-19

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

InspectSignalLogs Enable Simulink software
to display logged signals in
the MATLAB Time Series
Tools viewer at the end of
a simulation or whenever
you pause the simulation.
Set by the Inspect signal
logs when simulation is
paused/stopped check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

Int32ToFloatConvMsg Message behavior when a
32-bit integer is converted
to a single-precision float.
Set by the 32-bit integer
to single precision float
conversion control on the
Type Conversion pane of
the Configuration Parameters
dialog box.

'none' | {'warning'}

IntegerOverflowMsg Message behavior when there
is an integer overflow. Set
by the Detect overflow
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

8-20

Model Parameters

Model Parameters (Continued)

Parameter Description Values

InvalidFcnCallConnMsg Message behavior when there
is an invalid function call
connection. Set by the Invalid
function call connection
control on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

Jacobian For internal use.

LastModifiedBy User name of the person who
last modified this model.

string

LastModifiedDate Date used for version control. string

LibraryLinkDisplay Shows which blocks in the
model are linked or have
disabled or modified links. Set
by the Library Link Display
option under the Format
menu.

{'none'} | 'user' | 'all'

LibraryType For internal use. {'none'} | 'BlockLibrary'
| 'IOLibrary'

LimitDataPoints Limit output. Set by the Limit
data points to last check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

LinearizationMsg For internal use.

Lines For internal use.

LoadExternalInput Load input from workspace.
Set by the Input check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

8-21

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

LoadInitialState Load initial state from
workspace. Set by the Initial
state check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

Location For internal use.

Lock Lock/unlock a block library.
Setting this parameter
on prevents a user from
inadvertently changing a
library.

'on' | {'off'}

MaxConsecutiveMinStep Maximum number of
minimum step size violations
allowed during simulation.
Set by the Number of
consecutive min step size
violations allowed control
on the Solver pane of the
Configuration Parameters
dialog box. This option is
displayed when the solver
option type is Variable-step
and the solver is an ode one.

string {'1'}

8-22

Model Parameters

Model Parameters (Continued)

Parameter Description Values

MaxConsecutiveZCs Maximum number of
consecutive zero crossings
allowed during simulation.
Set by the Number of
consecutive zero crossings
allowed control on the Solver
pane of the Configuration
Parameters dialog box. This
option is displayed when
the solver option type is
Variable-step and the solver
is an ode one.

string {'1000'}

MaxConsecutiveZCsMsg Specifies diagnostic action
to take when Simulink
software detects the maximum
number of consecutive zero
crossings allowed. Set by the
Consecutive zero crossings
violation control on the
Diagnostics pane of the
Configuration Parameters
dialog box. This option is
displayed when the solver
option type is Variable-step
and the solver is an ode one.

'warning' | {'error'}

MaxDataPoints Maximum number of output
data points to save. Set
by the Limit data points
to last field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

string {'1000'}

8-23

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

MaxNumMinSteps Maximum number of times
the solver uses the minimum
step size.

string {'-1'}

MaxOrder Maximum order for ode15s.
Set by the Maximum order
option on the Solver pane of
the Configuration Parameters
dialog box.

1 | 2 | 3 | 4 | {5}

MaxStep Maximum step size. Set
by the Max step size field
on the Solver pane of the
Configuration Parameters
dialog box.

string {'auto'}

MdlSubVersion For internal use

MinMaxOverflowArchiveData For internal use

MinMaxOverflowArchiveMode Logging type for fixed-point
logging. Set by the Overwrite
or merge results option in
the Fixed-Point Tool.

{'Overwrite'} | 'Merge'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

MinStep Minimum step size for the
solver. Set by the Min step
size field on the Solver
pane of the Configuration
Parameters dialog box.

string {'auto'}

8-24

Model Parameters

Model Parameters (Continued)

Parameter Description Values

MinStepSizeMsg Message shown when
minimum step size is violated.
Set by the Min step size
violation option on the
Diagnostics pane of the
Configuration Parameters
dialog box.

{'warning'} | 'error'

ModelBrowserVisibility Show the Model Browser.
Set by the Model Browser
command of the model’s
View->Model Browser
Options menu.

'on' | {'off'}

ModelBrowserWidth Width of the Model Browser
pane in the model window.
To display the Model
Browser pane, see the
ModelBrowserVisibility
parameter.

integer {200}

ModelDataFile For internal use. string {''}

ModelDependencies List of model dependencies.
Set by the Model
dependencies field on the
Model Referencing pane of
the Configuration Parameters
dialog box.

string {''}

ModelReferenceCS-
MismatchMessage

Message shown when there
is a model configuration
mismatch. Set by the Model
configuration mismatch
option on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

8-25

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ModelReferenceData-
LoggingMessage

Message shown when there is
unsupported data logging. Set
by the Unsupported data
logging option on the Model
Referencing Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

ModelReferenceExtr-
NoncontSigs

Specifies diagnostic action to
take when a discrete signal
appears to pass through a
Model block to the input
of a block with continuous
states. Set by the Extraneous
discrete derivative signals
control on the Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | 'warning' |
{'error'}

ModelReferenceIO-
MismatchMessage

Message shown when there is a
port and parameter mismatch.
Set by the Port and
parameter mismatch option
on the Model Referencing
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

ModelReferenceIOMsg Message shown when there is
an invalid root Inport/Outport
block connection. Set by the
Invalid root Inport/Outport
block connection option
on the Model Referencing
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

8-26

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ModelReferenceMin-
AlgLoopOccurrences

See
ModelrefMinAlgLoopOccurrences
parameter for more
information.

ModelReferenceNum
InstancesAllowed

Total number of instances
allowed per top model. Set
by the Total number of
instances allowed per top
model option on the Model
Referencing pane of the
Configuration Parameters
dialog box.

'Zero' | 'Single' |
{'Multi'}

ModelReferencePass-
RootInputsByReference

See
ModelrefPassRootInputsByReference
parameter for more
information.

ModelReferenceSim-
TargetVerbose

Print detailed information
when generating simulation
targets for models referenced
by a top-level model.

'on' | {'off'}

ModelReferenceSymbol-
NameMessage

For internal use.

ModelReferenceTargetType For internal use.

ModelReferenceVersion-
MismatchMessage

Message shown when there is a
model block version mismatch.
Set by the Model block
version mismatch option
on the Model Referencing
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

8-27

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ModelrefMinAlgLoop-
Occurrences

Toggles the minimization of
algebraic loop occurrences. Set
by the Minimize algebraic
loop occurrences check box
on the Model Referencing
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

ModelrefPassRoot-
InputsByReference

Toggles the passing of scalar
root inputs by value. Set by
the Pass scalar root inputs
by value check box on the
Model Referencing pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

ModelVersion Version number of model. string {'1.1'}

ModelVersionFormat Format of model’s version
number.

string {'1.%<AutoIncrement:
0>'}

ModelWorkspace References this model’s model
workspace object.

an instance of the
Simulink.ModelWorkspace
class

ModifiedBy Last modifier of this model. string

8-28

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ModifiedByFormat Format for the display of last
modifier. This is set by the
Last saved by parameter on
the History pane of the Model
Properties dialog box. See
“Model History Controls” in
the Simulink documentation
for further information.

This can also be set by the
Last saved by on the Model
history field on the History
pane of the Model Explorer
dialog box.

string {'%<Auto>'}

ModifiedComment Field for user comments. string {''}

ModifiedDate Date of last model
modification.

string

ModifiedDateFormat Format of modified date. string {'%<Auto>'}

8-29

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ModifiedHistory Area for keeping notes
about the history of the
model. This is set by the
History pane of the Model
Properties dialog box. See
“Model History Controls” in
Using Simulinkthe Simulink
documentation for further
information.

This can also be set by the
Model history field on the
History pane of the Model
Explorer dialog box.

string {''}

MultiTaskDSMMsg Specifies diagnostic action to
take when one task reads data
from a Data Store Memory
block to which another
task writes data. Set by
the Multitask data store
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

MultiTaskRateTransMsg Specifies diagnostic action
to take when an invalid
rate transition takes place
between two blocks operating
in single-tasking mode.
Set by the Multitask rate
transition control on the
Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

'warning' | {'error'}

Name Model name. string

8-30

Model Parameters

Model Parameters (Continued)

Parameter Description Values

NumberNewtonIterations Number of Newton’s Method
iterations performed by the
ode14x implicit fixed-step
solver. Set by the Number
Newton’s iterations control
on the Solver pane of the
Configuration Parameters
dialog box.

integer {1}

ObjectParameters Names/attributes of model
parameters.

structure

Open For internal use.

OptimizeBlockIOStorage Enables signal storage reuse
optimization. Set by the
Signal storage reuse control
on the Optimization pane of
the Configuration Parameters
dialog box.

{'on'} | 'off'

OutputOption Time step output options for
variable-step solvers. Set by
the Output options option
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

'AdditionalOutputTimes' |
{'RefineOutputTimes'} |
'SpecifiedOutputTimes'

OutputSaveName Workspace variable to store
the model outputs. Set by
the Output field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

variable {'yout'}

8-31

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

OutputTimes Output times set when
Output options on the Data
Import/Export pane of the
Configuration Parameters
dialog box is set to Produce
additional output. Set by
the Output times option on
the Data Import/Export
pane of the Configuration
Parameters dialog box.

string {'[]'}

PaperOrientation Printing paper orientation. 'portrait' |
{'landscape'} | 'rotated'

PaperPosition When PaperPositionMode is
set to manual, this parameter
determines the position and
size of a diagram on paper
and the size of the diagram
exported as a graphic file in the
units specified by PaperUnits.

[left, bottom, width,
height]

8-32

Model Parameters

Model Parameters (Continued)

Parameter Description Values

PaperPositionMode Paper position mode.

• auto

When printing, Simulink
software sizes the diagram
to fit the printed page.
When exporting a diagram
as a graphic image,
Simulink software sizes
the exported image to be the
same size as the diagram’s
normal size on screen.

• manual

When printing, Simulink
software positions and
sizes the diagram on
the page as indicated
by PaperPosition. When
exporting a diagram as a
graphic image, Simulink
software sizes the exported
graphic to have the height
and width specified by
PaperPosition.

• tiled

Enables tiled printing. See
“Tiled Printing” for more
information.

{'auto'} | 'manual' |
'tiled'

PaperSize Size of PaperType in
PaperUnits.

[width height] (read only)

8-33

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

PaperType Printing paper type. 'usletter' | 'uslegal'
| 'a0' | 'a1' | 'a2' |
'a3' | 'a4' | 'a5' | 'b0'
| 'b1' | 'b2' | 'b3' |
'b4' | 'b5' | 'arch-A'
| 'arch-B' | 'arch-C' |
'arch-D' | 'arch-E' | 'A'
| 'B' | 'C' | 'D' | 'E' |
'tabloid'

PaperUnits Printing paper size units. 'normalized' | {'inches'}
| 'centimeters' |
'points'

ParameterArgumentNames List of parameters used as
arguments when this model is
called as a reference. Set in
the Model arguments (for
referencing this model)
field in the Model Workspace
pane of the Model Explorer.

string {''}

ParameterDowncastMsg Specifies diagnostic action
to take when a parameter
downcast occurs during
simulation. Set by the Detect
downcast control on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

8-34

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ParameterOverflowMsg Specifies diagnostic action
to take when a parameter
overflow occurs during
simulation. Set by the Detect
overflow control on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

ParameterPrecisionLossMsg Specifies diagnostic action to
take when parameter precision
loss occurs during simulation.
Set by the Detect precision
loss control on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ParameterTunabilityLossMsg Specifies diagnostic action
to take when a parameter
cannot be tuned because it
uses unsupported functions
or operators. Set by the
Detect loss of tunability
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

ParameterUnderflowMsg Specifies diagnostic action
to take when a parameter
underflow occurs during
simulation. Set by the Detect
underflow control on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

8-35

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ParamWorkspaceSource For internal use.

Parent Name of the model or
subsystem that owns this
object. The value of this
parameter for a model is an
empty string.

string {''}

PositivePriorityOrder Choose the appropriate
priority ordering for the
real-time system targeted by
this model. The Real-Time
Workshop software uses this
information to implement
asynchronous data transfers.
Set by the Higher priority
value indicates higher task
priority option on the Solver
pane of the Configuration
Parameters dialog box.

'on' | {'off'}

PostLoadFcn Function invoked just after
this model is loaded. Created
on the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Simulink
documentation for further
information.

string {''}

PostSaveFcn Function invoked just after
this model is saved to disk.

string {''}

8-36

Model Parameters

Model Parameters (Continued)

Parameter Description Values

PreLoadFcn Preload callback. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Simulink
documentation for further
information.

command or variable {''}

PreSaveFcn Function invoked just before
this model is saved to disk.
Created on the Callbacks
pane of the Model Properties
dialog box. See “Creating
Model Callback Functions” in
the Simulink documentation
for further information.

string {''}

ProdBitPerChar Describes the length in bits
of the C char data type
supported by the production
hardware to be used by this
model. Set by the char control
in the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {8}

8-37

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ProdBitPerInt Describes the length in bits of
the C int data type supported
by the production hardware
to be used by this model.
Set by the int control in
the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {32}

ProdBitPerLong Describes the length in bits
of the C long data type
supported by the production
hardware to be used by this
model. Set by the long control
in the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {32}

ProdBitPerShort Describes the length in bits
of the C short data type
supported by the production
hardware to be used by this
model. Set by the short
control in the Embedded
Hardware panel of the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

integer {16}

8-38

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ProdEndianess Describes the significance of
the first byte of a data word
of the production hardware to
be used by this model. Set by
the Byte ordering control in
the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

ProdEqTarget Specifies that the hardware
used to test the code generated
from this model is the same
as the production hardware or
has the same characteristics.
Set by the None control in
the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

ProdHWDeviceType Predefined hardware
device to specify the C
language constraints for your
microprocessor. Set by the
Device type option on the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

string {'32-bit Generic'}

8-39

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

ProdIntDivRoundTo Describes how the C compiler
that will create production
code for this model rounds the
result of dividing one signed
integer by another to produce
a signed integer quotient.
Set by the Signed integer
division rounds to control
in the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

'Floor' | 'Zero' |
{'Undefined'}

ProdShiftRightIntArith Describes whether the C
compiler that will create
production code for this model
implements a signed integer
right shift as an arithmetic
right shift. Set by the Shift
right on a signed integer
as arithmetic shift control
in the Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

8-40

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ProdWordSize Describes the word length
in bits of the production
hardware to be used by this
model. Set by the native
word size control in the
Embedded Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {32}

Profile Enables the simulation profiler
for this model.

'on' | {'off'}

ReadBeforeWriteMsg Specifies diagnostic action to
take when the model attempts
to read data from a data store
before it has stored data at
the current time step. Set
by the Detect read before
write control on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

8-41

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

RecordCoverage A value of on causes Simulink
software to gather and report
model coverage data during
simulation. The format of
this report is controlled by
the values of the following
parameters:

CovCompData

CovCumulativeReport

CovCumulativeVarName

CovHTMLOptions

CovHTMLReporting

CovMetricSettings

CovNameIncrementing

CovPath

CovReportOnPause

covSaveCumulativeToWork-
SpaceVar

CovSaveName

CovSaveSingleToWorkspace-
Var

If the value is off, no model
coverage data is collected or
reported and the preceding
coverage report parameters
have no effect.

'on' | {'off'}

8-42

Model Parameters

Model Parameters (Continued)

Parameter Description Values

Refine Refine factor. Set by the
Refine factor field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string {'1'}

RelTol Relative error tolerance. Set
by the Relative tolerance
field on the Solver pane of
the Configuration Parameters
dialog box.

string {'1e-3'}

ReportName Name of the associated file for
the Report Generator

string
{'simulink-default.rpt'}

ReqHilite Highlights all the blocks in the
Simulink diagram that have
requirements associated with
them. Set by the Highlight
model command on the
Tools->Requirements menu.

'on' | {'off'}

RequirementInfo For internal use.

RootOutportRequire-
BusObject

Specifies diagnostic action
to take when a bus enters
a root model Outport block
for which a bus object has
not been specified. Set by
the Unspecified bus object
at root Outport block
control on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

8-43

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

RTPrefix Specifies diagnostic action to
take when Simulink software
encounters an object name
that begins with rt. Set by the
"rt" prefix for identifiers
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | 'warning' |
{'error'}

RTW... See the Real-Time Workshop
documentation for more
information on parameters
whose names begin with RTW.

SampleTimeColors Set by the Sample Time Colors
option under the Format >
Port/Signal Displays menu.

'on' | {'off'}

SampleTimeConstraint Set by the Periodic sample
time constraint option
on the Solver pane of the
Configuration Parameters
dialog box. This option is
displayed when the solver
option type is Fixed-step

{'unconstrained'} |
'STIndependent' |
'Specified'

SampleTimeProperty Specifies and assigns
priorities to the sample
times implemented by the
model. Set by the Sample
time properties option
on the Solver pane of the
Configuration Parameters
dialog box. This option is
displayed when the Periodic
sample time constraint is set
to Specified.

Structure containing the fields
SampleTime, Offset, and
Priority.

8-44

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SavedCharacterEncoding Specifies the character set
used to encode this model. See
the slCharacterEncoding
command for more
information.

string

SaveDefaultBlockParams For internal use.

SaveFinalState Save final states to workspace.
Set by the Final states
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

'on' | {'off'}

SaveFormat Format used to save data to
the MATLAB workspace. Set
by the Format option on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

{'Array'} | 'Structure' |
'StructureWithTime'

SaveOutput Save simulation output
to workspace. Set by the
Output check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

SaveState Save states to workspace. Set
by the States check box on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

'on' | {'off'}

8-45

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

SaveTime Save simulation time to
workspace. Set by the Time
check box on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

SaveWithDisabledLinksMsg Specifies diagnostic action
to take when saving a block
diagram having disabled
library links

'none'|{'warning'} |
'error'

SaveWithParameterized-
LinksMsg

Specifies diagnostic action
to take when saving a block
diagram having parameterized
library links

'none'|{'warning'} |
'error'

ScreenColor Background color of the model
window. Set by the Screen
color option under the Format
menu.

'black' | {'white'} |
'red' | 'green' | 'blue'
| 'cyan' | 'magenta'
| 'yellow' | 'gray' |
'lightBlue' | 'orange' |
'darkGreen' | [r,g,b,a]
where r, g, b, and a are the
red, green, blue, and alpha
values of the color normalized
to the range 0.0 to 1.0. The
alpha value is ignored.

ScrollbarOffset For internal use.

SFcnCompatibilityMsg See
SfunCompatibilityCheckMsg
parameter for more
information.

8-46

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SfunCompatibilityCheckMsg Specifies diagnostic action
to take when S-function
upgrades are needed. Set by
the S-function upgrades
needed option on the
Compatibility Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

ShowGrid Show the Model Editor grid. 'on' | {'off'}

ShowLinearization-
Annotations

Toggles linearization icons in
the model.

{'on'} | 'off'

ShowLineDimensions Show signal dimensions
on this model’s block
diagram. Set by the Signal
Dimensions command on
the Format->Port/Signal
Displays menu.

'on' | {'off'}

ShowLineDimensionsOnError For internal use.

ShowLineWidths Deprecated. Use
ShowLineDimensions instead.

ShowLoopsOnError Highlight invalid loops
graphically.

{'on'} | 'off'

ShowModelReferenceBlockIO Toggles display of I/O
mismatch on block. Set by the
Model Block I/O Mismatch
item on the Format->Block
Displays menu.

'on' | {'off'}

ShowModelReference-
BlockVersion

Toggles display of version
on block. Set by the Model
Block Version item on the
Format->Block Displays
menu.

'on' | {'off'}

8-47

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Shown For internal use.

ShowPageBoundaries Toggles display of page
boundaries on the Model
Editor’s canvas. Set by the
Show Page Boundaries
command on the Model
Editor’s View menu.

'on' | {'off'}

ShowPortDataTypes Show data types of ports
on this model’s block
diagram. Set by the Port
Data Types command on
the Format->Port/Signal
Displays menu.

'on' | {'off'}

ShowPortDataTypesOnError For internal use.

ShowStorageClass Show storage classes of
signals on this model’s
block diagram. Set by the
Storage Class command on
the Format->Port/Signal
Displays menu.

'on' | {'off'}

ShowTestPointIcons Show test point icons on this
model’s block diagram.
Set by the Testpoint
Indicators command on
the Format->Port/Signal
Displays menu.

'on' | {'off'}

ShowViewerIcons Show viewer icons on this
model’s block diagram.
Set by the Viewer
Indicators command on
the Format->Port/Signal
Displays menu.

'on' | {'off'}

8-48

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SignalInfNanChecking Specifies diagnostic action
to take when the value of a
block output is Inf or NaN at
the current time step. Set
by the Inf or NaN block
output option on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

SignalLabelMismatchMsg Specifies diagnostic action to
take when there is a signal
label mismatch. Set by the
Signal label mismatch
option on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

SignalLogging Globally enable signal logging
for this model. Set by the
Signal logging check box
on the Data Import/Export
pane of the Configuration
Parameters dialog box.

{'on'} | 'off'

SignalLoggingName Name for saving signal logging
data to a workspace. Set by the
Signal logging field on the
Data Import/Export pane of
the Configuration Parameters
dialog box.

string {'logsOut'}

8-49

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

SignalResolutionControl Control which named states
and signals get resolved to
Simulink signal objects. Set
by the Signal resolution
drop-down list on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'UseLocalSettings'} |
'TryResolveAll' |
'TryResolveAll-
WithWarning'

SigSpecEnsureSample-
TimeMsg

Specifies diagnostic action
to take when the sample
time of the source port of a
signal specified by a Signal
Specification block differs
from the signal’s destination
port. Set by the Enforce
sample times specified
by Signal Specification
blocks control on the Sample
Time Diagnostics pane of
the Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

SimCompilerOptimization Specifies the compiler
optimization level during
acceleration code generation

string {'off'}|'on'

8-50

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SimulationCommand Executes a simulation
command.

Note You cannot use
set_param to run a simulation
in a MATLAB session that
does not have a display, i.e., if
you used matlab -nodisplay
to start the session.

'start' | 'stop' |
'pause' | 'continue'
| 'step' | 'update'
| 'WriteDataLogs' |
'SimParamDialog' |
'connect' | 'disconnect'
| 'WriteExtModeParamVect'
| 'AccelBuild'

SimulationMode Indicates whether Simulink
software should run in normal,
accelerated, rapid accelerator
or external mode.

{'normal'} |
'accelerator' | 'rapid' |
'external'

SimulationStatus Indicates simulation status. {'stopped'} | 'updating'
| 'initializing' |
'running' | 'paused'
| 'terminating' |
'external' |

SimulationTime Current time value for the
simulation.

double {0}

SingleTaskRateTransMsg Specifies diagnostic action to
take when a rate transition
takes place between two blocks
operating in single-tasking
mode. Set by the Single task
rate transition control on the
Sample Time Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

8-51

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Solver Solver used for the simulation.
Set by the Solver drop-down
list on the Solver pane of
the Configuration Parameters
dialog box.

'VariableStepDiscrete'
| {'ode45'} |
'ode23' | 'ode113' |
'ode15s' | 'ode23s' |
'ode23t' | 'ode23tb'
| 'FixedStepDiscrete'
| 'ode5' | 'ode4' |
'ode3' | 'ode2' | 'ode1'
| 'ode14x'

SolverMode Solver mode for this model.
Set by the Tasking mode
for periodic sample times
option on the Solver pane of
the Configuration Parameters
dialog box. This option is
displayed when the solver
option type is Fixed-step.

{'Auto'} |
'SingleTasking' |
'MultiTasking'

SolverName Solver used for the simulation.
See Solver parameter for
more information.

8-52

Model Parameters

Model Parameters (Continued)

Parameter Description Values

SolverPrmCheckMsg Enables diagnostics to
control when Simulink
software automatically selects
solver parameters. Set
by the Automatic solver
parameter selection option
on the Diagnostics > Solver
pane of the Configuration
Parameters dialog box.
This option notifies you if:

• Simulink software changes
a user-modified parameter
to make it consistent with
other model settings

• Simulink software
automatically selects solver
parameters for the model,
such as FixedStepSize

'none' | {'warning'} |
'error'

SolverResetMethod Set by the Solver reset
method option on the Solver
pane of the Configuration
Parameters dialog box. This
option is displayed when
the solver option type is
Variable-step and the
solver is either ode15s
(Stiff/NDF), ode23t (Mod.
Stiff/Trapezoidal), or ode23tb
(Stiff/TR-BDF2).

{'Fast'} | 'Robust'

8-53

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

SolverType Solver type used for the
simulation. Set by the Type
drop-down list on the Solver
pane of the Configuration
Parameters dialog box.

{'Variable-step'} |
'Fixed-step'

SortedOrder Show the sorted order of this
model’s blocks on the block
diagram. Set by the Sorted
Order command on the model
editor’s Format->Block
Displays menu.

'on' | {'off'}

StartFcn Start simulation callback.
Created on the Callbacks
pane of the Model Properties
dialog box. See “Creating
Model Callback Functions” in
the Simulink documentation
for further information.

command or variable {''}

StartTime Simulation start time. Set
by the Start time field
on the Solver pane of the
Configuration Parameters
dialog box.

string {'0.0'}

StateSaveName State output name to be
saved to workspace. Set by
the States field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

variable {'xout'}

8-54

Model Parameters

Model Parameters (Continued)

Parameter Description Values

StatusBar Show/hide the status bar on
the model editor window. Set
by the Status Bar command
on the model editor’s View
menu.

{'on'} | 'off'

StopFcn Stop simulation callback.
Created on the Callbacks
pane of the Model Properties
dialog box. See “Creating
Model Callback Functions” in
the Simulink documentation
for further information.

command or variable {''}

StopTime Simulation stop time. Set
by the Stop time field on
the Solver pane of the
Configuration Parameters
dialog box.

string {'10.0'}

StrictBusMsg Specifies diagnostic action to
take when Simulink software
detects a signal that some
blocks treat as a mux/vector,
while other blocks treat
the signal as a bus. Set by
the Mux blocks used to
create bus signals and Bus
signal treated as vector
controls on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box. See “Intermixing
Composite Signal Types” in
the Simulink documentation
for more information.

{'None'} |
'Warning' |
'ErrorLevel1' |
'WarnOnBusTreatedAsVector'|
'ErrorOnBusTreatedAsVector'

8-55

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

Tag User-specified text that is
assigned to the model’s Tag
parameter and saved with the
model.

string {''}

TargetBitPerChar Describes the length in bits
of the C char data type
supported by the hardware
that will be used to test this
model. Set by the char control
in the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {8}

TargetBitPerInt Describes the length in bits of
the C int data type supported
by the hardware that will
be used to test this model.
Set by the int control in
the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {32}

TargetBitPerLong Describes the length in bits
of the C long data type
supported by the hardware
that will be used to test this
model. Set by the long control
in the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

integer {32}

8-56

Model Parameters

Model Parameters (Continued)

Parameter Description Values

TargetBitPerShort Describes the length in bits
of the C short data type
supported by the hardware
that will be used to test this
model. Set by the short
control in the Emulation
Hardware panel of the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

integer {16}

TargetEndianess Describes the significance of
the first byte of a data word
of the hardware that will
be used to test. Set by the
Byte ordering control in
the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'Unspecified'} |
'LittleEndian' |
'BigEndian'

TargetFcnLib For internal use.

TargetHWDeviceType Describes the characteristics
of the hardware that will be
used to test this model. Set
by the Device type control in
the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

string {'32-bit Generic'}

8-57

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

TargetIntDivRoundTo Describes how the C compiler
that will create test code
for this model rounds the
result of dividing one signed
integer by another to produce
a signed integer quotient.
Set by the Signed integer
division rounds to control
in the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

'Floor' | 'Zero' |
{'Undefined'}

TargetShiftRightIntArith Describes whether the C
compiler that will create
test code for this model
implements a signed integer
right shift as an arithmetic
right shift. Set by the Shift
right on a signed integer
as arithmetic shift control
in the Emulation Hardware
panel of the Hardware
Implementation pane of the
Configuration Parameters
dialog box.

{'on'} | 'off'

TargetTypeEmulation
WarnSuppressLevel

Specifies whether Real-Time
Workshop software displays or
suppresses warning messages
when emulating integer
sizes in rapid prototyping
environments.

integer {0}

8-58

Model Parameters

Model Parameters (Continued)

Parameter Description Values

TargetWordSize Describes the word length in
bits of the hardware that will
be used to test this model.
Set by the native word size
control in the Emulation
Hardware panel of the
Hardware Implementation
pane of the Configuration
Parameters dialog box.

integer {32}

TasksWithSamePriorityMsg Specifies diagnostic action
to take when tasks have
equal priority. Set by the
Tasks with equal priority
control on the Sample Time
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

TiledPageScale Scales the size of the tiled page
relative to the model.

string {'1'}

TiledPaperMargins Controls the size of the
margins associated with each
tiled page. Each element in
the vector represents a margin
at the particular edge.

[left, top, right,
bottom]

TimeAdjustmentMsg Specifies diagnostic action
to take if Simulink software
makes a minor adjustment to a
sample hit time while running
the model. Set by the Sample
hit time adjusting option
on the Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

8-59

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

TimeSaveName Simulation time name. Set by
the Time field on the Data
Import/Export pane of the
Configuration Parameters
dialog box.

variable {'tout'}

TLC... Parameters whose names
begin with TLC are used
for code generation. See
the Real-Time Workshop
documentation for more
information.

Toolbar Show/hide the toolbar on the
Model Editor window. Set by
the Toolbar command on the
model editor’s View menu.

{'on'} | 'off'

TryForcingSFcnDF This flag is used for backward
compatibility with user
S-functions that were written
prior to R12.

'on' | {'off'}

TunableVars List of global (tunable)
parameters. Set in the Model
Parameter Configuration
dialog box.

string {''}

TunableVarsStorageClass List of storage classes for their
respective tunable parameters.
Set in the Model Parameter
Configuration dialog box.

string {''}

TunableVarsTypeQualifier List of storage type qualifiers
for their respective tunable
parameters. Set in the Model
Parameter Configuration
dialog box.

string {''}

8-60

Model Parameters

Model Parameters (Continued)

Parameter Description Values

Type Simulink object type (read
only).

'block_diagram'

UnconnectedInputMsg Unconnected input ports
diagnostic. Set by the
Unconnected block
input ports option on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

UnconnectedLineMsg Unconnected lines diagnostic.
Set by the Unconnected line
option on the Connectivity
Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

UnconnectedOutputMsg Unconnected block output
ports diagnostic. Set by
the Unconnected block
output ports option on the
Connectivity Diagnostics
pane of the Configuration
Parameters dialog box.

'none' | {'warning'} |
'error'

UnderSpecifiedDataTypeMsg Detect usage of heuristics to
assign signal data types. Set
by the Underspecified data
types option on the Data
Validity Diagnostics pane of
the Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

8-61

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

UniqueDataStoreMsg Specifies diagnostic action to
take when the model contains
multiple Data Store Memory
blocks that specify the same
data store name. Set by the
Duplicate data store names
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning' |
'error'

UnknownTsInhSupMsg Detect blocks that have not set
whether they allow the model
containing them to inherit
a sample time. Set by the
Unspecified inheritability
of sample time option on
the Diagnostics pane of the
Configuration Parameters
dialog box.

'none' | {'warning'} |
'error'

UnnecessaryDatatype-
ConvMsg

Detect unnecessary data
type conversion blocks.
Set by the Unnecessary
type conversions option
on the Type Conversion
Diagnostics pane of the
Configuration Parameters
dialog box.

{'none'} | 'warning'

8-62

Model Parameters

Model Parameters (Continued)

Parameter Description Values

UpdateHistory Specifies when to prompt the
user about updating the model
history. This is set by the
Prompt to update model
history parameter on the
History pane of the Model
Properties dialog box. See
“Model History Controls” in
the Simulink documentation
for further information.

This is also set by the Prompt
to update model history
option on lower right of the
History pane of the Model
Explorer.

{'UpdateHistoryNever'} |
'UpdateHistoryWhenSave'

UpdateModelReference-
Targets

Rebuilding options. Set on the
“Model Referencing Pane”
pane of the Configuration
Parameters dialog box.

'IfOutOfDate' | 'Force'
| 'AssumeUpToDate'
| {'IfOutOfDateOr
Structural Change'}

UseAnalysisPorts For internal use.

VectorMatrixConversionMsg Detect vector-to-matrix or
matrix-to-vector conversions.
Set by the Vector/matrix
block input conversion
option on the Type
Conversion Diagnostics
pane of the Configuration
Parameters dialog box.

{'none'} | 'warning' |
'error'

Version Simulink version used to
modify the model (read only).

release version number

8-63

8 Model and Block Parameters

Model Parameters (Continued)

Parameter Description Values

WideLines Draws lines that carry vector
or matrix signals wider than
lines that carry scalar signals.
Set by the Wide Nonscalar
Lines command on the model
editor’s Format->Port/Signal
Displays menu.

'on' | {'off'}

WideVectorLines Deprecated. Use WideLines
instead.

WriteAfterReadMsg Specifies diagnostic action to
take when the model attempts
to store data in a data store
after previously reading data
from it in the current time
step. Set by the Detect write
after read control on the
Data Validity Diagnostics
pane of the Configuration
Parameters dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

WriteAfterWriteMsg Specifies diagnostic action to
take when the model attempts
to store data in a data store
twice in succession in the
current time step. Set by the
Detect write after write
control on the Data Validity
Diagnostics pane of the
Configuration Parameters
dialog box.

{'UseLocalSettings'}
| 'DisableAll' |
'EnableAllAsWarning' |
'EnableAllAsError'

ZeroCross For internal use.

8-64

Model Parameters

Model Parameters (Continued)

Parameter Description Values

ZeroCrossControl Enable zero-crossing detection.
Set by the Zero crossing
control control on the Solver
pane of the Configuration
Parameters dialog box.

{'UseLocalSettings'}
| 'EnableAll' |
'DisableAll'

ZoomFactor Zoom factor of the model
editor window expressed as a
percentage of normal (100%)
or by the keywords FitSystem
or FitSelection. Set by the
zoom commands on the model
editor’s View menu.

string {'100'}
| 'FitSystem' |
'FitSelection'

Examples of Setting Model Parameters
These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

set_param('mymodel','StartTime','5','StopTime','100')

This command sets the solver to ode15s and changes the maximum order.

set_param('mymodel','Solver','ode15s','MaxOrder','3')

This command associates a SaveFcn callback.

set_param('mymodel','SaveFcn','my_save_cb')

8-65

8 Model and Block Parameters

Common Block Parameters

In this section...

“About Common Block Parameters” on page 8-66

“Examples of Setting Block Parameters” on page 8-78

About Common Block Parameters
This table lists the parameters common to all Simulink® blocks, including
block callback parameters (see “Using Callback Functions”). Examples of
commands that change these parameters follow this table (see “Examples of
Setting Block Parameters” on page 8-78).

Common Block Parameters

Parameter Description Values

AncestorBlock Name of the library block
that the block is linked to (for
blocks with a disabled link).

string

AttributesFormatString String format specified for
block annotations in the
Block Parameters dialog
box.

string

BackgroundColor Block background color. RGB value array string |
[r,g,b,a] where r, g, b,
and a are the red, green, blue,
and alpha values of the color
normalized to the range 0.0
to 1.0. The alpha value is
ignored.

BlockDescription Block description shown in the
Block Properties dialog box.

string

8-66

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

BlockType Block type (read only). string

ClipboardFcn Function called when block
is copied to the clipboard
(Ctrl+C)

string

CloseFcn Function called when
close_system is run on
block.

string

CompiledPort-
ComplexSignals

Complexity of port signals
after updating diagram.

structure array

CompiledPortDataTypes Data types of port signals after
updating diagram.

structure array

CompiledPortDimensions Dimensions of port signals
after updating diagram.

structure array

CompiledPortFrameData Frame mode of port signals
after updating diagram.

structure array

CompiledPortWidths Structure of port widths after
updating diagram.

structure array

CompiledSampleTime Block sample time after
updating diagram.

vector [sample time, offset
time]

CopyFcn Function called when block is
copied.

string

DataTypeOverrideCompiled For internal use.

8-67

8 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

DeleteFcn Function called when block
is deleted. If a block
is graphically deleted,
you can still undo the
operation and call the block’s
UndoDeleteFcn. In addition,
for graphically deleted blocks,
the block’s DestroyFcn is still
called when the model is closed
or any subsystem containing
the block is destroyed using
delete_block.

MATLAB® expression

DestroyFcn Function called when block
is destroyed. If you run the
delete_block command
for a block, it first calls the
block’sDeleteFcn, then calls
the DestroyFcn for that block;
no undo is possible. The
DestroyFcn is also called
when you close the model
or invoke delete_block on
a subsystem containing the
block.

MATLAB expression

Description Description of block. Set by
the Description field in the
General pane of the Block
Properties dialog box.

text and tokens

Diagnostics For internal use.

DialogParameters Names/attributes of
parameters in block’s
parameter dialog box.

structure

DropShadow Display drop shadow. {'off'} | 'on'

8-68

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

ExtModeLoggingSupported Enable a block to support
uploading of signal data in
external mode (for example,
with a scope block).

{'off'} | 'on'

ExtModeLoggingTrig Enable a block to act as the
trigger block for external mode
signal uploading.

{'off'} | 'on'

ExtModeUploadOption Enable a block to upload signal
data in external mode when
the Select all check box on the
External Signal & Triggering
dialog box is not selected. A
value of log indicates the
block uploads signals. A value
of none indicates the block
does not upload signals. The
value monitor is currently
not in use. If the Select all
check box on the External
Signal & Triggering dialog box
is selected, it overrides this
parameter setting.

{'none'} | 'log' |
'monitor'

FontAngle Font angle. 'normal' | 'italic' |
'oblique' | {'auto'}

FontName Font. string

FontSize Font size. A value of -1
specifies that this block
inherits the font size specified
by the DefaultBlockFontSize
model parameter.

real {'-1'}

FontWeight Font weight. 'light' | 'normal'
| 'demi' | 'bold' |
{'auto'}

8-69

8 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

ForegroundColor Foreground color of block’s
icon.

string {'black'} |
[r,g,b,a] where r, g,
b, and a are the red, green,
blue, and alpha values of the
color normalized to the range
0.0 to 1.0. The alpha value is
ignored.

Handle Block handle. real

HiliteAncestors For internal use.

InitFcn Initialization function for a
masked block. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Using
Simulink documentation for
further information.

MATLAB expression

InputSignalNames Names of input signals. cell array

IOSignalStrings list

IOType Signal & Scope Manager type. {'none'} | 'viewer' |
'siggen'

LineHandles Handles of lines connected to
block.

struct

LinkStatus Link status of block.
Updates out-of-date reference
blocks when queried using
get_param.

{'none'} | 'resolved' |
'unresolved' | 'implicit'
| 'inactive' | 'restore'
| 'propagate'

LoadFcn Function called when block is
loaded.

MATLAB expression

MinMaxOverflow-
Logging_Compiled

For internal use.

8-70

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

ModelCloseFcn Function called when model
is closed. The ModelCloseFcn
is called prior to the block’s
DeleteFcn and DestroyFcn
callbacks, if either are set.

MATLAB expression

ModelParamTableInfo For internal use.

MoveFcn Function called when block is
moved.

MATLAB expression

Name Block name. string

NameChangeFcn Function called when block
name is changed.

MATLAB expression

NamePlacement Position of block name. {'normal'} | 'alternate'

ObjectParameters Names/attributes of block’s
parameters.

structure

OpenFcn Function called when this
block’s Block Parameters
dialog box is opened.

MATLAB expression

Orientation Where block faces. {'right'} | 'left' | 'up'
| 'down'

OutputSignalNames Names of output signals. cell array

Parent Name of the system that owns
the block.

string {'untitled'}

ParentCloseFcn Function called when parent
subsystem is closed. The
ParentCloseFcn of blocks
at the root model level is
not called when the model is
closed.

MATLAB expression

8-71

8 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

PortConnectivity The value of this parameter
is an array of structures, each
of which describes one of the
block’s input or output ports.
Each port structure has the
following fields:

• Type

Specifies the port’s type
and/or number. The value
of this field can be:

- n, where n is the number
of the port for data ports

- 'enable' if the port is an
enable port

- 'trigger' if the port is a
trigger port

- 'state' for state ports

- 'ifaction' for action
ports

- 'LConn#' for a left
connection port where #
is the port’s number

- 'RConn#' for a right
connection port where #
is the port’s number

• Position

The value of this field is
a two-element vector, [x
y], that specifies the port’s
position.

structure array

8-72

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

• SrcBlock

Handle of the block
connected to this port.
This field is null for output
ports.

• SrcPort

Number of the port
connected to this port.
This field is null for output
ports.

• DstBlock

Handle of the block to which
this port is connected. This
field is null for input ports.

• DstPort

Number of the port to which
this port is connected. This
field is null for input ports.

8-73

8 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

PortHandles The value of this parameter
is a structure that specifies
the handles of the block’s
ports. The structure has the
following fields:

• Inport

Handles of the block’s input
ports.

• Outport

Handles of the block’s
output ports.

• Enable

Handle of the block’s enable
port.

• Trigger

Handle of the block’s trigger
port.

• State

Handle of the block’s state
port.

• LConn

Handles of the block’s left
connection ports.

• RConn

Handles of the block’s right
connection ports.

• Ifaction

Handle of the block’s action
port.

structure array

8-74

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

Ports The value of this parameter
is a vector that specifies the
numbers of each kind of port.
The order of the vector’s
elements corresponds to the
following port types:

• Inport

• Outport

• Enable

• Trigger

• State

• LConn

• RConn

• Ifaction

vector

Position Position of block in model
window.

vector [left top right
bottom]
not enclosed in quotation
marks. The maximum value
for a coordinate is 32767.

PostSaveFcn Function called after the
block is saved. Created on
the Callbacks pane of the
Model Properties dialog box.
See “Creating Model Callback
Functions” in the Using
Simulink documentation for
further information.

MATLAB expression

8-75

8 Model and Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

PreCopyFcn Function called before
the block is copied. See
“Block Callback Parameters”
in the Using Simulink
documentation for details.

MATLAB expression

PreDeleteFcn Function called before
the block is deleted. See
“Block Callback Parameters”
in the Using Simulink
documentation for details.

MATLAB expression

PreSaveFcn Function called before the
block is saved.

MATLAB expression

Priority Specifies the block’s order of
execution relative to other
blocks in the same model. Set
by the Priority field on the
General pane of the Block
Properties dialog box.

string {''}

ReferenceBlock Name of the library block that
this block is linked to.

string {''}

RequirementInfo For internal use.

RTWData User specified data, used
by Real-Time Workshop®

software.

SampleTime Value of the sample time
parameter.

string

Selected Status of whether or not block
is selected.

{'on'} | 'off'

8-76

Common Block Parameters

Common Block Parameters (Continued)

Parameter Description Values

ShowName Display block name. {'on'} | 'off'

StartFcn Function called at the start of
a simulation.

MATLAB expression

StatePerturbation-
ForJacobian

State perturbation size to
use during linearization. See
“Linearizing Individual Blocks
Using Block Perturbation”
in the Simulink® Control
Design™ documentation for
details.

string

StaticLinkStatus Link status of block. Does not
update out-of-date reference
blocks when queried using
get_param.

{'none'} | 'resolved' |
'unresolved' | 'implicit'
| 'inactive' | 'restore'
| 'propagate'

StopFcn Function called at the
termination of a simulation.

MATLAB expression

Tag Text that appears in the block
label that Simulink software
generates. Set by the Tag field
on the General pane of the
Block Properties dialog box.

string {''}

Type Simulink object type (read
only).

'block'

UndoDeleteFcn Function called when block
deletion is undone.

MATLAB expression

UserData User-specified data that can
have any MATLAB data type.

{'[]'}

UserDataPersistent Status of whether or not
UserData will be saved in the
model file.

'on' | {'off'}

8-77

8 Model and Block Parameters

Examples of Setting Block Parameters
These examples illustrate how to change common block parameters.

This command changes the orientation of the Gain block in the mymodel
system so it faces the opposite direction (right to left).

set_param('mymodel/Gain','Orientation','left')

This command associates an OpenFcn callback with the Gain block in the
mymodel system.

set_param('mymodel/Gain','OpenFcn','my_open_cb')

This command sets the Position parameter of the Gain block in the mymodel
system. The block is 75 pixels wide by 25 pixels high. The position vector
is not enclosed in quotation marks.

set_param('mymodel/Gain','Position',[50 250 125 275])

8-78

Block-Specific Parameters

Block-Specific Parameters
These tables list block-specific parameters for all Simulink® blocks. The type
of the block appears in parentheses after the block name. Some Simulink
blocks are implemented as masked subsystems. The tables indicate masked
blocks by adding the designation "masked" after the block type.

Note The type listed for nonmasked blocks is the value of the block’s
BlockType parameter (see “Common Block Parameters” on page 8-66); the
type listed for masked blocks is the value of the block’s MaskType parameter
(see “Mask Parameters” on page 8-185).

The Dialog Box Prompt column indicates the text of the prompt for the
parameter on the block’s dialog box. The Values column shows the type of
value required (scalar, vector, variable), the possible values (separated with a
vertical line), and the default value (enclosed in braces).

• Continuous Library Block Parameters

• Discontinuities Library Block Parameters

• Discrete Library Block Parameters

• Logic and Bit Operations Library Block Parameters

• Lookup Tables Block Parameters

• Math Operations Library Block Parameters

• Model Verification Library Block Parameters

• Model-Wide Utilities Library Block Parameters

• Ports & Subsystems Library Block Parameters

• Signal Attributes Library Block Parameters

• Signal Routing Library Block Parameters

• Sinks Library Block Parameters

• Sources Library Block Parameters

• User-Defined Functions Library Block Parameters

8-79

8 Model and Block Parameters

• Additional Discrete Block Library Parameters

• Additional Math: Increment - Decrement Block Parameters

Continuous Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Derivative (Derivative)

LinearizePole Linearization Time Constant
s/(Ns+1)

string {'inf'}

Integrator (Integrator)

ExternalReset External reset {'none'} | 'rising' |
'falling' | 'either' |
'level'

InitialConditionSource Initial condition source {'internal'} | 'external'

InitialCondition Initial condition scalar or vector {’0’}

LimitOutput Limit output {'off'} | 'on'

UpperSaturationLimit Upper saturation limit scalar or vector {'inf'}

LowerSaturationLimit Lower saturation limit scalar or vector {'-inf'}

ShowSaturationPort Show saturation port {'off'} | 'on'

ShowStatePort Show state port {'off'} | 'on'

AbsoluteTolerance Absolute tolerance string {'auto'}

ZeroCross Enable zero–crossing detection 'off' | {'on'}

ContinuousStateAttributes State Name string{''}| variable

State-Space (StateSpace)

A A matrix {'1'}

B B matrix {'1'}

C C matrix {'1'}

D D matrix {'1'}

X0 Initial conditions vector {'0'}

8-80

Block-Specific Parameters

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

AbsoluteTolerance Absolute tolerance string {'auto'}

ContinuousStateAttributes State Name string{''}| variable

Transfer Fcn (TransferFcn)

Numerator Numerator vector or matrix {'[1]'}

Denominator Denominator vector {'[1 1]'}

AbsoluteTolerance Absolute tolerance string {'auto'}

ContinuousStateAttributes State Name string{''}| variable

Transport Delay (TransportDelay)

DelayTime Time delay scalar or vector {'1'}

InitialOutput Initial output scalar or vector {'0'}

BufferSize Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

PadeOrder Pade order (for linearization) string {'0'}

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

Variable Time Delay (VariableTimeDelay)

VariableDelayType Select delay type 'Variable transport
delay' | {'Variable time
delay'}

MaximumDelay Maximum delay scalar or vector {'10'}

InitialOutput Initial output scalar or vector {'0'}

MaximumPoints Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

ZeroDelay Handle zero delay {'off'} | 'on'

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

8-81

8 Model and Block Parameters

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

PadeOrder Pade order (for linearization) string {'0'}

ContinuousStateAttributes State Name string{''}| variable

Variable Transport Delay (VariableTransportDelay)

VariableDelayType Select delay type {'Variable transport
delay'} | 'Variable time
delay'

MaximumDelay Maximum delay scalar or vector {'10'}

InitialOutput Initial output scalar or vector {'0'}

MaximumPoints Initial buffer size scalar {'1024'}

FixedBuffer Use fixed buffer size {'off'} | 'on'

PadeOrder Pade order (for linearization) string {'0'}

TransDelayFeedthrough Direct feedthrough of input
during linearization

{'off'} | 'on'

AbsoluteTolerance Absolute tolerance scalar {'auto'}

ContinuousStateAttributes State Name string{''}| variable

Zero-Pole (ZeroPole)

Zeros Zeros vector {'[1]'}

Poles Poles vector {'[0 -1]'}

Gain Gain vector {'[1]'}

AbsoluteTolerance Absolute tolerance string {'auto'}

ContinuousStateAttributes State Name string{''}| variable

Discontinuities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Backlash (Backlash)

8-82

Block-Specific Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

BacklashWidth Deadband width scalar or vector {1}

InitialOutput Initial output scalar or vector {0}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)

offset Coulomb friction value (Offset) string {'[1 3 2 0]'}

gain Coefficient of viscous friction
(Gain)

string {'1'}

Dead Zone (DeadZone)

LowerValue Start of dead zone scalar or vector {-0.5}

UpperValue End of dead zone scalar or vector {0.5}

SaturateOnInteger
Overflow

Saturate on integer overflow 'off' | {'on'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Dead Zone Dynamic (Dead Zone Dynamic) (masked subsystem)

Hit Crossing (HitCross)

HitCrossingOffset Hit crossing offset scalar or vector {'0'}

HitCrossingDirection Hit crossing direction 'rising' | 'falling' |
{'either'}

ShowOutputPort Show output port {'on'} | 'off'

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Quantizer (Quantizer)

8-83

8 Model and Block Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

QuantizationInterval Quantization interval scalar or vector {'0.5'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Rate Limiter (RateLimiter)

RisingSlewLimit Rising slew rate string {'1'}

FallingSlewLimit Falling slew rate string {'-1'}

SampleTimeMode Sample time mode 'continuous' |
{'inherited'}

InitialCondition Initial condition string {’0’}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)

Relay (Relay)

OnSwitchValue Switch on point string {'eps'}

OffSwitchValue Switch off point string {'eps'}

OnOutputValue Output when on string {'1'}

OffOutputValue Output when off string {'0'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation'
| {'Inherit: All
ports same datatype'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

ZeroCross Enable zero crossing detection 'off' | {'on'}

8-84

Block-Specific Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTime Sample time (-1 for inherited) string {'-1'}

Saturation (Saturate)

UpperLimit Upper limit scalar or vector {'0.5'}

LowerLimit Lower limit scalar or vector {'-0.5'}

LinearizeAsGain Treat as gain when linearizing 'off' | {'on'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation'
| {'Inherit: Same as
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

Saturation Dynamic (Saturation Dynamic) (masked subsystem)

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

8-85

8 Model and Block Parameters

Discontinuities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string {'Inherit: Same as
second input'} | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate on integer overflow {'off'} | 'on'

Wrap To Zero (Wrap To Zero) (masked subsystem)

Threshold Threshold string {'255'}

Discrete Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Difference (Difference) (masked subsystem)

ICPrevInput Initial condition for previous
input

string {'0.0'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

8-86

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete Derivative (Discrete Derivative) (masked subsystem)

gainval Gain value string {'1.0'}

ICPrevScaledInput Initial condition for previous
weighted input K*u/Ts

string {'0.0'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

8-87

8 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Discrete Filter (DiscreteFilter)

Numerator Numerator vector {'[1]'}

Denominator Denominator vector {'[1 0.5]'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop® storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

8-88

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Discrete State-Space (DiscreteStateSpace)

A A string {'1'}

B B string {'1'}

C C string {'1'}

D D string {'1'}

X0 Initial conditions string {'0'}

SampleTime Sample time string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Discrete Transfer Fcn (DiscreteTransferFcn)

Numerator Numerator vector {'[1]'}

Denominator Denominator vector {'[1 0.5]'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

8-89

8 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Discrete Zero-Pole (DiscreteZeroPole)

Zeros Zeros vector {'[1]'}

Poles Poles vector {'[0 0.5]'}

Gain Gain string {'1'}

SampleTime Sample time (-1 for inherited) string {'1'}

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Discrete-Time Integrator (DiscreteIntegrator)

8-90

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IntegratorMethod Integrator method {'Integration: Forward
Euler'} | 'Integration:
Backward Euler'
| 'Integration:
Trapezoidal' |
'Accumulation: Forward
Euler' | 'Accumulation:
Backward Euler'
| 'Accumulation:
Trapezoidal'

gainval Gain value string {'1.0'}

ExternalReset External reset {'none'} | 'rising' |
'falling' | 'either' |
'level'

InitialConditionSource Initial condition source {'internal'} | 'external'

InitialCondition Initial condition scalar or vector {'0'}

InitialConditionMode Use initial condition as initial
and reset value for

'State only (most
efficient)' | {'State
and output'}

SampleTime Sample time (-1 for inherited) string {'1'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule '}
| 'Inherit: Inherit
via back propagation'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

8-91

8 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow {'off'} | 'on'

LimitOutput Limit output {'off'} | 'on'

UpperSaturationLimit Upper saturation limit scalar or vector {'inf'}

LowerSaturationLimit Lower saturation limit scalar or vector {'-inf'}

ShowSaturationPort Show saturation port {'off'} | 'on'

ShowStatePort Show state port {'off'} | 'on'

IgnoreLimit Ignore limit and reset when
linearizing

{'off'} | 'on'

StateIdentifier State name string {''}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {''}

First-Order Hold (First-Order Hold) (masked subsystem)

Ts Sample time string {'1'}

Integer Delay (S-Function) (Integer Delay) (masked subsystem)

vinit Initial condition string {'0.0'}

8-92

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

samptime Sample time string {'-1'}

NumDelays Number of delays string {'4'}

Memory (Memory)

X0 Initial condition scalar or vector {'0'}

InheritSampleTime Inherit sample time {'off'} | 'on'

LinearizeMemory Direct feedthrough of input
during linearization

{'off'} | 'on'

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)

vinit Initial condition string {'0.0'}

samptime Sample time string {'-1'}

NumDelays Number of delays string {'4'}

DelayOrder Order output vector starting
with

{'Oldest'} | 'Newest'

includeCurrent Include current input in
output vector

{'off’} | 'on'

Transfer Fcn (First Order Transfer Fcn) (masked subsystem)

PoleZ Pole (in Z plane) string {'0.95'}

ICPrevOutput Initial condition for previous
output

string {'0.0'}

8-93

8 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Lead or Lag (Lead or Lag Compensator) (masked subsystem)

PoleZ Pole of compensator (in Z
plane)

string {'0.95'}

ZeroZ Zero of compensator (in Z
plane)

string {'0.75'}

ICPrevOutput Initial condition for previous
output

string {'0.0'}

ICPrevInput Initial condition for previous
input

string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)

ZeroZ Zero (in Z plane) string {'0.75'}

ICPrevInput Initial condition for previous
input

string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

Unit Delay (UnitDelay)

X0 Initial condition scalar or vector {'0'}

SampleTime Sample time (-1 for inherited) string {'1'}

8-94

Block-Specific Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

StateIdentifier State name string {}

StateMustResolveTo
SignalObject

State name must resolve to
Simulink signal object

{'off'} | 'on'

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} |
'ExportedGlobal' |
'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop storage
type qualifier

string {}

Weighted Moving Average (S-Function) (Weighted Moving Average) (masked subsystem)

mgainval Weights string {'[0.1:0.1:1
0.9:-0.1:0.1]'}

vinit Initial condition string {'0.0'}

samptime Sample time string {'-1'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

{'off'} | 'on'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

{'off'} | 'on'

8-95

8 Model and Block Parameters

Discrete Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

GainDataTypeStr Gain data type string {'Inherit: Inherit
via internal rule'}

GainDataTypeScalingMode Deprecated

GainDataType Deprecated

MatRadixGroup Deprecated

GainScaling Deprecated

Zero-Order Hold (ZeroOrderHold)

SampleTime Sample time (-1 for inherited) string {'1'}

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bit Clear (Bit Clear) (masked subsystem)

iBit Index of bit (0 is least
significant)

string {'0'}

Bit Set (Bit Set) (masked subsystem)

iBit Index of bit (0 is least
significant)

string {'0'}

Bitwise Operator (S-Function) (Bitwise Operator) (masked subsystem)

logicop Operator {'AND'} | 'OR' | 'NAND' |
'NOR' | 'XOR' | 'NOT'

UseBitMask Use bit mask ... 'off' | {'on'}

NumInputPorts Number of input ports string {'1'}

BitMask Bit mask string
{'bin2dec('11011001')'}

BitMaskRealWorld Treat mask as 'Real World Value' |
{'Stored Integer'}

Combinatorial Logic (CombinatorialLogic)

8-96

Block-Specific Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TruthTable Truth table string {'[0 0;0 1;0 1;1 0;0
1;1 0;1 0;1 1]'}

SampleTime Sample time (-1 for inherited string {'-1'}

Compare To Constant (Compare To Constant) (masked subsystem)

relop Operator '==' | '~=' | '<' |
{'<='} | '>=' | '>'

const Constant value string {'3.0'}

LogicOutDataTypeMode Output data type mode {'uint8'} | 'boolean'

ZeroCross Enable zero crossing detection {'off'} | 'on'

Compare To Zero (Compare To Zero) (masked subsystem)

relop Operator ’==’ | ’~=’ | ’<’ | {’<=’} | ’>=’ |
’>’

LogicOutDataTypeMode Output data type mode {'uint8'} | 'boolean'

ZeroCross Enable zero crossing detection {'off'} | 'on'

Detect Change (Detect Change) (masked subsystem)

vinit Initial condition string {'0'}

Detect Decrease (Detect Decrease) (masked subsystem)

vinit Initial condition string {'0.0'}

Detect Fall Negative (Detect Fall Negative) (masked subsystem)

vinit Initial condition string {'0'}

Detect Fall Nonpositive (Detect Fall Nonpositive) (masked subsystem)

vinit Initial condition string {'0'}

Detect Increase (Detect Increase) (masked subsystem)

vinit Initial condition string {'0.0'}

Detect Rise Nonnegative (Detect Rise Nonnegative) (masked subsystem)

vinit Initial condition string {'0'}

8-97

8 Model and Block Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Detect Rise Positive (Detect Rise Positive) (masked subsystem)

vinit Initial condition string {'0'}

Extract Bits (Extract Bits) (masked subsystem)

bitsToExtract Bits to extract {'Upper half'} | 'Lower
half' | 'Range starting
with most | significant
bit' | 'Range ending with
least significant bit' |
'Range of bits'

numBits Number of bits string {'8'}

bitIdxRange Bit indices ([start end], 0-based
relative to LSB)

string {'[0 7]'}

outScalingMode Output scaling mode {'Preserve fixed-point
scaling'} | 'Treat bit
field as an integer'

Interval Test (Interval Test) (masked subsystem)

IntervalClosedRight Interval closed on right 'off' | {'on'}

uplimit Upper limit string {'0.5'}

IntervalClosedLeft Interval closed on left 'off' | {'on'}

lowlimit Lower limit string {'-0.5'}

LogicOutDataTypeMode Output data type mode 'uint8' | {'boolean'}

Interval Test Dynamic (Interval Test Dynamic) (masked subsystem)

IntervalClosedRight Interval closed on right 'off' | {'on'}

IntervalClosedLeft Interval closed on left 'off' | {'on'}

LogicOutDataTypeMode Output data type mode 'uint8' | {'boolean'}

Logical Operator (Logic)

Operator Operator {'AND'} | 'OR' | 'NAND' |
'NOR' | 'XOR' | 'NOT'

8-98

Block-Specific Parameters

Logic and Bit Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Inputs Number of input ports string {'2'}

IconShape Icon shape {'rectangular'} |
'distinctive'

AllPortsSameDT Require all inputs and output
to have the same data type

{'off'} | 'on'

OutDataTypeStr Output data type string 'Inherit:
Logical (see
Configuration Parameters:
Optimization)' |
{'boolean'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Relational Operator (RelationalOperator)

Operator Relational operator '==' | '~=' | '<' |
{'<='} | '>=' | '>'

InputSameDT Require all inputs to have the
same data type

{'off'} | 'on'

OutDataTypeStr Output data type string 'Inherit:
Logical (see
Configuration Parameters:
Optimization)' |
{'boolean'}

ZeroCross Enable zero crossing detection 'off' | {'on'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Shift Arithmetic (Shift Arithmetic) (masked subsystem)

nBitShiftRight Number of bits to shift right
(use negative value to shift
left)

string {'0'}

nBinPtShiftRight Number of places by which
binary point shifts right (use
negative value to shift left)

string {'0'}

8-99

8 Model and Block Parameters

Lookup Tables Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Cosine (Cosine) (masked subsystem)

Formula Output formula 'sin(2*pi*u)' |
{'cos(2*pi*u)'} |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

NumDataPoints Number of data points for
lookup table

string {'(2^5)+1'}

OutputWordLength Output word length string {'16'}

Direct Lookup Table (n-D) (S-Function) (LookupNDDirect) (masked subsystem)

maskTabDims Number of table
dimensions

'1' | {'2'} | '3' | '4' |
'More...'

explicitNumDims Explicit number of table
dimensions

string {'1'}

outDims Inputs select this object
from table

{'Element'} | 'Column' | '2-D
Matrix'

tabIsInput Make table an input {'off'} | 'on'

mxTable Table data string {'[4 5 6;16 19 20;10 18
23]'}

clipFlag Action for out of range
input

'None' | {'Warning'} |
'Error'

samptime Sample time string {'-1'}

Interpolation Using Prelookup (Interpolation_n-D)

NumberOfTableDimensions Number of table
dimensions

string {'2'}

Table Table data string {'sqrt([1:11]' *
[1:11])'}

InterpMethod Interpolation method 'None - Flat' | {'Linear'}

ExtrapMethod Extrapolation method 'None - Clip' | {'Linear'}

8-100

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RangeErrorMode Action for out of range
input

{'None'} | 'Warning' |
'Error'

CheckIndexInCode Check index in generated
code

{'on'} | 'off'

ValidIndexMayReachLast Valid index input may
reach last index

'on' | {'off'}

NumSelectionDims Number of sub-table
selection dimensions

string {'0'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation' |
{'Inherit: Inherit from
table data'} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32'

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Lookup Table (Lookup)

InputValues Vector of input values vector {'[-5:5]'}

Table Table data vector {'tanh([-5:5])'}

8-101

8 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LookUpMeth Lookup method {'Interpolation-Extrapolation'}
| 'Interpolation-Use End
Values' | 'Use Input Nearest'
| 'Use Input Below' | 'Use
Input Above'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation' |
{'Inherit: Same as input'}
| 'double' | 'single' |
'int8' | 'uint8' | 'int16' |
'uint16' | 'int32' | 'uint32'

LockScale Lock output scaling
against changes by the
autoscaling tool

{'off'} | 'on'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

SaturateOnInteger
Overflow

Saturate on integer
overflow

{'off'} | 'on'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Lookup Table (2-D) (Lookup2D)

RowIndex Row index input values string {'[1:3]'}

ColumnIndex Column index input values string {'[1:3]'}

Table Table data string {'[4 5 6;16 19 20;10 18
23]'}

8-102

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LookUpMeth Lookup method {'Interpolation-Extrapolation'}
| 'Interpolation-Use End
Values' | 'Use Input Nearest'
| 'Use Input Below' | 'Use
Input Above'

InputSameDT Require all inputs to have
the same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation' |
{'Inherit: Same as first
input'} | 'double' | 'single'
| 'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32'

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

SaturateOnInteger
Overflow

Saturate on integer
overflow

'on' | {'off'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Lookup Table (n-D) (Lookup_n-D)

NumberOfTableDimensions Number of table
dimensions

string {'2'}

BreakpointsForDimension1 Breakpoints for dimension
1

string {'[10,22,31]'}

8-103

8 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

BreakpointsForDimension2 Breakpoints for dimension
2

string {'[10,22,31]'}

BreakpointsForDimension3 Breakpoints for dimension
3

string {'[1:3]'}

BreakpointsForDimension4 Breakpoints for dimension
4

string {'[1:3]'}

BreakpointsForDimension5 Breakpoints for dimension
5

string {'[1:3]'}

IndexSearchMethod Index search method 'Evenly spaced points' |
'Linear search' | {'Binary
search'}

BeginIndexSearchUsing

PreviousIndexResult

Begin index search using
previous index result

'on' | {'off'}

UseOneInputPortForAll

InputData

Use one input port for all
input data

'on' | {'off'}

Table Table data string {'[4 5 6;16 19 20;10 18
23]'}

InterpMethod Interpolation method 'None - Flat' | {'Linear'} |
'Cubic spline'

ExtrapMethod Extrapolation method 'None - Clip' | {'Linear'} |
'Cubic spline'

ProcessOutOfRangeInput Process out-of-range input {'None'} | 'Warning' |
'Error'

UseLastTableValue Use last table value for
inputs at or above last
breakpoint

'on' | {'off'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

8-104

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSameDT Require all inputs to have
the same data type

{'on'} | 'off'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via back propagation' |
'Inherit: Inherit from table
data' | {'Inherit: Same as
first input'} | 'double' |
'single' | 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| 'uint32'

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

FractionDataTypeStr Fraction data type string {'Inherit: Inherit via
internal rule'} | 'double' |
'single'

Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)

LookUpMeth Lookup Method 'Interpolation-Extrapolation'
| {'Interpolation-Use
End Values'} | 'Use Input
Nearest' | 'Use Input Below'
| 'Use Input Above'

OutDataTypeStr Output data type string {'float('double')'} |
'Inherit: Inherit via back
propagation'

8-105

8 Model and Block Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
Simplest

DoSatur Saturate to max or min
when overflows occur

'on' | {'off'}

Prelookup (PreLookup)

BreakpointsData Breakpoint data string {'[10:10:110]'}

IndexSearchMethod Index search method 'Evenly spaced points' |
'Linear search' | {'Binary
search'}

BeginIndexSearchUsing
PreviousIndexResult

Begin index search using
previous index result

'on' | {'off'}

OutputOnlyTheIndex Output only the index 'on' | {'off'}

ProcessOutOfRangeInput Process out-of-range input 'Clip to range' | {'Linear
extrapolation'}

UseLastBreakpoint Use last breakpoint for
input at or above upper
limit

'on' | {'off'}

ActionForOutOfRangeInput Action for out of range
input

{'None'} | 'Warning' |
'Error'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

8-106

Block-Specific Parameters

Lookup Tables Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Index data type string 'int8' | 'uint8' |
'int16' | 'uint16' | 'int32'
| {'uint32'}

Out2DataTypeStr Fraction data type string {'Inherit: Inherit via
internal rule'} | 'double' |
'single'

LockScale Lock output scaling
against changes by the
autoscaling tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

Sine (Sine) (masked subsystem)

Formula Output formula {'sin(2*pi*u)'} |
'cos(2*pi*u)' |
'exp(j*2*pi*u)' |
'sin(2*pi*u) and cos(2*pi*u)'

NumDataPoints Number of data points for
lookup table

string {'(2^5)+1'}

OutputWordLength Output word length string {'16'}

Math Operations Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Abs (Abs)

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMax Output maximum string {'[]'}

8-107

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string 'Inherit: Inherit
via internal rule' |
'Inherit: Inherit via
back propagation' |
{'Inherit: Same as
input'} | 'double' |
'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

Add (Sum)

IconShape Icon shape {'rectangular'} | 'round'

Inputs List of signs string {'++'}

CollapseMode Sum over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

InputSameDT Require all inputs to have the
same data type

'on' | {'off'}

8-108

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

AccumDataTypeStr Accumulator data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'Inherit:
Same as accumulator'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Algebraic Constraint (Algebraic Constraint) (masked subsystem)

z0 Initial guess string {'0'}

8-109

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Assignment (Assignment)

NumberOfDimensions Number of input dimensions string {'1'}

IndexMode Index mode 'Zero-based' |
{'One-based'}

OutputInitialize Initialize output (Y) {'Initialize using input
port <Y0>'} | 'Specify
size for each dimension
in table'

IndexOptionArray Index Option 'Assign all' | {'Index
vector (dialog)'} |
'Index vector (port)' |
'Starting index (dialog)'
| 'Starting index (port)'

IndexParamArray Index cell array

OutputSizeArray Output Size cell array

DiagnosticForDimensions Action if any output element
is not assigned

'Error' | 'Warning' |
{'None'}

SampleTime Sample time (-1 for inherited) string {'-1'}

IndexOptions See IndexOptionArray
parameter for more
information.

Indices See IndexParamArray
parameter for more
information.

OutputSizes See OutputSizeArray
parameter for more
information.

Bias (Bias)

Bias Bias string {'0.0'}

8-110

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)

Output Output 'Magnitude' | 'Angle' |
{'Magnitude and angle'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Complex to Real-Imag (ComplexToRealImag)

Output Output 'Real' | 'Imag' | {'Real
and imag'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Divide (Product)

Inputs Number of inputs string {'*/'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

8-111

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Dot Product (Dot Product) (masked subsystem)

InputSameDT Require all inputs to have
same data type

{'on'} | 'off'

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as first
input'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculation
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate on integer overflow 'on' | {'off'}

Gain (Gain)

Gain Gain string {'1'}

8-112

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Multiplication Multiplication {'Element-wise(K.*u)'}
| 'Matrix(K*u)' |
'Matrix(u*K)' |
'Matrix(K*u) (u vector)'

ParamMin Parameter minimum string {'[]'}

ParamMax Parameter maximum string {'[]'}

ParamDataTypeStr Parameter data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Same as input'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation' |
'Inherit: Same as input'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

8-113

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTime Sample time (-1 for inherited) string {'-1'}

Magnitude-Angle to Complex (MagnitudeAngleToComplex)

Input Input 'Magnitude' | 'Angle' |
{'Magnitude and angle'}

ConstantPart string {'0'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Math Function (Math)

Operator Function {'exp'} | 'log' | '10^u'
| 'log10' | 'magnitude^2'
| 'square' | 'sqrt'
| 'pow' | 'conj' |
'reciprocal' | 'hypot'
| 'rem' | 'mod' |
'transpose' | 'hermitian'

OutputSignalType Output signal type {'auto'} | 'real' |
'complex'

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string 'Inherit: Inherit
via internal rule' |
'Inherit: Inherit
via back propagation'
| {'Inherit: Same as
first input'} | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

8-114

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow {'on'} | 'off'

Matrix Concatenate (Concatenate)

NumInputs Number of inputs string {'2'}

Mode Mode 'Vector' |
{'Multidimensional
array'}

ConcatenateDimension Concatenate dimension string {'2'}

MinMax (MinMax)

Function Function {'min'} | 'max'

Inputs Number of input ports string {'1'}

InputSameDT Require all inputs to have the
same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via
back propagation' |
'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

8-115

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

MinMax Running Resettable (MinMax Running Resettable) (masked subsystem)

Function Function {'min'} | 'max'

vinit Initial condition string {'0.0'}

Permute Dimensions (Permute Dimensions) (masked subsystem)

Order Order string {'[]'}

Polynomial (Polyval) (masked subsystem)

coefs Polynomial coefficients string {'[
+2.081618890e-019,
-1.441693666e-014,
+4.719686976e-010,
-8.536869453e-006,
+1.621573104e-001,
-8.087801117e+001]'}

Product (Product)

Inputs Number of inputs string {'2'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

CollapseMode Multiply over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

8-116

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

{'Zero'} | 'Nearest' |
'Ceiling' | 'Floor' |
'Simplest'

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Product of Elements (Product)

Inputs Number of inputs string {'*'}

Multiplication Multiplication {'Element-wise(.*)'} |
'Matrix(*)'

CollapseMode Multiply over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

8-117

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSameDT Require all inputs to have
same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Real-Imag to Complex (RealImagToComplex)

Input Input 'Real' | 'Imag' | {'Real
and imag'}

ConstantPart string {'0'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Reshape (Reshape) (masked subsystem)

8-118

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutputDimensionality Output dimensionality {'1-D array'} | 'Column
vector' | 'Row vector' |
'Customize'

OutputDimensions Output dimensions string {'[1,1]'}

Rounding Function (Rounding)

Operator Function {'floor'} | 'ceil' |
'round' | 'fix'

SampleTime Sample time (-1 for inherited) string {'-1'}

Sign (Signum)

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Sine Wave Function (Sin)

SineType Sine type {'Time based'} | 'Sample
based'

TimeSource Time (t) 'Use simulation time' |
{'Use external signal'}

Amplitude Amplitude string {'1'}

Bias Bias string {'0'}

Frequency Frequency (rad/sec) string {'1'}

Phase Phase (rad) string {'0'}

Samples Samples per period string {'10'}

Offset Number of offset samples string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Slider Gain (Slider Gain) (masked subsystem)

low Low string {'0'}

8-119

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

gain Gain string {'1'}

high High string {'2'}

Squeeze (Squeeze) (masked subsystem)

None None None

Subtract (Sum)

IconShape Icon shape {'rectangular'} | 'round'

Inputs List of signs string {'+-'}

CollapseMode Sum over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

InputSameDT Require all inputs to have the
same data type

'on' | {'off'}

AccumDataTypeStr Accumulator data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

8-120

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'Inherit:
Same as accumulator'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Sum (Sum)

IconShape Icon shape 'rectangular' | {'round'}

Inputs List of signs string {'|++'}

CollapseMode Sum over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

InputSameDT Require all inputs to have the
same data type

'on' | {'off'}

8-121

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

AccumDataTypeStr Accumulator data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'Inherit:
Same as accumulator'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Sum of Elements (Sum)

IconShape Icon shape {'rectangular'} | 'round'

8-122

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Inputs List of signs string {'+'}

CollapseMode Sum over {'All dimensions'} |
'Specified dimension'

CollapseDim Dimension string {'1'}

InputSameDT Require all inputs to have the
same data type

'on' | {'off'}

AccumDataTypeStr Accumulator data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Same as
first input' | 'double'
| 'single' | 'int8' |
'uint8' | 'int16' |
'uint16' | 'int32' |
'uint32'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'}
| 'Inherit: Inherit
via back propagation'
| 'Inherit: Same as
first input' | 'Inherit:
Same as accumulator'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

8-123

8 Model and Block Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Trigonometric Function (Trigonometry)

Operator Function {'sin'} | 'cos' | 'tan' |
'asin' | 'acos' | 'atan'
| 'atan2' | 'sinh' |
'cosh' | 'tanh' | 'asinh'
| 'acosh' | 'atanh'

OutputSignalType Output signal type {'auto'} | 'real' |
'complex'

SampleTime Sample time (-1 for inherited) string {'-1'}

Unary Minus (Unary Minus) (masked subsystem)

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Vector Concatenate (Concatenate)

NumInputs Number of inputs string {'2'}

Mode Mode {'Vector'} |
'Multidimensional array'

Weighted Sample Time Math (Sample Time Math) (masked subsystem)

TsampMathOp Operation {'+'} | '-' | '*' | '/' |
'Ts Only' | '1/Ts Only'

weightValue Weight value string {'1.0'}

TsampMathImp Implement using {'Online Calculations'}
| 'Offline Scaling
Adjustment'

OutputDataTypeScaling
Mode

Output data type and scaling {'Inherit via internal
rule'} | 'Inherit via
back propagation'

8-124

Block-Specific Parameters

Math Operations Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Model Verification Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Assertion (Assertion)

Enabled Enable assertion {'on'} | 'off'

AssertionFailFcn Simulation callback when
assertion fails

string {''}

StopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Check Discrete Gradient (Checks_Gradient) (masked subsystem)

gradient Maximum gradient string {'1'}

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Gap (Checks_DGap) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

8-125

8 Model and Block Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)

Enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Range (Checks_DRange) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Dynamic Upper Bound (Checks_DMax) (masked subsystem)

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

8-126

Block-Specific Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

icon Select icon type {'graphic'} | 'text'

Check Input Resolution (Checks_Resolution) (masked subsystem)

resolution Resolution string {'1'}

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

Check Static Gap (Checks_SGap) (masked subsystem)

max Upper bound string {'100'}

max_included Inclusive upper bound {'on'} | 'off'

min Lower bound string {'0'}

min_included Inclusive lower bound {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Lower Bound (Checks_SMin) (masked subsystem)

min Lower bound string {'0'}

min_included Inclusive boundary {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

8-127

8 Model and Block Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Range (Checks_SRange) (masked subsystem)

max Upper bound string {'100'}

max_included Inclusive upper bound {'on'} | 'off'

min Lower bound string {'0'}

min_included Inclusive lower bound {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Check Static Upper Bound (Checks_SMax) (masked subsystem)

max Upper bound string {'0'}

max_included Inclusive boundary {'on'} | 'off'

enabled Enable assertion {'on'} | 'off'

callback Simulation callback when
assertion fails (optional)

string {''}

stopWhenAssertionFail Stop simulation when
assertion fails

{'on'} | 'off'

8-128

Block-Specific Parameters

Model Verification Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

export Output assertion signal 'on' | {'off'}

icon Select icon type {'graphic'} | 'text'

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Block Support Table (Block Support Table) (masked subsystem)

DocBlock (DocBlock) (masked subsystem)

ECoderFlag Real-Time Workshop®

Embedded Coder™ Flag
string {''}

DocumentType Document Type {'Text'} | 'RTF' | 'HTML'

Model Info (CMBlock) (masked subsystem)

InitialSaveTempField InitialSaveTempField string {''}

InitialBlockCM InitialBlockCM string {'None'}

BlockCM BlockCM string {'None'}

Frame Show block frame string {'on'}

SaveTempField SaveTempField string {''}

DisplayStringWithTags DisplayStringWithTags string {'Model Info'}

MaskDisplayString MaskDisplayString string {'Model Info'}

HorizontalTextAlignment Horizontal text alignment string {'Center'}

LeftAlignmentValue LeftAlignmentValue string {'0.5'}

SourceBlockDiagram SourceBlockDiagram string {'untitled'}

TagMaxNumber TagMaxNumber string {'20'}

CMTag1 CMTag1 string {''}

CMTag2 CMTag2 string {''}

CMTag3 CMTag3 string {''}

8-129

8 Model and Block Parameters

Model-Wide Utilities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

CMTag4 CMTag4 string {''}

CMTag5 CMTag5 string {''}

CMTag6 CMTag6 string {''}

CMTag7 CMTag7 string {''}

CMTag8 CMTag8 string {''}

CMTag9 CMTag9 string {''}

CMTag10 CMTag10 string {''}

CMTag11 CMTag11 string {''}

CMTag12 CMTag12 string {''}

CMTag13 CMTag13 string {''}

CMTag14 CMTag14 string {''}

CMTag15 CMTag15 string {''}

CMTag16 CMTag16 string {''}

CMTag17 CMTag17 string {''}

CMTag18 CMTag18 string {''}

CMTag19 CMTag19 string {''}

CMTag20 CMTag20 string {''}

Timed-Based Linearization (Timed Linearization) (masked subsystem)

LinearizationTime Linearization time string {'1'}

SampleTime Sample time (of linearized
model)

string {'0'}

Trigger-Based Linearization (Triggered Linearization) (masked subsystem)

8-130

Block-Specific Parameters

Model-Wide Utilities Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TriggerType Trigger type {'rising'} |
'falling' | 'either' |
'function-call'

SampleTime Sample time (of linearized
model)

string {'0'}

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Action Port (ActionPort)

InitializeStates Specifies how to handle
internal states when the
subsystem of this Action Port
block is reenabled. Set by
the States when execution
is resumed control on the
block’s parameter dialog box.

{'held'} | 'reset'

Atomic Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

8-131

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} | 'ExplicitOnly'
| 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

8-132

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Code Reuse Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

8-133

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWSystemCode Real-Time Workshop system
code

'Auto' | 'Inline' |
'Function' | {'Reusable
function'}

RTWFcnNameOpts Real-Time Workshop function
name options

'Auto' | {'Use subsystem
name'} | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

'Auto' | 'Use subsystem
name' | {'Use function
name'} | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Configurable Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {'self'}

MemberBlocks Member blocks string {''}

8-134

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit 'on' | {'off'}

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop
Workshop (no extension)

string {''}

8-135

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Enable (EnablePort)

StatesWhenEnabling States when enabling {'held'} | 'reset'

ShowOutputPort Show output port 'on' | {'off'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

Enabled and Triggered Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

8-136

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

EnabledSubsystem (SubSystem)

8-137

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

8-138

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

For Iterator (ForIterator)

ResetStates States when starting {'held'} | 'reset'

IterationSource Iteration limit source {'internal'} | 'external'

IterationLimit Iteration limit string {'5'}

ExternalIncrement Set next i (iteration variable)
externally

'on' | {'off'}

ShowIterationPort Show iteration variable {'on'} | 'off'

IndexMode Index mode 'Zero-based' |
{'One-based'}

IterationVariable
DataType

Iteration variable data type {'int32'} | 'int16' |
'int8' | 'double'

For Iterator Subsystem (SubSystem)

8-139

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string{'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

8-140

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Function-Call Generator (Function-Call Generator) (masked subsystem)

sample_time Sample time string {'1'}

numberOfIterations Number of iterations string {'1'}

Function-Call Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

8-141

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

8-142

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

If (If)

NumInputs Number of inputs string {'1'}

IfExpression If expression (e.g., u1 ~= 0) string {'u1 > 0'}

ElseIfExpressions Elseif expressions
(comma-separated list, e.g., u2
~= 0, u3(2) < u2)

string {''}

ShowElse Show else condition {'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

If Action Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

8-143

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

8-144

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

In1 (Inport)

Port Port number string {'1'}

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for specifying bus
properties

string {'BusObject'}

BusOutputAsStruct Output as nonvirtual bus 'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

8-145

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

LatchByDelaying
OutsideSignal

Latch input by delaying
outside signal

'on' | {'off'}

LatchByCopying
InsideSignal

Latch input by copying inside
signal

'on' | {'off'}

Interpolate Interpolate data {'on'} | 'off'

Model (ModelReference)

ModelName Model name (without the .mdl
extension)

string {'<Enter Model
Name>'}

ParameterArgumentNames Model arguments string {''}

ParameterArgumentValues Model argument values (for
this instance)

string {''}

SimulationMode Whether to simulate the model
by generating and executing
code or by interpreting the
model in Simulink software

{'Accelerator'} |
'Normal'

AvailSigsInstanceProps handle vector {''}

AvailSigsDefaultProps handle vector {''}

UpdateSigLoggingInfo For internal use

DefaultDataLogging 'on' | {'off'}

Out1 (Outport)

Port Port number string {'1'}

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

8-146

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for specifying bus
properties

string {'BusObject'}

BusOutputAsStruct Output as nonvirtual bus in
parent model

'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

OutputWhenDisabled Output when disabled {'held'} | 'reset'

InitialOutput Initial output string {'[]'}

Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

8-147

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit 'on' | {'off'}

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

8-148

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Virtual For internal use

Switch Case (SwitchCase)

CaseConditions Case conditions (e.g., {1,[2,3]}) string {'{1}'}

CaseShowDefault Show default case {'on'} | 'off'

ZeroCross Enable zero-crossing detection {'on'} | 'off'

SampleTime Sample time (-1 for inherited) string {'-1'}

Switch Case Action Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

8-149

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | ’User specified’

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

8-150

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Trigger (TriggerPort)

TriggerType Trigger type {'rising'} |
'falling' | 'either' |
'function-call'

StatesWhenEnabling States when enabling {'held'} | 'reset' |
'inherit'

ShowOutputPort Show output port 'on' | {'off'}

OutputDataType Output data type {'auto'} | 'double' |
'int8'

SampleTimeType Sample time type {'triggered'} |
'periodic'

SampleTime Sample time string {'1'}

ZeroCross Enable zero crossing detection {'on'} | 'off'

Triggered Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

8-151

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

8-152

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

While Iterator (WhileIterator)

MaxIters Maximum number of
iterations (-1 for unlimited)

string {'5'}

WhileBlockType While loop type {'while'} | 'do-while'

ResetStates States when starting {'held'} | 'reset'

ShowIterationPort Show iteration number port 'on' | {'off'}

OutputDataType Output data type {'int32'} | 'int16' |
'int8' | 'double'

While Iterator Subsystem (SubSystem)

ShowPortLabels Show port labels. The values
'on' and 'off' are for
backward compatibility only
and should not be used in
new models or when updating
existing models.

{'FromPortIcon'}
|'FromPortBlockName' |
'Signal Name' | 'none'
|'on' | 'off'

BlockChoice Block choice {''}

TemplateBlock Template block string {''}

MemberBlocks Member blocks string {''}

Permissions Read/Write permissions {'ReadWrite'}
| 'ReadOnly' |
'NoReadOrWrite'

8-153

8 Model and Block Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ErrorFcn Name of error callback
function

string {''}

PermitHierarchical
Resolution

Permit hierarchical resolution {'All'} |
'ParametersOnly' | 'None'

TreatAsAtomicUnit Treat as atomic unit {'on'} | 'off'

MinAlgLoopOccurrences Minimize algebraic loop
occurrences

'on' | {'off'}

PropExecContext
OutsideSubsystem

Propagate execution context
across subsystem boundary

{'on'} | 'off'

CheckFcnCallInp
InsideContextMsg

Warn if function-call inputs
are context-specific

'on' | {'off'}

SystemSampleTime Sample time (-1 for inherited) string {'-1'}

RTWSystemCode Real-Time Workshop system
code

{'Auto'} | 'Inline' |
'Function' | 'Reusable
function'

RTWFcnNameOpts Real-Time Workshop function
name options

{'Auto'} | 'Use subsystem
name' | 'User specified'

RTWFcnName Real-Time Workshop function
name

string {''}

RTWFileNameOpts Real-Time Workshop filename
options

{'Auto'} | 'Use subsystem
name' | 'Use function
name' | 'User specified'

RTWFileName Real-Time Workshop filename
(no extension)

string {''}

8-154

Block-Specific Parameters

Ports & Subsystems Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DataTypeOverride Specifies data type used to
override fixed-point data
types. Set by the Data type
override control on the
Fixed-Point Tool.

{'UseLocalSettings'}
| 'ScaledDoubles'
| 'TrueDoubles' |
'TrueSingles' |
'ForceOff'

MinMaxOverflowLogging Setting for fixed-point logging.
Set by the Logging mode
option in the Fixed-Point Tool.

{'UseLocalSettings'}
| 'MinMaxAndOverflow'
| 'OverflowOnly' |
'ForceOff'

Signal Attributes Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Data Type Conversion (DataTypeConversion)

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via back propagation'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

ConvertRealWorld Input and output to have equal {'Real World Value
(RWV)'} | 'Stored Integer
(SI)'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'} |
'Simplest'

8-155

8 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Data Type Conversion Inherited (Conversion Inherited) (masked subsystem)

ConvertRealWorld Input and Output to have
equal

{'Real World Value'} |
'Stored Integer'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Data Type Duplicate (Data Type Duplicate) (masked subsystem)

NumInputPorts Number of input ports string {'2'}

Data Type Propagation (Data Type Propagation) (masked subsystem)

PropDataTypeMode 1. Propagated data type 'Specify via dialog' |
{'Inherit via propagation
rule'}

PropDataType 1.1. Propagated data
type: ex. sfix(16), uint(8),
float('single')

string {'sfix(16)'}

IfRefDouble 1.1. If any reference input is
double, output is

{'double'} | 'single'

IfRefSingle 1.2. If any reference input is
single, output is

'double' | {'single'}

IsSigned 1.3. Is-Signed 'IsSigned1' | 'IsSigned2'
| {'IsSigned1 or
IsSigned2'} | 'TRUE' |
'FALSE'

8-156

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

NumBitsBase 1.4.1. Number-of-Bits: Base 'NumBits1' | 'NumBits2'
| {'max([NumBits1
NumBits2])'} |
'min([NumBits1
NumBits2])' |
'NumBits1+NumBits2'

NumBitsMult 1.4.2. Number-of-Bits:
Multiplicative adjustment

string {'1'}

NumBitsAdd 1.4.3. Number-of-Bits:
Additive adjustment

string {'0'}

NumBitsAllowFinal 1.4.4. Number-of-Bits:
Allowable final values

string {'1:128'}

PropScalingMode 2. Propagated scaling 'Specify via dialog' |
{'Inherit via propagation
rule'} | 'Obtain via best
precision'

PropScaling 2.1. Propagated scaling: Slope
or [Slope Bias] ex. 2^-9

string {'2^-10'}

ValuesUsedBestPrec 2.1. Values used to determine
best precision scaling

string {'[5 -7]'}

SlopeBase 2.1.1. Slope: Base 'Slope1' | 'Slope2' |
'max([Slope1 Slope2])' |
{'min([Slope1 Slope2])'}
| 'Slope1*Slope2' |
'Slope1/Slope2' |
'PosRange1' | 'PosRange2'
| 'max([PosRange1
PosRange2])' |
'min([PosRange1
PosRange2])' |
'PosRange1*PosRange2'
| 'PosRange1/PosRange2'

8-157

8 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SlopeMult 2.1.2. Slope: Multiplicative
adjustment

string {'1'}

SlopeAdd 2.1.3. Slope: Additive
adjustment

string {'0'}

BiasBase 2.2.1. Bias: Base {'Bias1'} | 'Bias2' |
'max([Bias1 Bias2])' |
'min([Bias1 Bias2])'
| 'Bias1*Bias2' |
'Bias1/Bias2' |
'Bias1+Bias2' |
'Bias1-Bias2'

BiasMult 2.2.2. Bias: Multiplicative
adjustment

string {'1'}

BiasAdd 2.2.3. Bias: Additive
adjustment

string {'0'}

Data Type Scaling Strip (Scaling Strip) (masked subsystem)

IC (InitialCondition)

Value Initial value string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Probe (Probe)

ProbeWidth Probe width {'on'} | 'off'

ProbeSampleTime Probe sample time {'on'} | 'off'

ProbeComplexSignal Detect complex signal {'on'} | 'off'

ProbeSignalDimensions Probe signal dimensions {'on'} | 'off'

ProbeFramedSignal Detect framed signal {'on'} | 'off'

8-158

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ProbeWidthDataType Data type for width {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeSampleTimeDataType Data type for sample time {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeComplexityDataType Data type for signal complexity {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeDimensionsDataType Data type for signal
dimensions

{'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

ProbeFrameDataType Data type for signal frames {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean' | 'Same as
input'

Rate Transition (RateTransition)

Integrity Ensure data integrity during
data transfer

{'on'} | 'off'

8-159

8 Model and Block Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Deterministic Ensure deterministic data
transfer (maximum delay)

{'on'} | 'off'

X0 Initial conditions string {'0'}

OutPortSampleTimeOpt Output port sample time
options

{'Specify'} | 'Inherit' |
'Multiple of input port
sample time'

OutPortSampleTimeMultiple Sample time multiple (>0) string {'1'}

OutPortSampleTime Output port sample time string {'-1'}

Signal Conversion (SignalConversion)

ConversionOutput Output {'Contiguous copy'} |
'Bus copy' | 'Virtual
bus' | 'Nonvirtual bus'

OverrideOpt Override optimizations and
always copy signal

'on' | {'off'}

Signal Specification (SignalSpecification)

Dimensions Dimensions (-1 for inherited) string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

8-160

Block-Specific Parameters

Signal Attributes Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Weighted Sample Time (Sample Time Math) (masked subsystem)

TsampMathOp Operation '+' | '-' | '*' | '/' |
{'Ts Only'} | '1/Ts Only'

weightValue Weight value string {'1.0'}

TsampMathImp Implement using {'Online Calculations'}
| 'Offline Scaling
Adjustment'

OutputDataTypeScaling
Mode

Output data type and scaling {'Inherit via internal
rule'} | 'Inherit via
back propagation'

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Width (Width)

OutputDataTypeScaling
Mode

Output data type mode {'Choose intrinsic data
type'} | 'Inherit via
back propagation' | 'All
ports same datatype'

DataType Output data type {'double'} | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

Signal Routing Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Bus Assignment (BusAssignment)

AssignedSignals Signals that are being
assigned

string {''}

8-161

8 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSignals Signals in the bus matrix {'{}'}

Bus Creator (BusCreator)

Inputs Number of inputs. Can
be an integer or a
comma-separated list
of signal names. For
example, set_param(gcb,
'''a'',''b''); sets the
currently selected Bus
Creator block two have two
inputs named a and b.

string {'2'}

DisplayOption 'none' | 'signals' | {'bar'}

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for specifying bus
properties

string {'BusObject'}

NonVirtualBus Output as nonvirtual bus 'on' | {'off'}

Bus Selector (BusSelector)

OutputSignals Specifies the names of the
input bus signals selected for
output. Corresponds to the
Selected signals list on the
block’s parameter dialog box.

string {'signal1,signal2'}

OutputAsBus Output as bus 'on' | {'off'}

InputSignals Specifies the names of
the signal elements of the
bus connected to the Bus
Selector’s input port.

matrix {'{}'}

Data Store Memory (DataStoreMemory)

DataStoreName Data store name string {'A'}

8-162

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

ReadBeforeWriteMsg Detect read before write 'none' | {'warning'} |
'error'

WriteAfterWriteMsg Detect write after write 'none' | {'warning'} |
'error'

WriteAfterReadMsg Detect write after read 'none' | {'warning'} |
'error'

InitialValue Initial value string {'0'}

StateMustResolveTo
SignalObject

Data store name must
resolve to Simulink signal
object

'on' | {'off'}

RTWStateStorageClass Real-Time Workshop storage
class

{'Auto'} | 'ExportedGlobal'
| 'ImportedExtern' |
'ImportedExternPointer'

RTWStateStorageType
Qualifier

Real-Time Workshop type
qualifier

string {''}

VectorParams1D Interpret vector parameters
as 1-D

{'on'} | 'off'

ShowAdditionalParam Show additional parameters 'on' | {'off'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single' |
'int8' | 'uint8' | 'int16'
| 'uint16' | 'int32' |
'uint32' | 'boolean'

SignalType Signal type {'auto'} | 'real' |
'complex'

Data Store Read (DataStoreRead)

DataStoreName Data store name string {'A'}

8-163

8 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTime Sample time string {'0'}

Data Store Write (DataStoreWrite)

DataStoreName Data store name string {'A'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Demux (Demux)

Outputs Number of outputs string {'2'}

DisplayOption Display option 'none' | {'bar'}

BusSelectionMode Bus selection mode 'on' | {'off'}

Environment Controller (Environment Controller) (masked subsystem)

From (From)

GotoTag Goto tag string {'A'}

IconDisplay Icon display 'Signal name' | {'Tag'} |
'Tag and signal name'

Goto (Goto)

GotoTag Tag string {'A'}

IconDisplay Icon display 'Signal name' | {'Tag'} |
'Tag and signal name'

TagVisibility Tag visibility {'local'} | 'scoped' |
'global'

Goto Tag Visibility (GotoTagVisibility)

GotoTag Goto tag string
{'A'}

Index Vector (MultiPortSwitch)

Inputs Number of inputs string {'1'}

zeroidx Use zero-based indexing {'on'} | 'off'

8-164

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

InputSameDT Require all data port inputs
to have same data type

'on' | {'off'}

OutDataTypeMode Output data type mode {'Inherit via internal
rule'} | 'Inherit via back
propagation'

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Manual Switch (Manual Switch) (masked subsystem)

sw Current setting string {'1'}

action Action string {'0'}

Merge (Merge)

Inputs Number of inputs string {'2'}

InitialOutput Initial output string {'[]'}

AllowUnequalInput
PortWidths

Allow unequal port widths 'on' | {'off'}

InputPortOffsets Input port offsets string {'[]'}

Multiport Switch (MultiPortSwitch)

Inputs Number of inputs string {'3'}

zeroidx Use zero-based indexing 'on' | {'off'}

InputSameDT Require all data port inputs
to have the same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

8-165

8 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32'

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Mux (Mux)

Inputs Number of inputs string {'2'}

DisplayOption Display option 'none' | 'signals' | {'bar'}

UseBusObject For internal use

BusObject For internal use

NonVirtualBus For internal use

Selector (Selector)

NumberOfDimensions Number of input dimensions string {'1'}

IndexMode Index mode 'Zero-based' | {'One-based'}

IndexOptionArray Index Option 'Select all' | {'Index
vector (dialog)'} | 'Index
vector (port)' | 'Starting
index (dialog)' | 'Starting
index (port)'

8-166

Block-Specific Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IndexParamArray Index cell array

OutputSizeArray Output Size cell array

InputPortWidth Input port size string {'1'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

IndexOptions See IndexOptionArray
parameter for more
information.

Indices See IndexParamArray
parameter for more
information.

OutputSizes See OutputSizeArray
parameter for more
information.

Switch (Switch)

Criteria Criteria for passing first
input

{'u2 >= Threshold'} | 'u2 >
Threshold' | 'u2 ~= 0'

Threshold Threshold string {'0'}

InputSameDT Require all data port inputs
to have the same data type

'on' | {'off'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
via internal rule'} |
'Inherit: Inherit via back
propagation' | 'double' |
'single' | 'int8' | 'uint8'
| 'int16' | 'uint16' |
'int32' | 'uint32'

8-167

8 Model and Block Parameters

Signal Routing Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round integer calculations
toward

'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

SaturateOnInteger
Overflow

Saturate on integer overflow 'on' | {'off'}

ZeroCross Enable zero crossing
detection

{'on'} | 'off'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Sinks Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Display (Display)

Format Format {'short'} | 'long' |
'short_e' | 'long_e' |
'bank' | 'hex (Stored
Integer)' | 'binary
(Stored Integer)'
| 'decimal (Stored
Integer)' | 'octal
(Stored Integer)'

Decimation Decimation string {'1'}

Floating Floating display 'on' | {'off'}

SampleTime Sample time (-1 for inherited) string {'-1'}

Floating Scope (Scope)

Floating {'on'} | 'off'

8-168

Block-Specific Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Location rectangle {'[376 294 700
533]'}

Open 'on' | {'off'}

NumInputPorts string {'1'}

TickLabels 'on' | 'off' |
{'OneTimeTick'}

ZoomMode {'on'} | 'xonly' |
'yonly'

AxesTitles list

Grid ’off' | {'on'} | 'xonly' |
'yonly'

TimeRange string {'auto'}

YMin string {'-5'}

YMax string {'5'}

SaveToWorkspace 'on' | {'off'}

SaveName string {'ScopeData'}

DataFormat {'StructureWithTime'} |
'Structure' | 'Array'

LimitDataPoints {'on'} | 'off'

MaxDataPoints string {'5000'}

Decimation string {'1'}

SampleInput 'on' | {'off'}

SampleTime string {'0'}

Out1 (Outport)

Port Port number string {'1'}

8-169

8 Model and Block Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for specifying bus
properties

string {'BusObject'}

BusOutputAsStruct Output as nonvirtual bus in
parent model

'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

OutputWhenDisabled Output when disabled {'held'} | 'reset'

InitialOutput Initial output string {'[]'}

Scope (Scope)

Floating 'on' | {'off'}

8-170

Block-Specific Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Location rectangle {'[188 390 512
629]'}

Open 'on' | {'off'}

NumInputPorts string {'1'}

TickLabels 'on' | 'off' |
{'OneTimeTick'}

ZoomMode {'on'} | 'xonly' |
'yonly'

AxesTitles list

Grid 'off' | {'on'} | 'xonly'
| 'yonly'

TimeRange string {'auto'}

YMin string {'-5'}

YMax string {'5'}

SaveToWorkspace 'on' | {'off'}

SaveName string {'ScopeData1'}

DataFormat {'StructureWithTime'} |
'Structure' | 'Array'

LimitDataPoints {'on'} | 'off'

MaxDataPoints string {'5000'}

Decimation string {'1'}

SampleInput 'on' | {'off'}

SampleTime string {'0'}

Stop Simulation

Terminator

To File (ToFile)

Filename Filename string {'untitled.mat'}

8-171

8 Model and Block Parameters

Sinks Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

MatrixName Variable name string {'ans'}

Decimation Decimation string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

To Workspace (ToWorkspace)

VariableName Variable name string {'simout'}

MaxDataPoints Limit data points to last string {'inf'}

Decimation Decimation string {'1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

SaveFormat Save format 'Structure With Time' |
{'Structure'} | 'Array'

FixptAsFi Log fixed-point data as an fi
object

'on' | {'off'}

XY Graph (XY scope) (masked subsystem)

xmin x-min string {'-1'}

xmax x-max string {'1'}

ymin y-min string {'-1'}

ymax y-max string {'1'}

st Sample time string {'-1'}

Sources Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Band-Limited White Noise (Band-Limited White Noise) (masked subsystem)

Cov Noise power string {'[0.1]'}

Ts Sample time string {'0.1'}

seed Seed string {'[23341]'}

8-172

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Chirp Signal (chirp) (masked subsystem)

f1 Initial frequency (Hz) string {'0.1'}

T Target time (secs) string {'100'}

f2 Frequency at target time (Hz) string {'1'}

VectorParams1D Interpret vectors parameters
as 1-D

{'on'} | 'off'

Clock (Clock)

DisplayTime Display time 'on' | {'off'}

Decimation Decimation string
{'10'}

Constant (Constant)

Value Constant value string {'1'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

SamplingMode Sampling mode string {'Sample based'} |
'Frame based'

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'Inherit: Inherit
from 'Constant value''}
| 'Inherit: Inherit
via back propagation'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

8-173

8 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTime Sample time string {'inf'}

FramePeriod Frame period string {'inf'}

Counter Free-Running (Counter Free-Running) (masked subsystem)

NumBits Number of Bits string {'16'}

tsamp Sample time string {'-1'}

Counter Limited (Counter Limited) (masked subsystem)

uplimit Upper limit string {'7'}

tsamp Sample time string {'-1'}

Digital Clock (DigitalClock)

SampleTime Sample time string {'1'}

From File (FromFile)

FileName Filename string {'untitled.mat'}

SampleTime Sample time string {'0'}

From Workspace (FromWorkspace)

VariableName Data string {'simin'}

SampleTime Sample time string {'0'}

Interpolate Interpolate data {'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

OutputAfterFinalValue Form output after final data
value by

{'Extrapolation'} |
'Setting to zero' |
'Holding final value'
| 'Cyclic repetition'

Ground

In1 (Inport)

Port Port number string {'1'}

8-174

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

IconDisplay Icon display 'Signal name' | {'Port
number'} | 'Port number
and signal name'

UseBusObject Specify properties via bus
object

'on' | {'off'}

BusObject Bus object for specifying bus
properties

string {'BusObject'}

BusOutputAsStruct Output as nonvirtual bus 'on' | {'off'}

PortDimensions Port dimensions (-1 for
inherited)

string {'-1'}

SampleTime Sample time (-1 for inherited) string {'-1'}

OutMin Minimum string {'[]'}

OutMax Maximum string {'[]'}

OutDataTypeStr Data type string {'Inherit: auto'}
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32' |
'boolean'

SignalType Signal type {'auto'} | 'real' |
'complex'

SamplingMode Sampling mode {'auto'} | 'Sample based'
| 'Frame based'

LatchByDelaying
OutsideSignal

Latch input by delaying
outside signal

'on' | {'off'}

LatchByCopying
InsideSignal

Latch input by copying inside
signal

'on' | {'off'}

Interpolate Interpolate data {'on'} | 'off'

Pulse Generator (DiscretePulseGenerator)

8-175

8 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

PulseType Pulse type {'Time based'} | 'Sample
based'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Period Period string {'2'}

PulseWidth Pulse width string {'50'}

PhaseDelay Phase delay string {'0'}

SampleTime Sample time string {'1'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Ramp (Ramp) (masked subsystem)

slope Slope string {'1'}

start Start time string {'0'}

X0 Initial output string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Random Number (RandomNumber)

Mean Mean string {'0'}

Variance Variance string {'1'}

Seed Initial seed string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Repeating Sequence (Repeating table) (masked subsystem)

rep_seq_t Time values string {'[0 2]'}

8-176

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

rep_seq_y Output values string {'[0 2]'}

Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)

OutValues Vector of output values string {'[3 1 4 2 1].''}

TimeValues Vector of time values string {'[0 0.1 0.5 0.6
1].''}

LookUpMeth Lookup Method {'Interpolation-Use End
Values'} | 'Use Input
Nearest' | 'Use Input
Below' | 'Use Input
Above'

tsamp Sample time string {'0.01'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'float('double')'}
| 'Inherit: Inherit
via back propagation'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)

OutValues Vector of output values string {'[3 1 4 2 1].''}

8-177

8 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

tsamp Sample time string {'-1'}

OutMin Output minimum string {'[]'}

OutMax Output maximum string {'[]'}

OutDataTypeStr Output data type string {'float('double')'}
| 'Inherit: Inherit
via back propagation'
| 'double' | 'single'
| 'int8' | 'uint8' |
'int16' | 'uint16' |
'int32' | 'uint32'

OutputDataTypeScaling
Mode

Deprecated

OutDataType Deprecated

ConRadixGroup Deprecated

OutScaling Deprecated

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

Signal Builder (Sigbuilder block) (masked subsystem)

Signal Generator (SignalGenerator)

WaveForm Wave form {'sine'} | 'square' |
'sawtooth' | 'random'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Frequency Frequency string {'1'}

Units Units 'rad/sec' | {'Hertz'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

8-178

Block-Specific Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

Sine Wave (Sin)

SineType Sine type {'Time based'} | 'Sample
based'

TimeSource Time (t) {'Use simulation time'} |
'Use external signal'

Amplitude Amplitude string {'1'}

Bias Bias string {'0'}

Frequency Frequency (rad/sec) string {'1'}

Phase Phase (rad) string {'0'}

Samples Samples per period string {'10'}

Offset Number of offset samples string {'0'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

Step (Step)

Time Step time string {'1'}

Before Initial value string {'0'}

After Final value string {'1'}

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

ZeroCross Enable zero crossing detection {'on'} | 'off'

Uniform Random Number (UniformRandomNumber)

Minimum Minimum string {'-1'}

Maximum Maximum string {'1'}

Seed Initial seed string {'0'}

8-179

8 Model and Block Parameters

Sources Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SampleTime Sample time string {'0'}

VectorParams1D Interpret vector parameters as
1-D

{'on'} | 'off'

User-Defined Functions Library Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Embedded MATLAB™ Fcn (Stateflow) (masked subsystem)

Fcn (Fcn)

Expr Expression string
{'sin(u(1)*exp(2.3*(-u(2))))'}

SampleTime Sample time (-1 for
inherited)

string {'-1'}

Level-2 M-file S-Function (M-S-Function)

FunctionName M-file name string {'mlfile'}

Parameters Parameters string {''}

MATLAB® Fcn (MATLABFcn)

MATLABFcn MATLAB function string {'sin'}

OutputDimensions Output dimensions string {'-1'}

OutputSignalType Output signal type {'auto'} | 'real' | 'complex'

Output1D Collapse 2-D results to
1-D

{'on'} | 'off'

SampleTime Sample time (-1 for
inherited)

string {'-1'}

S-Function (S-Function)

FunctionName S-function name string {'system'}

Parameters S-function parameters string {''}

8-180

Block-Specific Parameters

User-Defined Functions Library Block Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

SFunctionModules S-function modules string {''}

S-Function Builder (S-Function Builder) (masked subsystem)

FunctionName S-function name string {'system'}

Parameters S-function parameters string {''}

SFunctionModules S-function modules string {''}

Additional Discrete Block Library Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Fixed-Point State-Space (Fixed-Point State-Space) (masked subsystem)

A State Matrix A string {'[2.6020 -2.2793
0.6708; 1 0 0; 0 1 0]'}

B Input Matrix B string {'[1; 0; 0]'}

C Output Matrix C string {'[0.0184 0.0024
0.0055]'}

D Direct Feedthrough Matrix D string {'[0.0033]'}

X0 Initial condition for state string {'0.0'}

InternalDataType Data type for internal
calculations: ex. sfix(16),
uint(8), float('single')

string {'float('double')'}

StateEqScaling Scaling for State Equation
AX+BU: ex. 2^-9

string {'2^0'}

OutputEqScaling Scaling for Output Equation
CX+DU: ex. 2^-9

string {'2^0'}

LockScale Lock output scaling against
changes by the autoscaling
tool

'on' | {'off'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

8-181

8 Model and Block Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)

NumCoefVec Numerator coefficients string {'[0.2 0.3 0.2]'}

DenCoefVec Denominator coefficients
excluding lead (which must be
1.0)

string {'[-0.9 0.6]'}

vinit Initial condition string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying)
(masked subsystem)

vinit Initial condition string {'0.0'}

RndMeth Round toward 'Zero' | 'Nearest' |
'Ceiling' | {'Floor'}

DoSatur Saturate to max or min when
overflows occur

'on' | {'off'}

Unit Delay Enabled (Unit Delay Enabled) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay Enabled External IC (Unit Delay Enabled External Initial Condition)
(masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay Enabled Resettable (Unit Delay Enabled Resettable) (masked subsystem)

vinit Initial condition string
{'0.0'}

8-182

Block-Specific Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

tsamp Sample time string
{'-1'}

Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External
Initial Condition) (masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay External IC (Unit Delay External Initial Condition) (masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay Resettable External IC (Unit Delay Resettable External Initial Condition)
(masked subsystem)

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled
Resettable) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview
Enabled Resettable External RV) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked
subsystem)

8-183

8 Model and Block Parameters

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter Dialog Box Prompt Values

vinit Initial condition string
{'0.0'}

tsamp Sample time string
{'-1'}

Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable
External RV) (masked subsystem)

vinit Initial condition string {'0.0'}

tsamp Sample time string {'-1'}

Additional Math: Increment - Decrement Block Parameters

Block (Type)/Parameter Dialog Box Prompt Values

Decrement Real World (Real World Value Decrement) (masked subsystem)

Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)

Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)

Decrement To Zero (Decrement To Zero) (masked subsystem)

Increment Real World (Real World Value Increment) (masked subsystem)

Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)

8-184

Mask Parameters

Mask Parameters

In this section...

“About Mask Parameters” on page 8-185

“Setting Mask Parameters” on page 8-190

“How Masked Parameters are Stored” on page 8-190

About Mask Parameters
This section lists parameters that describe masked blocks. This table lists
masking parameters, which correspond to Mask Editor dialog box parameters
(see “Setting Mask Parameters” on page 8-190).

Mask Parameters

Parameter Description/Prompt Values

Mask Turns mask on or off. {'on'} | 'off'

MaskCallbackString Mask parameter callbacks
that are executed when
the respective parameter is
changed on the dialog. Set by
the Dialog callback field on
the Parameters pane of the
Mask Editor dialog box.

pipe-delimited string {''}

MaskCallbacks Cell array version of
MaskCallbackString.

cell array {'[]'}

MaskDescription Block description. Set by the
Mask description field on
the Documentation pane of
the Mask Editor dialog box.

string {''}

MaskDisplay Drawing commands for
the block icon. Set by the
Drawing commands field
on the Icon pane of the Mask
Editor dialog box.

string {''}

8-185

8 Model and Block Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskEditorHandle For internal use.

MaskEnableString Option that determines
whether a parameter is greyed
out in the dialog. Set by the
Enable parameter check box
on the Parameters pane of
the Mask Editor dialog box.

pipe-delimited string {''}

MaskEnables Cell array version of
MaskEnableString.

cell array of strings, each
either 'on' or ’'off' {'[]'}

MaskHelp Block help. Set by the
Mask help field on the
Documentation pane of the
Mask Editor dialog box.

string {''}

MaskIconFrame Set the visibility of the icon
frame (Visible is on, Invisible
is off). Set by the Frame
option on the Icon pane of the
Mask Editor dialog box.

{'on'} | 'off'

MaskIconOpaque Set the transparency of
the icon (Opaque is on,
Transparent is off). Set by
the Transparency option on
the Icon pane of the Mask
Editor dialog box.

{'on'} | 'off'

MaskIconRotate Set the rotation of the icon
(Rotates is on, Fixed is off).
Set by the Rotation option
on the Icon pane of the Mask
Editor dialog box.

'on' | {'off'}

MaskIconUnits Set the units for the drawing
commands. Set by the Units
option on the Icon pane of the
Mask Editor dialog box.

'pixel' | {'autoscale'} |
'normalized'

8-186

Mask Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskInitialization Initialization commands.
Set by the Initialization
commands field on the
Initialization pane of the
Mask Editor dialog box.

MATLAB® command {''}

MaskNames Cell array of mask dialog
parameter names. Set inside
the Variable column in the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskPrompts List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of
the Mask Editor dialog box.

cell array of strings {'[]'}

MaskPromptString List of dialog parameter
prompts (see below). Set inside
the Dialog parameters area
on the Parameters pane of
the Mask Editor dialog box.

string {''}

MaskPropertyName
String

Pipe-delimited version of
MaskNames.

string {''}

MaskRunInitForIconRedraw For internal use.

MaskSelfModifiable Indicates that the block can
modify itself. Set by the Allow
library block to modify its
contents check box on the
Initialization pane of the
Mask Editor dialog box.

'on' | {'off'}

8-187

8 Model and Block Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskStyles Determines whether the
dialog parameter is a check
box, edit field, or pop-up list.
Set by the Type column in the
Parameters pane of the Mask
Editor dialog box.

cell array {'[]'}

MaskStyleString Comma-separated version of
MaskStyles.

string {''}

MaskTabNameString For internal use.

MaskTabNames For internal use.

MaskToolTipsDisplay Determines which mask dialog
parameters to display in the
data tip for this masked block
(see "Block Data Tips" in the
Simulink® documentation).
Specify as a cell array of
'on' or 'off' values, each of
which indicates whether to
display the parameter named
at the corresponding position
in the cell array returned by
MaskNames.

cell array of 'on' and 'off'
{’’}

MaskToolTipString Comma-delimited version of
MaskToolTipsDisplay.

string {''}

MaskTunableValues Allows the changing of
mask dialog values during
simulation. Set by the
Tunable column in the
Parameters pane of the Mask
Editor dialog box.

cell array of strings {'[]'}

MaskTunableValueString Comma-delimited
string version of
MaskTunableValues.

delimited string {''}

8-188

Mask Parameters

Mask Parameters (Continued)

Parameter Description/Prompt Values

MaskType Mask type. Set by the
Mask type field on the
Documentation pane of the
Mask Editor dialog box.

string {'Stateflow'}

MaskValues Dialog parameter values. cell array {'[]'}

MaskValueString Delimited string version of
MaskValues.

delimited string {''}

MaskVarAliases Specify aliases for a block’s
mask parameters. The aliases
must appear in the same order
as the parameters appear
in the block’s MaskValues
parameter.

cell array {'[]'}

MaskVarAliasString For internal use.

MaskVariables List of the dialog parameters’
variables (see below). Set
inside the Dialog parameters
area on the Parameters pane
of the Mask Editor dialog box.

string {''}

MaskVisibilities Specifies visibility of
parameters. Set with the
Show parameter check box
in the Options for selected
parameter area on the
Parameters pane of the Mask
Editor dialog box.

matrix {'[]'}

MaskVisibilityString Delimited string version of
MaskVisibilities.

string {''}

MaskWSVariables List of the variables defined
in the mask workspace (read
only).

matrix {'[]'}

8-189

8 Model and Block Parameters

Setting Mask Parameters
When you use the Mask Editor to create a dialog box parameter for a masked
block, you provide this information:

• The prompt, which you enter in the Prompt field

• The variable that holds the parameter value, which you enter in the
Variable field

• The type of field created, which you specify by selecting a control Type

• Whether the value entered in the field is to be evaluated or stored as a
literal, which you specify by selecting an Evaluate type

How Masked Parameters are Stored
The mask parameters, listed in the preceding table, store the values specified
for the dialog box parameters in these ways:

• The Prompt field values for all dialog box parameters are stored in the
MaskPromptString parameter as a string, with individual values separated
by a vertical bar (|), as shown in this example:

"Slope:|Intercept:"

• The Variable field values for all dialog box parameters are stored in
the MaskVariables parameter as a string, with individual assignments
separated by a semicolon. A sequence number indicates the prompt that
is associated with a variable. A special character preceding the sequence
number indicates the Evaluate type: @ indicates Evaluate, & indicates
Literal.

For example, “a=@1;b=&2;” indicates that the value entered in the first
parameter field is assigned to variable a and is evaluated in the MATLAB
workspace before assignment, and the value entered in the second field is
assigned to variable b and is stored as a literal, which means that its value
is the string entered in the dialog box.

• The control Type field values for all dialog box parameters are stored
in the MaskStyleString parameter as a string, with individual values
separated by a comma. The Popup strings values appear after the popup
type, as shown in this example:

8-190

Mask Parameters

"edit,checkbox,popup(red|blue|green)"

• The parameter values are stored in the MaskValueString mask parameter
as a string, with individual values separated by a vertical bar. The order of
the values is the same as the order in which the parameters appear on the
dialog box. For example, these statements define values for the parameter
field prompts and the values for those parameters:

MaskPromptString "Slope:|Intercept:"
MaskValueString "2|5"

8-191

8 Model and Block Parameters

8-192

9

Model File Format

Model File Contents (p. 9-2) File formats for Simulink® software

9 Model File Format

Model File Contents

In this section...

“About Model File Formats” on page 9-2

“Model Section” on page 9-4

“Simulink.ConfigSet Section” on page 9-5

“BlockDefaults Section” on page 9-5

“BlockParameterDefaults Section” on page 9-6

“AnnotationDefaults Section” on page 9-7

“LineDefaults Section” on page 9-7

“System Section” on page 9-7

About Model File Formats
A model file is a structured ASCII file that contains keywords and
parameter-value pairs that describe the model. The file describes model
components in hierarchical order.

The structure of the model file is as follows.

Model {
<Model Parameter Name> <Model Parameter Value>
...
Array {

Simulink.ConfigSet {
$ObjectID <Object ID>
<ConfigSet Parameter Name> <ConfigSet Parameter Value>
...

}
}
Simulink.ConfigSet {

$PropName "ActiveConfigurationSet"
$ObjectID <Object ID>

}
BlockDefaults {

<Block Parameter Name> <Block Parameter Value>

9-2

Model File Contents

...
}
BlockParameterDefaults {

Block {
<Block Parameter Name> <Block Parameter Value>
...

}
}
AnnotationDefaults {

<Annotation Parameter Name> <Annotation Parameter Value>
...

}
LineDefaults {

<Line Parameter Name> <Line Parameter Value>
...

}
System {

<System Parameter Name> <System Parameter Value>
...
Block {

<Block Parameter Name> <Block Parameter Value>
...

}
Line {

<Line Parameter Name> <Line Parameter Value>
...
Branch {

<Branch Parameter Name> <Branch Parameter Value>
...

}
}
Annotation {

<Annotation Parameter Name> <Annotation Parameter Value>
...

}
}

}

See Chapter 8, “Model and Block Parameters” for descriptions of model and
block parameters.

9-3

9 Model File Format

This reference contains examples of each section, extracted from the model
file of the following model:

Model Section
The Model section, located at the top of the model file, contains all other
sections of the model file and defines the values for model-level parameters.
These parameters include the model name, the version of Simulink® software
last used to modify the model, and configuration set parameters (see
“Configuration Sets” in the online Simulink documentation) among others.

The following example shows parts of the Model section for a model.

Model {
Name "my_model"
Version 6.4
MdlSubVersion 0
GraphicalInterface {

NumRootInports 0
NumRootOutports 0
ParameterArgumentNames ""
ComputedModelVersion "1.10"
NumModelReferences 0
NumTestPointedSignals 0

}
SavedCharacterEncoding "windows-1252"
SaveDefaultBlockParams on
...
Array {

Type "Handle"

9-4

Model File Contents

Dimension 2
Simulink.ConfigSet {

$ObjectID 1
Version "1.2.0"
Array {

Type "Handle"
Dimension 7
Simulink.SolverCC {
...
}

...
}

...
}

...
}
...

}

Simulink.ConfigSet Section
The Simulink.ConfigSet section appears after the configuration set
parameters. This section identifies the active configuration set for the model
(see “The Active Set” in the online Simulink documentation).

The following example shows the Simulink.ConfigSet section for a model.

Simulink.ConfigSet {
$PropName "ActiveConfigurationSet"
$ObjectID 1

}

BlockDefaults Section
The BlockDefaults section appears after the Simulink.ConfigSet section.
This section defines the default values for common block parameters in the
model. These values can be overridden by individual block parameters,
defined in Block subsections of System sections.

The following example shows the BlockDefaults section for a model.

BlockDefaults {

9-5

9 Model File Format

Orientation "right"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
NamePlacement "normal"
FontName "Arial"
FontSize 10
FontWeight "normal"
FontAngle "normal"
ShowName on

}

BlockParameterDefaults Section
The BlockParameterDefaults section appears after the BlockDefaults
section. This section defines the default values for block-specific parameters
using Block subsections. Each Block subsection defines the default
parameter-value pairs for a particular type of block in the model. These
values can be overridden by individual block parameters, defined in Block
subsections of System sections.

The following example shows part of the BlockParameterDefaults section
for a model.

BlockParameterDefaults {
Block {

BlockType Constant
}
Block {

BlockType Display
Format "short"
Decimation "10"
Floating off
SampleTime "-1"

}
...

}

9-6

Model File Contents

AnnotationDefaults Section
The AnnotationDefaults section appears after the BlockParameterDefaults
section. This section defines the default parameters for all annotations in the
model (see Simulink.Annotation).

The following example shows the AnnotationDefaults section for a model.

AnnotationDefaults {
HorizontalAlignment "center"
VerticalAlignment "middle"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
FontName "Courier New"
FontSize 10
FontWeight "normal"
FontAngle "normal"

}

LineDefaults Section
The LineDefaults section appears after the AnnotationDefaults section.
This section defines the default parameters for all lines in the model.

The following example shows the LineDefaults section for a model.

LineDefaults {
FontName "Courier New"
FontSize 9
FontWeight "normal"
FontAngle "normal"

}

System Section
The top-level system and each subsystem in the model are described in
a separate System section. Each System section defines system-level
parameters and includes Block, Line, and Annotation sections for each block,
line, and annotation in the system. Each Line that contains a branch point
includes a Branch section that defines the branch line.

9-7

9 Model File Format

The following example shows parts of the System section for a model.

System {
Name "my_model"
Location [480, 85, 1206, 386]
Open on
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
...
Block {

BlockType Constant
Name "Constant"
Position [65, 100, 95, 130]
Value "2"
...

}
...
Line {

SrcBlock "Gain"
SrcPort 1
Points [25, 0]

Branch {
Points [0, 70]
DstBlock "Scope"
DstPort 1

}
Branch {

Points [20, 0]
DstBlock "Display"
DstPort 1

}
}
...

9-8

Model File Contents

Annotation {
Name "This model generates..."
Position [149, 234]
UseDisplayTextAsClickCallback off

}
}

9-9

9 Model File Format

9-10

10

Model Advisor Checks

Simulink® Checks (p. 10-2) Describes Model Advisor Checks for
Simulink® software

10 Model Advisor Checks

Simulink® Checks

In this section...

“Simulink® Check Overview” on page 10-3

“Check model, local libraries, and referenced models for known upgrade
issues” on page 10-3

“Identify unconnected lines, input ports, and output ports” on page 10-5

“Check root model Inport block specifications” on page 10-6

“Check optimization settings” on page 10-7

“Check for parameter tunability information ignored for referenced models”
on page 10-8

“Check for implicit signal resolution” on page 10-9

“Check for optimal bus virtuality” on page 10-10

“Check for Discrete-Time Integrator blocks with initial condition
uncertainty” on page 10-11

“Identify disabled library links” on page 10-12

“Identify parameterized library links” on page 10-13

“Identify unresolved library links” on page 10-14

“Check for proper bus usage” on page 10-15

“Check for potentially delayed function-call subsystem return values” on
page 10-16

“Identify block output signals with continuous sample time and non-floating
point data type” on page 10-17

“Check for proper Merge block usage” on page 10-18

10-2

Simulink® Checks

Simulink® Check Overview
Use the Simulink® Model Advisor checks to configure your model for
simulation.

See Also

• Consulting Model Advisor in the Simulink documentation.

• Real-Time Workshop Model Advisor Check Reference in the Real-Time
Workshop® documentation.

• Simulink Verification and Validation Model Advisor Check Reference in the
Simulink® Verification and Validation™ documentation.

Check model, local libraries, and referenced models
for known upgrade issues
Uses the slupdate command analysis mode to check for common upgrade
issues.

Description
Check blocks, settings, and references in the model for compatibility issues
resulting from using a new version of Simulink software.

Results and Recommended Actions

Condition Recommended Action

Referenced models recommended for
update.

Run Simulink update tool,
slupdate on the listed
models.

Check library update status. Verify that indicated libraries
are valid.

Check update status for the Level 2 API
S-functions.

Consider replacing Level 1
S-functions with Level 2.

Blocks have configuration sets or ports with
undesired settings.

Run Simulink update tool,
slupdate in update mode.

10-3

10 Model Advisor Checks

See Also

• slupdate in the Simulink documentation.

• Writing S-Functions in the Simulink documentation.

10-4

Simulink® Checks

Identify unconnected lines, input ports, and output
ports
Check for unconnected lines or ports.

Description
This check lists unconnected lines or ports. These can have difficulty
propagating signal attributes such as data type, sample time, and dimensions.

Note Ports connected to ground/terminator blocks will pass this test.

Results and Recommended Actions

Condition Recommended Action

Lines, input ports, or output ports are
unconnected.

Ensure all signals are
connected. Double-click the
list of unconnected items to
locate failure.

Tips
Use the PortConnectivity command to obtain an array of structures
describing block input or output ports.

See Also
“Common Block Parameters” on page 8-66 in the Simulink documentation for
information on the PortConnectivity command.

10-5

10 Model Advisor Checks

Check root model Inport block specifications
Check that root model Inport blocks fully define dimensions, sample time,
and data type.

Description
Using root model Inport blocks that do not fully define dimensions, sample
time, or data type can lead to undesired simulation results. Simulink software
back-propagates dimensions, sample times and data types from downstream
blocks unless you explicitly assign them values.

Results and Recommended Actions

Condition Recommended Action

Root-level Inport blocks have undefined
attributes.

Fully define the attributes of
all root-level Inport blocks.

See Also

• “Working with Data Types” in the Simulink documentation.

• “Determining Output Signal Dimensions” in the Simulink documentation.

• “Specifying Sample Time” in the Simulink documentation.

10-6

Simulink® Checks

Check optimization settings
Unselected optimizations during code generation can lead to suboptimal
results.

Description
This check lists code generation optimizations that have been turned off.
Turning them on can improve code efficiency and simulation time.

Results and Recommended Actions

Condition Recommended Action

Listed optimizations not selected. Turn on the listed
optimizations in the
Optimization pane
Configurations Parameters
dialog box.

10-7

10 Model Advisor Checks

Check for parameter tunability information ignored
for referenced models
Checks if parameter tunability information is included in the Model
Parameter Configuration dialog box.

Description
Simulink software ignores tunability information specified in the Model
Parameter Configuration dialog box. This check identifies those models
containing parameter tunability information that Simulink software will
ignore if the model is referenced by other models.

Results and Recommended Actions

Condition Recommended Action

Model contains ignored parameter
tunability information.

Click the links to convert
to equivalent Simulink
parameter objects in the
MATLAB® workspace.

See Also
“Parameter Storage, Interfacing, and Tuning” in the Simulink documentation.

10-8

Simulink® Checks

Check for implicit signal resolution
Identify models that attempt to resolve named signals and states to
Simulink.Signal objects.

Description
Requiring Simulink software to resolve all named signals and states is
inefficient and slows incremental code generation and model reference. This
check identifies those signals and states for which you may turn off implicit
signal resolution and enforce resolution.

Results and Recommended Actions

Condition Recommended Action

Not all signals and states are resolved. Turn off implicit signal
resolution and enforce
resolution for each signal
and state that successfully
resolves.

See Also
“Resolving Signal Objects for Output Data” in the Simulink documentation.

10-9

10 Model Advisor Checks

Check for optimal bus virtuality
Identify virtual buses that could be made nonvirtual. Making these buses
nonvirtual improves generated code efficiency.

Description
This check identifies blocks incorporating virtual buses that cross a model
boundary. Changing these to nonvirtual improves generated code efficiency.

Results and Recommended Actions

Condition Recommended Action

Blocks that specify a virtual bus crossing a
model boundary.

Change the highlighted bus
to nonvirtual.

See Also

• “Working with Signals” in the Simulink documentation.

• “Virtual and Nonvirtual Buses” in the Simulink documentation.

10-10

Simulink® Checks

Check for Discrete-Time Integrator blocks with initial
condition uncertainty
Identify Discrete-Time Integrator blocks with state port and initial condition
ports that are fed by neither an Initial Condition nor a Constant block.

Description
Discrete-Time Integrator blocks with state port and initial condition ports
might not be properly initialized unless they are fed from an Initial Condition
or Constant block. This is more likely to happen when Discrete-Time
Integrator blocks are used to model second-order or higher-order dynamic
systems.

Results and Recommended Actions

Condition Recommended Action

Discrete-Time Integrator blocks are not
initialized during the model initialization
phase.

Add a Constant or Initial
Condition block to feed the
external Initial Condition
port.

See Also

• IC block

• Integrator block

• Constant block

10-11

10 Model Advisor Checks

Identify disabled library links
Search model for disabled library links.

Description
Disabled library links can cause unexpected simulation results. All disabled
links should be resolved before a model is saved.

Note This check may overlap with “Check model, local libraries, and
referenced models for known upgrade issues” on page 10-3.

Results and Recommended Actions

Condition Recommended Action

Library links are disabled. Use Restore Link from the
Link Options setting in the
context menu.

Tips

• Use the Model Browser to find library links.

• To enable a broken link, right-click a block in your model to display the
context menu. Choose Link Options and click Restore Link.

See Also
“The Model Browser” in the Simulink documentation.

10-12

Simulink® Checks

Identify parameterized library links
Search model for parameterized library links.

Description
Parameterized library links that are unintentional can result in unexpected
parameter settings in your model. This can result in improper model
operation.

Results and Recommended Actions

Condition Recommended Action

Parameterized links are listed. Verify that all parameterized
links are intended.

Tips

• Right-click a block in your model to display the context menu. Choose Link
Options and click Go To Library Block to see the original block from
the library.

• To parameterize a library link, choose Look Under Mask, from the context
menu and select the parameter.

See Also
“Creating Block Masks” in the Simulink documentation.

10-13

10 Model Advisor Checks

Identify unresolved library links
Search the model for unresolved library links, where the specified library
block cannot be found.

Description
Check for unresolved library links. Models do not simulate while there are
unresolved library links.

Results and Recommended Actions

Condition Recommended Action

Library links are unresolved. Locate missing library block or an
alternative.

See Also
“Fixing Unresolved Library Links”

10-14

Simulink® Checks

Check for proper bus usage
Identify Mux blocks used as a bus creator and any bus signal that is treated
as a vector.

Description
Models should not contain bus signals that Simulink software implicitly
converts to vectors. Instead, either insert a Bus to Vector conversion block
between the bus signal and the block input port that it feeds, or use the
Simulink.BlockDiagram.addBusToVector command.

Results and Recommended Actions

Condition Recommended Action

Identify signals used as
vectors.

In the Configuration Parameters dialog box, set
Mux blocks used to create bus signals to error.

Model uses buses
properly.

In the Configuration Parameters dialog set
Bus signal treated as vector to error.

Bus signals are implicitly
converted to vectors.

Use Simulink.BlockDiagram.addBusToVector
or insert a Bus to Vector block.

Tips
The Bus to Vector conversion block is located in the Simulink/Signal
Attributes library.

See Also

• Bus to Vector block

• Simulink.BlockDiagram.addBusToVector in the Simulink documentation.

10-15

10 Model Advisor Checks

Check for potentially delayed function-call subsystem
return values
Identify function-call return values that might be delayed because Simulink
software inserted an implicit Signal Conversion block.

Description
To ensure that signals reside in contiguous memory, Simulink software
can automatically insert an implicit Signal Conversion block in front of
function-call initiator block input ports. This can result in a one-step delay in
returning signal values from calling function-call subsystems. The delay can
be avoided by ensuring the signal originates from a signal block within the
function-call system. Or, if the delay is acceptable, insert a Unit Delay block
in front of the affected input ports.

Results and Recommended Actions

Condition Recommended Action

The listed block input ports could have an
implicit Signal Conversion block.

Decide if a one-step delay
in returning signal values
is acceptable for the listed
signals.
• If the delay is not

acceptable, rework
your model so that the
input signal originates
from within the calling
subsystem.

• If the delay is acceptable,
insert a Unit Delay block
in front of each listed input
port.

See Also
Signal Conversion block

Unit Delay block

10-16

Simulink® Checks

Identify block output signals with continuous sample
time and non-floating point data type
Find continuous sample time, non-floating-point output signals.

Description
Non-floating-point signals cannot properly represent continuous variables.

Results and Recommended Actions

Condition Recommended Action

Signals with continuous sample times have
a non-floating-point data type.

On the identified signals,
either change the sample
time to be discrete or
fixed-in-minor-step ([0 1]).

See Also
“Modeling and Simulating Discrete Systems” in the Simulink documentation.

10-17

10 Model Advisor Checks

Check for proper Merge block usage
Analyze Merge blocks in the same tree as a group, and determine the
possibility for them to execute at the same time step.

Description
Blocks that directly drive the same tree of Merge blocks should have mutually
exclusive execution in each time step. This check identifies those blocks
that drive the same tree of Merge blocks, and so are likely to execute at the
same time step.

Input Parameters

Maximum analysis time (seconds)
Provide a maximum analysis time to execute the check.

Results and Recommended Actions

Condition Recommended Action

Merge blocks can be interconnected to form
a tree structure.

Rework your model so that no
blocks drive the same tree of
Merge blocks.

See Also
Merge block

10-18

Index

IndexA
Abs block 1-7 2-2
absolute tolerance

simset parameter 4-150
specifying for a block state 2-381

absolute value
generating 2-2

Accumulator Resettable block 2-6
Accumulator Resettable Limited block 2-6
Action Port block 1-10 2-7
Action subsystems

creating 2-7
with If block 2-343
with SwitchCase block 2-687

Add block 2-675
add_block command 3-2 4-2
add_line command 3-2 4-6
add_param command 3-2 4-8
Additional Discrete block library

block parameters 8-181
Additional Math: Increment - Decrement block

library
block parameters 8-184

addterms command 3-2 4-9
Algebraic Constraint block 1-7 2-11
algebraic equations

modeling 2-11
algebraic loops

integrator block reset or IC port 2-239
analysis functions

perturbing model 2-360
animate 6-6
AnnotationDefaults section of mdl file 9-7
annotations

annotation block. See Model Info block
ashow debug command 6-7
Assert block 1-9 2-13
Assignment block 1-7 2-16
Atomic Subsystem block 2-663
atrace debug command 6-8

attachConfigSet command 3-2 4-10
attachConfigSetCopy command 3-2 4-12
automatic scaling 4-59

and Look-Up Table (2D) block 2-419
autoscale safety margin 4-70
fixptbestprec 4-57

autoscaling
fixptbestprec 4-57

autoscaling Scope axes 2-597

B
Backlash block 1-3 2-22
Backward Euler method 2-236
Backward Rectangular method 2-236
Band-Limited White Noise block 1-15 2-29
bdclose command 3-2 4-14
bdIsLoaded command 3-2 4-15
bdroot command 3-2 4-16
bits

clear 2-40
mask 2-40
set 2-40

block dialog boxes
closing 3-2 4-17
opening 3-3 4-115

block parameters
Additional Discrete library 8-181
Additional Math: Increment - Decrement

library 8-184
changing during simulation 4-126
common 8-66
Continuous library 8-80
Discontinuities library 8-82
Discrete library 8-86
Logic and Bit Operations library 8-96
Lookup Tables library 8-100
Math library 8-107
Model Verification block library 8-125
Model-Wide Utilities library 8-129

Index-1

Index

Ports & Subsystems library 8-131
Signal Attributes library 8-155
Signal Routing library 8-161
Sinks library 8-168
Sources library 8-172
User-defined functions library 8-180

Block Support Table block 2-44
BlockDefaults section of mdl file 9-5
BlockParameterDefaults section of mdl file 9-6
blocks 8-79

Accumulator Resettable 2-6
Accumulator Resettable Limited 2-6
adding to model 3-2 4-2
Compare To Zero 2-106
Counter Limited 2-127
current 3-3 4-79
Data Type Propagation 2-156
Decrement Stored Integer 2-176
Decrement Time To Zero 2-177
Decrement To Zero 2-178
deleting

delete_block command 3-2 4-21
Detect Decrease 2-191
Detect Fall Negative 2-193
Detect Fall Nonpositive 2-194
Detect Increase 2-196
Detect Rise Nonnegative 2-198
Detect Rise Positive 2-200
Filter Direct Form II 2-716
Filter Direct Form II Time Varying 2-719
Filter First Order 2-722
Filter Lead or Lag 2-724
Filter Real Zero 2-727
handle of current 3-3 4-80
Increment Stored Integer 2-357
Index Vector 2-358
Interval Test Dynamic 2-397
Product of Elements Inverted 2-525
Repeating Sequence Stair 2-576
Sample Time Divide 2-801

Sample Time Multiply 2-802
Sample Time Probe 2-802
Sample Time Subtract 2-802
Unit Delay Enabled External IC 2-758
Unit Delay Enabled Resettable 2-760
Unit Delay Enabled Resettable External

IC 2-763
Unit Delay External IC 2-766
Unit Delay Resettable 2-768
Unit Delay Resettable External IC 2-770
Unit Delay With Preview Enabled 2-772
Unit Delay With Preview Enabled

Resettable 2-775
Unit Delay With Preview Enabled Resettable

External RV 2-778
Unit Delay With Preview Resettable 2-781
Unit Delay With Preview Resettable External

RV 2-784
See also block parameters

bode function 4-102
Boolean expressions

modeling 2-98
break debug command 6-11
bshow debug command 6-13
Bus Assignment block 1-13 2-45
Bus Creator block 1-2 1-13 2-48
Bus Selector block 1-2 1-13 2-54
Bus to Vector block 1-12 2-57

C
capping unconnected blocks

using the Terminator block 2-696
character encoding, model 4-188
Check Discrete Gradient block 1-9 2-59
Check Dynamic Gap block 1-9 2-62
Check Dynamic Lower Bound block 1-9 2-65
Check Dynamic Range block 1-9 2-68
Check Dynamic Upper Bound block 1-9 2-71
Check Input Resolution block 1-9 2-74

Index-2

Index

Check Static Gap block 1-9 2-77
Check Static Lower Bound block 1-10 2-81
Check Static Range block 1-10 2-85
Check Static Upper Bound block 1-10 2-89
Chirp Signal block 1-15 2-93
clear debug command 6-14
clearing bits 2-40
Clock block 1-15 2-96
close_system command 3-2 4-17
closeDialog command 3-2 4-20
clutch demo 2-337
code generation

scaling 2-150
color command 5-4
Combinatorial Logic block 1-5 2-98
combining input lines into vector line 2-493
commands, simulation

Simulink.BlockDiagram.getChecksum 4-167
Simulink.BlockDiagram.getInitialState 4-170
Simulink.SubSystem.getChecksum 4-182

Compare To Zero block 2-106
Complex to Magnitude-Angle block 1-8 2-108
Complex to Real-Imag block 1-8 2-110
Configurable Subsystem block 1-10 2-112
configuration parameters

closing dialog 3-2 4-20
opening dialog 3-3 4-118

configuration reference
activating 3-4 4-128
attaching 3-2 4-10
copying and attaching 3-2 4-12
detaching 3-2 4-24
obtaining 3-3 4-87

active 3-3 4-85
list of names 3-3 4-88

configuration set
activating 3-4 4-128
attaching 3-2 4-10
copying and attaching 3-2 4-12
detaching 3-2 4-24

obtaining 3-3 4-87
active 3-3 4-85
list of names 3-3 4-88

Constant block 1-2 1-15 2-118
constant value

generating 2-118
continue debug command 6-15
Continuous block library

block parameters 8-80
control flow diagrams

Action subsystem 2-7
do-while

While Iterator block 2-806
for

For Iterator block 2-294
if-else

If block 2-343
switch

Switch Case block 2-687
while

While Iterator block 2-806
Cosine block 2-639
Coulomb and Viscous Friction block 1-3 2-123
Coulomb friction 2-123
Counter Limited block 2-127
Create Subsystem menu item 2-663
current block

getting pathname 3-3 4-79
handle 3-3 4-80

current system
getting pathname 3-3 4-81

D
data object classes

Simulink.AliasType 7-7
Simulink.Bus 7-33
Simulink.BusElement 7-36
Simulink.ModelDataLogs 7-86
Simulink.ModelWorkspace 7-90

Index-3

Index

Simulink.NumericType 7-112
Simulink.Parameter 7-120
Simulink.ParamRTWInfo 7-126
Simulink.Signal 7-141
Simulink.StructElement 7-149
Simulink.StructType 7-151
Simulink.SubsysDataLogs 7-154
Simulink.TimeInfo 7-156
Simulink.TsArray 7-159

Data Store Memory block 1-13 2-129
Data Store Read block 1-13 2-138
Data Store Write block 1-13 2-141
Data Type Conversion block 1-2 1-12 2-143
Data Type Propagation block 2-156
data types

propagation 2-156
Dead Zone block 1-3 2-169
deadband 2-22
debug

simset parameter 4-150
debug commands

ashow 6-7
atrace 6-8
break 6-11
bshow 6-13
clear 6-14
continue 6-15
disp 6-16
emode 6-21
etrace 6-22
help 6-23
nanbreak 6-24
next 6-25
probe 6-26
quit 6-27
run 6-29
states 6-32
status 6-33
step 6-34
stop 6-37

strace 6-38
systems 6-40
tbreak 6-41
trace 6-42
undisp 6-43
untrace 6-44
xbreak 6-47
zcbreak 6-48
zclist 6-49

decimation factor 4-150
decision tables

modeling 2-98
Decrement Stored Integer block 2-176
Decrement Time To Zero block 2-177
Decrement To Zero block 2-178
delaying input by variable amount 2-787
delete_block command 3-2 4-21
delete_line command 3-2 4-22
delete_param command 3-2 4-23
demos

hardstop 2-337
sldemo_clutch 2-337

Demux block 1-2 1-13 2-179
Derivative block 1-3 2-186

accuracy of 2-186
derivatives

calculating 2-186
limiting 2-543

detachConfigSet command 3-2 4-24
Detect Decrease block 2-191
Detect Fall Negative block 2-193
Detect Fall Nonpositive block 2-194
Detect Increase block 2-196
Detect Rise Nonnegative block 2-198
Detect Rise Positive block 2-200
differential/algebraic systems

modeling 2-11
Digital Clock block 1-15 2-205
Discontinuities block library

block parameters 8-82

Index-4

Index

Discrete block library
block parameters 8-86

Discrete Filter block 1-4 2-218
Discrete FIR Filter block 1-4 2-221
Discrete State-Space block 1-4 2-232
discrete state-space model 4-101
Discrete Transfer Fcn block 1-4 2-252
Discrete Zero-Pole block 1-4 2-255
Discrete-Time Integrator block 1-2 1-4 2-235
discrete-time systems

linearization 4-101
disp command 5-6
disp debug command 6-16
Display block 1-14 2-258

as floating display 2-260
displaying

signals graphically 2-594
dlinmod function 4-97
DocBlock block 1-10 2-263
Dot Product block 1-8 2-266
dpoly command 5-7
droots command 5-7

E
eigenvalues of linearized matrix 4-102
emode debug command 6-21
Enable block 1-10 2-274
Enabled and Triggered Subsystem block 1-11

2-276
Enabled Subsystem block 1-11 2-277
enabled subsystems

Enable block 2-274
etrace debug command 6-22
expressions

applying to block inputs 2-284
MATLAB Fcn block 2-454

external inputs
flag 4-107
from workspace 2-360

ut 4-140

F
Fcn block 1-16 2-284

compared to Math Function block 2-447
compared to Rounding Function block 2-583
compared to Trigonometric Function

block 2-744
files

reading from 2-305
writing to

To File block 2-701
Filter Direct Form II block 2-716
Filter Direct Form II Time Varying block 2-719
Filter First Order block 2-722
Filter Lead or Lag block 2-724
Filter Real Zero block 2-727
find_system command 3-3 4-31
finding objects 3-3 4-31
Finite Impulse Response filter 2-218
finite-state machines

implementing 2-98
First-Order Hold block 1-4 2-288
fixdt function 4-37
fixed step size 4-151
Fixed-Point Tool 4-59
fixpt_interp1 function 4-41
fixpt_look1_func_approx function 4-43
fixpt_look1_func_plot function 4-51
fixpt_set_all function 4-53
fixptbestexp function 4-54
fixptbestprec function 4-56

autoscaling 4-57
flip-flops

implementing 2-98
float function 4-58
floating scope

definition 2-605
Floating scope

Index-5

Index

axes lock 2-606
Floating Scope block 2-594
for control flow diagram

creating 2-294
For Iterator block 2-294
For Iterator Subsystem block 1-11 2-301
For subsystems

creating 2-294
format for exporting model states and outputs

specifying via simset command 4-153
Forward Euler method 2-235
Forward Rectangular method 2-235
fprintf command 5-10
From block 1-13 2-302
From File block 1-15 2-305
From Workspace block 1-15 2-309
Function-Call Generator block 1-11 2-317
Function-Call Subsystem block 1-11 2-320
functions

fixdt 4-37
fixpt_interp1 4-41
fixpt_look1_func_approx 4-43
fixpt_look1_func_plot 4-51
fixpt_set_all 4-53
fixptbestexp 4-54
fixptbestprec 4-56
float 4-58
fxptdlg 4-59
num2fixpt 4-112
sfix 4-129
sfrac 4-130
sint 4-185
ufix 4-213
ufrac 4-214
uint 4-215

fxptdlg function 4-59

G
gain

varying during simulation 2-649
Gain block 1-2 1-8 2-321
gcb command 3-3 4-79
gcbh command 3-3 4-80
gcs command 3-3 4-81
get_param command 3-3 4-82
getActiveConfigSet command 3-3 4-85
getConfigSet command 3-3 4-87
getConfigSets command 3-3 4-88
global Goto tag visibility 2-328
Goto block 1-13 2-328
Goto Tag Visibility block 1-13 2-333
graphics

displaying on mask icon 5-14
Greek letters

displaying on mask icons 5-6
using the text function 5-18

Ground block 1-2 1-15 2-335
GUI

Fixed-Point Tool 4-59

H
handle of current block 3-3 4-80
hardstop demo 2-337
help debug command 6-23
Hide Name menu item

suppressing display of port label 2-496
Hit Crossing block 1-4 2-337
hybrid systems

linearization 4-101

I
IC block 1-12 2-340
If Action Subsystem block 1-11 2-355
If block 1-11 2-343
if-else control flow diagram

creating 2-343
image

Index-6

Index

displaying on mask icon 5-11
drawing on mask icon using patch 5-13

image command 5-11
Increment Stored Integer block 2-357
Index Vector block 2-358
inf values

in mask plotting commands 5-14
Infinite Impulse Response filter 2-218
inherited

data types
by backpropagation 2-156

scaling
by backpropagation 2-156

initial conditions
setting 2-340

initial states 4-151
initial step size 4-151
Inport block 1-2 1-11 1-15 2-359
Inport blocks

in subsystem 2-663
linmod function 4-101

input ports
unconnected 2-335

inputs
applying expressions to 2-284
applying MATLAB function to

Fcn block 2-284
MATLAB Fcn block 2-454

combining into vector line 2-493
delaying by variable amount 2-787
external 4-140
from outside system 2-359
from previous time step 2-462
from workspace 2-360
generating step between two levels 2-658
interpolated mapping 2-426
logical operations on 2-402
multiplying block inputs during

simulation 2-649
outputting minimum or maximum 2-472

passing through stair-step function 2-536
piecewise linear mapping of two 2-417
plotting 2-815
reading from file 2-305
width of 2-812

integration
block input 2-372
discrete-time 2-235

Integrator block 1-2 to 1-3 2-372
interpolated mapping 2-426
Interpolation Using Prelookup block 1-7 2-386
Interval Test Dynamic block 2-397

J
Jacobians 4-101

L
left-hand approximation 2-235
legacy_code function 4-90
limiting

signals 2-585
limiting derivative of signal 2-543
limiting integral 2-374
linear models

extracting
linmod function 4-101

linearization
discrete-time systems 4-101
linmod function 4-101

linearized matrix
eigenvalues 4-102

LineDefaults section of mdl file 9-7
lines

adding 3-2 4-6
deleting 3-2 4-22

linmod function 4-97
Transport Delay block 2-730

linmod2 function 4-97

Index-7

Index

linmodv5 function 4-97
local Goto tag visibility 2-328
Logic and Bit Operations block library

block parameters 8-96
logic circuits

modeling 2-98
Logical Operator block 2-402
Look-Up Table (2-D) block 1-7 2-417
Look-Up Table (n-D) block 1-7 2-426
Lookup Table block 1-7 2-409
Lookup Tables block library

block parameters 8-100

M
MACs

propagating data type information for 2-162
Magnitude-Angle to Complex block 1-8 2-442
Manual Switch block 1-13 2-445
mask icon 5-4

displaying graphics on 5-14
displaying image on 5-11
displaying port label on 5-16
displaying symbols and Greek letters on 5-18
displaying text on 5-6
displaying text using fprintf 5-10
displaying text using text 5-18
displaying transfer function on 5-7
using the patch function 5-13

mask icons
changing plot colors on 5-4
displaying symbols and Greek letters on 5-6
question marks in 5-14

mask parameters
undefined 5-8

masked blocks
parameters 8-185

masked subsystems
question marks in icon 5-14

masking bits 2-40

Math block library
block parameters 8-107

Math Function block 1-8 2-446
mathematical functions

performing
Math Function block 2-446
Rounding Function block 2-583
Trigonometric Function block 2-744

mathematical symbols
displaying on mask icons 5-6
displaying on mask icons using text 5-18

MATLAB character encoding, changing 3-4
4-188

MATLAB Fcn block 1-16 2-454
MATLAB functions

applying to block input
Fcn block 2-284
MATLAB Fcn block 2-454

matrices
writing to 2-705

Matrix Concatenate block 2-457
maximum number of output rows 4-152
maximum order of ode15s solver 4-152
maximum step size

simset command 4-152
mdl file 9-2
Memory block 1-5 2-462
memory region

shared
Data Store Memory block 2-129
Data Store Read block 2-138
Data Store Write block 2-141

Merge block 1-13 2-466
minimum step size

simset command 4-152
MinMax block 1-8 2-472
model files 9-2
Model Info block 1-10 2-484
model parameters

table 8-2

Index-8

Index

Model Verification block library
block parameters 8-125

Model-Wide Utilities block library
block parameters 8-129

models
closing 3-2 4-14
creating

new_system command 3-3 4-110
getting name 3-2 4-16
parameters 8-2
replacing blocks 3-3 4-119
simulating 3-6 4-136

multiplying block inputs
during simulation 2-649

Multiport Switch block 1-14 2-487
multirate systems

linearization 4-101
Mux block 1-2 1-14 2-493

N
Nan values

in mask plotting commands 5-14
nanbreak debug command 6-24
new_system command 3-3 4-110
next debug command 6-25
nonlinear systems

spectral analysis of 2-93
normally distributed random numbers 2-540
num2fixpt function 4-112

O
objects

finding 3-3 4-31
obsolete blocks, replacing 3-5 4-203
ode113 solver

Memory block 2-462
ode14x solver

extrapolation order 4-151
number of Newton iterations 4-152

ode15s solver
maximum order property 4-152
Memory block 2-462

open_system command 3-3 4-115
openDialog command 3-3 4-118
opening

block dialog boxes 3-3 4-115
Simulink Library Browser 3-4 4-159
system windows 3-3 4-115

operating point 4-98
options structure

getting values 3-6 4-142
setting values 3-6 4-149

Outport block 1-2 1-11 1-14 2-496
Outport blocks

in subsystem 2-663
linmod function 4-101

output
maximum rows 4-152
outside system 2-496
refine factor 4-152
selected elements of input vector 2-612
selected information about the signal on

input 2-526
specifying points 4-152
switching between two inputs 2-445
values

displaying 2-258
variables 4-152
writing to file

To File block 2-701
writing to workspace

To Workspace block 2-705
zero within range 2-169

output ports
capping unconnected 2-696

Index-9

Index

P
parameters

adding 3-2 4-8
block

list 8-66
deleting 3-2 4-23
getting values of 3-3 4-82
masked blocks 8-185
model 8-2
setting values of

set_param command 3-4 4-126
patch command 5-13
phase-shifted wave 2-625
piecewise linear mapping

two inputs 2-417
piecewise linear signal

generating
Signal Builder block 2-625

plot command 5-14
plotting input signals

Scope block 2-594
XY Graph block 2-815

plotting simulation data 3-6 4-144
port label

displaying on mask icon 5-16
port labels

suppressing display 2-496
port_label command 5-16
Ports & Subsystems block library

block parameters 8-131
precision

best 4-54
maximum 4-56

probe debug command 6-26
Product block 1-2 1-8 2-518
Product of Elements Inverted block 2-525
programmable logic arrays

modeling 2-98
propagation of data types 2-156
properties of Scope block 2-603

Pulse Generator block 1-15 2-530

Q
Quantizer block 1-4 2-536
question marks in mask icon 5-14
quit debug command 6-27

R
random noise

generating 2-540
Random Number block 1-15 2-540

and Band-Limited White Noise block 2-29
compared to Band-Limited White Noise

block 2-540
random numbers

generating normally distributed 2-29
normally distributed 2-540
uniformly distributed 2-749

Rate Limiter block 1-4 2-543
Rate Transition block 1-12 2-547
reading data

from data store 2-138
from file 2-305
from workspace 2-309

Real-Imag to Complex block 1-8 2-554
refine factor

simset command 4-152
region of zero output 2-169
regular expressions 4-34
relative tolerance 4-153
Repeating Sequence block 1-15 2-568
Repeating Sequence Stair block 2-576
repeating signals 2-568
replace obsolete blocks 3-5 4-203
replace_block command 3-3 4-119
replacing blocks in model 3-3 4-119
Reshape block 1-8 2-580
right-hand approximation 2-236

Index-10

Index

Rounding Function block 1-8 2-583
run debug command 6-29

S
S-Function block 2-617
S-Function Builder block 2-620
Sample Time Divide block 2-801
Sample Time Multiply block 2-802
Sample Time Probe block 2-802
Sample Time Subtract block 2-802
sample-and-hold

applying to block input 2-462
sampling interval

generating simulation time 2-205
Saturation block 2-585
save_system command 3-3 4-121
sawtooth wave

generating 2-629
Scope axes

autoscaling 2-597
Scope block 2-594

properties 2-603
saving axes settings 2-603

Scope Block
displaying multiple signals 2-595
trace colors 2-595

Scope Viewer 7-86 7-138
scoped Goto tag visibility 2-328
Selector block 2-612
separating vector signal 2-179
sequence of signals 2-530
sequential circuits

implementing 2-100
set_param command 3-4 4-126
setActiveConfigSet command 3-4 4-128
setting bits 2-40
setting parameter values 3-4 4-126
sfix function 4-129
sfrac function 4-130

shared data store
Data Store Memory block 2-129
Data Store Read block 2-138
Data Store Write block 2-141

Sign block 2-623
Signal Attributes block library

block parameters 8-155
Signal Generator block 2-629
Signal Inspection block 1-12 2-526
signal logging

enabling
simset command 4-154

signal logging name
specifying

simset command 4-154
Signal Routing block library

block parameters 8-161
Signal Specification block 2-634
signals

displaying graphically 2-594
displaying vector 2-595
displaying X-Y plot of 2-815
generating pulses 2-530
limiting 2-585
limiting derivative of 2-543
passed from Goto block 2-302
passing to From block 2-328
plotting

Scope block 2-594
XY Graph block 2-815

repeating 2-568
sim command 3-6 4-136
simget command 3-6 4-142
simplot command

plotting simulation data 3-6 4-144
simset command 3-6 4-149
simulating models 3-6 4-136
simulation

Index-11

Index

parameters
specifying using simset command 3-6

4-149
stopping

Stop Simulation block 2-661
simulation commands

Simulink.BlockDiagram.getChecksum 4-167
Simulink.BlockDiagram.getInitialState 4-170
Simulink.SubSystem.getChecksum 4-182

simulation time
generating at sampling interval 2-205
outputting 2-96

simulink command 3-4 4-159
Simulink Library Browser

opening 3-4 4-159
Simulink.AliasType 7-7
Simulink.BlockDiagram.addBusToVector

command 3-4 4-160
Simulink.BlockDiagram.copyContentsToSubSystem

command 3-4 4-164
Simulink.BlockDiagram.deleteContents

command 3-4 4-166
Simulink.BlockDiagram.getChecksum command

description 4-167
Simulink.BlockDiagram.getInitialState

command
description 4-170

Simulink.Bus 7-33
Simulink.Bus.cellToObject command 3-4

4-172
Simulink.Bus.createObject command 3-4

4-173
Simulink.Bus.objectToCell command 3-4

4-174
Simulink.Bus.save command 3-4 4-175
Simulink.BusElement 7-36
Simulink.ConfigSet section of mdl file 9-5
Simulink.ModelDataLogs 7-86
Simulink.ModelWorkspace 7-90
Simulink.NumericType 7-112

Simulink.Parameter 7-120
Simulink.ParamRTWInfo 7-126
Simulink.Signal 7-141
Simulink.StructElement 7-149
Simulink.StructType 7-151
Simulink.SubsysDataLogs 7-154
Simulink.SubSystem.convertToModelReference

command 3-4 4-176
Simulink.SubSystem.copyContentsToBlockDiagram

command 3-4 4-179
Simulink.SubSystem.deleteContents

command 3-4 4-181
Simulink.SubSystem.getChecksum command

description 4-182
Simulink.TimeInfo 7-156
Simulink.TsArray 7-159
Sine and Cosine block 2-639
Sine block 2-639
sine wave

generating
Signal Generator block 2-629
Sine Wave block 2-642

generating with increasing frequency
Chirp Signal block 2-93

Sine Wave block 2-642
Sinks block library

block parameters 8-168
sint function 4-185
Slider Gain block 1-8 2-649
slreplace_mux command 3-5 4-201
slupdate command 3-5 4-203
solvers

properties
specifying 3-6 4-149

specifying using simset command 4-153
Sources block library

block parameters 8-172
spectral analysis of nonlinear systems 2-93
square wave

generating 2-629

Index-12

Index

Squeeze block 2-651
ss2tf function 4-103
ss2zp function 4-103
stair-step function

passing signal through 2-536
state derivatives

setting to zero 4-205
state space in discrete system 2-232
State-Space block 2-653
states

initial 4-151
outputting 4-152
resetting 2-375
saving at end of simulation 4-151
specifying absolute tolerance for 2-381

states debug command 6-32
status debug command 6-33
Step block 2-658
step debug command 6-34
stop debug command 6-37
Stop Simulation block 2-661
stopping simulation 2-661
strace debug command 6-38
Subsystem block 2-663
subsystems

and Inport blocks 2-359
enabled 2-274

Subtract block 2-675
Sum block 2-675
Sum of Elements block 2-675
Switch Case Action Subsystem block 2-692
switch control flow diagram

creating 2-687
switching output between inputs

Manual Switch block 2-445
switching output between two inputs 2-445
System section of mdl file 9-7
system windows

closing 3-2 4-17
systems

current 3-3 4-81
saving 3-3 4-121

systems debug command 6-40

T
tbreak debug command 6-41
Terminator block 2-696
terminators

adding 3-2 4-9
TeX formatting commands

using in mask icon text 5-18
using with disp 5-6

text command 5-18
tf2ss utility

converting Transfer Fcn to state-space
form 2-712

time delay
simulating 2-729

Time-Based Linearization block 2-697
To File block 2-701
To Workspace block 2-705
Trace colors

Scope Block 2-595
trace debug command 6-42
tracing facilities 4-153
Transfer Fcn block 2-711
transfer function form

converting to 4-103
transfer functions

discrete 2-252
displaying on mask icon 5-7
linear 2-711
poles and zeros 2-822

discrete 2-255
Transport Delay block 2-729
Trapezoidal method 2-237
Trigger block 2-733
Trigger-Based Linearization block 2-739
Triggered Subsystem block 2-743

Index-13

Index

triggered subsystems
Trigger block 2-733

Trigonometric Function block 2-744
trim function 4-205
truth tables

implementing 2-98

U
ufix function 4-213
ufrac function 4-214
uint function 4-215
unconnected input ports 2-335
unconnected output ports

using the Terminator block 2-696
undisp debug command 6-43
Uniform Random Number block 2-749

compared to Band-Limited White Noise
block 2-749

uniformly distributed random numbers 2-749
Unit Delay block

compared to Transport Delay block 2-729
Unit Delay Enabled External IC block 2-758
Unit Delay Enabled Resettable block 2-760
Unit Delay Enabled Resettable External IC

block 2-763
Unit Delay External IC block 2-766
Unit Delay Resettable block 2-768
Unit Delay Resettable External IC block 2-770
Unit Delay With Preview Enabled block 2-772
Unit Delay With Preview Enabled Resettable

block 2-775
Unit Delay With Preview Enabled Resettable

External RV block 2-778
Unit Delay With Preview Resettable block 2-781
Unit Delay With Preview Resettable External

RV block 2-784
untrace debug command 6-44
Update Diagram menu item

changing block parameters during
simulation 4-126

User-defined functions block library
block parameters 8-180

V
variable time delay 2-787
Variable Time Delay block 1-3 2-787
Variable Transport Delay block 2-787
vdp model

Scope block 2-596
Vector Concatenate block 2-457
vector signals

displaying 2-595
generating from inputs 2-493
separating 2-179

viscous friction 2-123
visibility of Goto tag 2-333
Visualizing

simulation results 7-86 7-138

W
while control flow diagram

creating 2-806
While Iterator block 2-806
While Iterator Subsystem block 2-811
While subsystems

creating 2-806
white noise

generating 2-29
Width block 2-812
workspace

destination 4-151
reading data from 2-309
source 4-153
writing output to 2-705

writing data to data store 2-141
writing output to file 2-701

Index-14

Index

writing output to workspace 2-705

X
xbreak debug command 6-47
XY Graph block 2-815

Z
zcbreak debug command 6-48
zclist debug command 6-49

zero crossings
detecting

Hit Crossing block 2-337
simset command 4-154

zero output in region
generating 2-169

Zero-Pole block 2-822
zero-pole form

converting to 4-103
zooming in on displayed data 2-599

Index-15

	toc
	Block Reference
	Commonly Used
	Continuous
	Discontinuities
	Discrete
	Logic and Bit Operations
	Lookup Tables
	Math Operations
	Model Verification
	Model-Wide Utilities
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined Functions
	Additional Math & Discrete
	Additional Discrete
	Additional Math: Increment — Decrement

	Blocks — Alphabetical List
	Examples

	Function Reference
	Model Construction
	Simulation
	Linearization and Trimming
	Data Type

	Functions — Alphabetical List
	Examples
	Examples
	Main Toolbar

	Mask Icon Drawing Commands
	Command Summary
	Mask Icon Drawing Commands — Alphabetical List

	Simulink Debugger Commands
	Command Summary
	Simulink Debugger Commands — Alphabetical List

	Data Object Classes
	Class Summary
	Classes — Alphabetical List

	Model and Block Parameters
	Model Parameters
	About Model Parameters
	Examples of Setting Model Parameters

	Common Block Parameters
	About Common Block Parameters
	Examples of Setting Block Parameters

	Block-Specific Parameters
	Mask Parameters
	About Mask Parameters
	Setting Mask Parameters
	How Masked Parameters are Stored

	Model File Format
	Model File Contents
	About Model File Formats
	Model Section
	Simulink.ConfigSet Section
	BlockDefaults Section
	BlockParameterDefaults Section
	AnnotationDefaults Section
	LineDefaults Section
	System Section

	Model Advisor Checks
	Simulink Checks
	Simulink Check Overview
	See Also

	Check model, local libraries, and referenced models for known up
	Description
	Results and Recommended Actions
	See Also

	Identify unconnected lines, input ports, and output ports
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check root model Inport block specifications
	Description
	Results and Recommended Actions
	See Also

	Check optimization settings
	Description
	Results and Recommended Actions

	Check for parameter tunability information ignored for reference
	Description
	Results and Recommended Actions
	See Also

	Check for implicit signal resolution
	Description
	Results and Recommended Actions
	See Also

	Check for optimal bus virtuality
	Description
	Results and Recommended Actions
	See Also

	Check for Discrete-Time Integrator blocks with initial condition
	Description
	Results and Recommended Actions
	See Also

	Identify disabled library links
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify parameterized library links
	Description
	Results and Recommended Actions
	Tips
	See Also

	Identify unresolved library links
	Description
	Results and Recommended Actions
	See Also

	Check for proper bus usage
	Description
	Results and Recommended Actions
	Tips
	See Also

	Check for potentially delayed function-call subsystem return val
	Description
	Results and Recommended Actions
	See Also

	Identify block output signals with continuous sample time and no
	Description
	Results and Recommended Actions
	See Also

	Check for proper Merge block usage
	Description
	Input Parameters
	Results and Recommended Actions
	See Also

	Index

	tables
	Valid Initial States
	Model Parameters
	Common Block Parameters
	Continuous Library Block Parameters
	Discontinuities Library Block Parameters
	Discrete Library Block Parameters
	Logic and Bit Operations Library Block Parameters
	Lookup Tables Block Parameters
	Math Operations Library Block Parameters
	Model Verification Library Block Parameters
	Model-Wide Utilities Library Block Parameters
	Ports & Subsystems Library Block Parameters
	Signal Attributes Library Block Parameters
	Signal Routing Library Block Parameters
	Sinks Library Block Parameters
	Sources Library Block Parameters
	User-Defined Functions Library Block Parameters
	Additional Discrete Block Library Parameters
	Additional Math: Increment - Decrement Block Parameters
	Mask Parameters

