Simulink® 7

Reference

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Reference
© COPYRIGHT 2002-2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002

April 2003
April 2004

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Simulink 5 (Release 13)
Revised for Simulink 5.1 (Release 13SP1)
Revised for Simulink 5.1.1 (Release 13SP1+)
Revised for Simulink 6 (Release 14)
Revised for Simulink 6.1 (Release 14SP1)
Revised for Simulink 6.2 (Release 14SP2)
Revised for Simulink 6.3 (Release 14SP3)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.5 (Release 2006b)
Revised for Simulink 6.6 (Release 2007a)
Revised for Simulink 7.0 (Release 2007b)
Revised for Simulink 7.1 (Release 2008a)

Block Reference

Commonly Used

Continuous

Discontinuities

Discrete

Logic and Bit Operations

Lookup Tables

Math Operations

Model Verification

............................ 1-2

............................ 1-3

............................ 1-4

........................... 1-5

............................ 1-7

............................ 1-7

vi

Contents

Additional Math & Discrete 1-17
Additional Discretec.c i, 1-17
Additional Math: Increment — Decrement 1-18

Blocks — Alphabetical List

2

Function Reference

3

Model Construction 3-2
Simulation il 3-6
Linearization and Trimming 3-7
DataTypecciiiiiiii e 3-8

Functions — Alphabetical List

4 |

Mask Icon Drawing Commands

5

Command Summarycuiiirrunnnn. 5-2

Mask Icon Drawing Commands — Alphabetical List .. 5-3

Simulink® Debugger Commands

6

Command Summaryccciiiiinnnnnn... 6-2

Simulink® Debugger Commands — Alphabetical
st .o e e e 6-5

7

Class Summarycoiiiiieeinnnnnnnnnn.. 7-2

Classes — Alphabetical List 7-4

Model and Block Parameters

8|

Model Parameters i, 8-2
About Model Parameters, 8-2
Examples of Setting Model Parameters 8-65

Common Block Parameters 8-66
About Common Block Parameters 8-66
Examples of Setting Block Parameters 8-78

Block-Specific Parameters 8-79

Mask Parameters, 8-185
About Mask Parameters 8-185
Setting Mask Parameters 8-190
How Masked Parameters are Stored 8-190

vii

viii

10|

Contents

Model File Format

2

Model File Contents 9-2
About Model File Formats 9-2
Model Sectioncciiiiiiii e 9-4
Simulink.ConfigSet Section 9-5
BlockDefaults Section 9-5
BlockParameterDefaults Section 9-6
AnnotationDefaults Section 9-7
LineDefaults Section 9-7
System Sectioniiiii i 9-7

Simulink® Checks 10-2
Simulink® Check Overviewc.cuvuunon.. 10-3
Check model, local libraries, and referenced models for

known upgradeissuesc. ... 10-3
Identify unconnected lines, input ports, and output

910 7P 10-5
Check root model Inport block specifications 10-6
Check optimization settings 10-7
Check for parameter tunability information ignored for

referencedmodels, 10-8
Check for implicit signal resolution 10-9
Check for optimal bus virtuality 10-10
Check for Discrete-Time Integrator blocks with initial

condition uncertainty, 10-11
Identify disabled library links 10-12
Identify parameterized library links 10-13
Identify unresolved library links 10-14
Check for proper bususageccciuuu.... 10-15
Check for potentially delayed function-call subsystem

returnvalues i e . 10-16
Identify block output signals with continuous sample time

and non-floating point datatype 10-17
Check for proper Merge block usage 10-18

Index

ix

X Contents

Block Reference

Commonly Used (p. 1-2)
Continuous (p. 1-3)
Discontinuities (p. 1-3)

Discrete (p. 1-4)

Logic and Bit Operations (p. 1-5)
Lookup Tables (p. 1-7)

Math Operations (p. 1-7)

Model Verification (p. 1-9)
Model-Wide Utilities (p. 1-10)
Ports & Subsystems (p. 1-10)
Signal Attributes (p. 1-12)
Signal Routing (p. 1-13)

Sinks (p. 1-14)

Sources (p. 1-15)

User-Defined Functions (p. 1-16)
Additional Math & Discrete (p. 1-17)

Commonly used blocks

Define continuous states

Define discontinuous states
Define discrete states

Perform logic and bit operations
Support lookup tables

Perform math operations
Perform model verification
Support model-wide operations
Support ports and subsystems
Support signal attributes
Support signal routing

Receive output from other blocks
Input to other blocks

Support custom functions

Provide additional math and discrete
support

1 Block Reference

Commonly Used

Bus Creator
Bus Selector
Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain
Ground

Inport

Integrator

Logical Operator

Mux

Outport

Product

Relational Operator

Saturation

Scope and Floating Scope

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Create signal bus
Select signals from incoming bus
Generate constant value

Convert input signal to specified
data type

Extract and output elements of bus
or vector signal

Perform discrete-time integration or
accumulation of signal

Multiply input by constant
Ground unconnected input port

Create input port for subsystem or
external input

Integrate signal

Perform specified logical operation
on input

Combine several input signals into
vector

Create output port for subsystem or
external output

Multiply or divide inputs

Perform specified relational
operation on inputs

Limit range of signal

Display signals generated during
simulation

Represent system within another
system

Continuous

Sum, Add, Subtract, Sum of
Elements

Switch

Terminator

Unit Delay

Continuous

Derivative
Integrator
State-Space

Transfer Fen

Transport Delay

Variable Time Delay, Variable
Transport Delay

Zero-Pole

Discontinuities

Backlash

Coulomb and Viscous Friction

Dead Zone

Dead Zone Dynamic

Add or subtract inputs

Switch output between first input
and third input based on value of
second input

Terminate unconnected output port

Delay signal one sample period

Output time derivative of input
Integrate signal
Implement linear state-space system

Model linear system by transfer
function

Delay input by given amount of time

Delay input by variable amount of
time

Model system by zero-pole-gain
transfer function

Model behavior of system with play

Model discontinuity at zero, with
linear gain elsewhere

Provide region of zero output

Set inputs within bounds to zero

1 Block Reference

Discrete

Hit Crossing
Quantizer
Rate Limiter

Rate Limiter Dynamic

Relay
Saturation
Saturation Dynamic

Wrap To Zero

Difference

Discrete Derivative
Discrete Filter
Discrete FIR Filter
Discrete State-Space

Discrete Transfer Fen

Discrete Zero-Pole

Discrete-Time Integrator

First-Order Hold

Integer Delay

Detect crossing point

Discretize input at specified interval
Limit rate of change of signal

Limit rising and falling rates of
signal

Switch output between two constants
Limit range of signal

Bound range of input

Set output to zero if input is above
threshold

Calculate change in signal over one
time step

Compute discrete time derivative
Model IIR and FIR filters
Model FIR filters

Implement discrete state-space
system

Implement discrete transfer function

Model system defined by zeros and
poles of discrete transfer function

Perform discrete-time integration or
accumulation of signal

Implement first-order
sample-and-hold

Delay signal N sample periods

Logic and Bit Operations

Memory

Tapped Delay

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fen Real Zero

Unit Delay

Weighted Moving Average (Obsolete)
Zero-Order Hold

Logic and Bit Operations

Bit Clear

Bit Set

Bitwise Operator

Combinatorial Logic

Compare To Constant

Compare To Zero

Detect Change

Output input from previous time
step

Delay scalar signal multiple sample
periods and output all delayed
versions

Implement discrete-time first order
transfer function

Implement discrete-time lead or lag
compensator

Implement discrete-time transfer
function that has real zero and no
pole

Delay signal one sample period
Implement weighted moving average

Implement zero-order hold of one
sample period

Set specified bit of stored integer to
Z€ero

Set specified bit of stored integer to
one

Perform specified bitwise operation
on inputs

Implement truth table

Determine how signal compares to
specified constant

Determine how signal compares to
Zero

Detect change in signal’s value

1 Block Reference

Detect Decrease

Detect Fall Negative

Detect Fall Nonpositive

Detect Increase

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Detect decrease in signal’s value

Detect falling edge when signal’s
value decreases to strictly negative
value, and its previous value was
nonnegative

Detect falling edge when signal’s
value decreases to nonpositive value,
and its previous value was strictly
positive

Detect increase in signal’s value

Detect rising edge when signal’s
value increases to nonnegative
value, and its previous value was
strictly negative

Detect rising edge when signal’s
value increases to strictly positive
value, and its previous value was
nonpositive

Output selection of contiguous bits
from input signal

Determine if signal is in specified
interval

Determine if signal is in specified
interval

Perform specified logical operation
on input

Perform specified relational
operation on inputs

Shift bits and/or binary point of
signal

Lookup Tables

Lookup Tables

Direct Lookup Table (n-D)

Interpolation Using Prelookup

Lookup Table

Lookup Table (2-D)

Lookup Table (n-D)

Lookup Table Dynamic

Prelookup

Sine, Cosine

Math Operations

Abs
Algebraic Constraint

Assignment

Bias

Index into N-dimensional table to
retrieve element, column, or 2-D
matrix

Use output of Prelookup block
to accelerate approximation of
N-dimensional function

Approximate one-dimensional
function

Approximate two-dimensional
function

Approximate N-dimensional function

Approximate one-dimensional
function using dynamically specified
table

Compute index and fraction for
Interpolation Using Prelookup block

Implement sine and/or cosine wave
in fixed point using lookup table
approach that exploits quarter wave
symmetry

Output absolute value of input
Constrain input signal to zero

Assign values to specified elements
of signal

Add bias to input

1 Block Reference

Complex to Magnitude-Angle

Complex to Real-Imag

Divide
Dot Product
Gain

Magnitude-Angle to Complex

Math Function

Matrix Concatenate, Vector
Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

Polynomial

Product
Product of Elements

Real-Imag to Complex

Reshape
Rounding Function
Sign

Sine Wave Function

Slider Gain

Compute magnitude and/or phase
angle of complex signal

Output real and imaginary parts of
complex input signal

Multiply or divide inputs
Generate dot product of two vectors
Multiply input by constant

Convert magnitude and/or a phase
angle signal to complex signal

Perform mathematical function

Concatenate input signals of same
data type to create contiguous output

signal

Output minimum or maximum input
value

Determine minimum or maximum of
signal over time

Rearrange dimensions of
multidimensional array dimensions

Perform evaluation of polynomial
coefficients on input values

Multiply or divide inputs
Multiply or divide inputs

Convert real and/or imaginary
inputs to complex signal

Change dimensionality of signal
Apply rounding function to signal
Indicate sign of input

Generate sine wave, using external
signal as time source

Vary scalar gain using slider

Model Verification

Squeeze

Sum, Add, Subtract, Sum of
Elements

Trigonometric Function
Unary Minus
Weighted Sample Time Math

Model Verification

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic Upper Bound

Check Input Resolution

Check Static Gap

Remove singleton dimensions from
multidimensional signal

Add or subtract inputs

Perform trigonometric function
Negate input

Support calculations involving
sample time

Check whether signal is nonzero

Check that absolute value of
difference between successive
samples of discrete signal is less
than upper bound

Check that gap of possibly varying
width occurs in range of signal’s
amplitudes

Check that one signal is always less
than another signal

Check that signal falls inside range
of amplitudes that varies from time
step to time step

Check that one signal is always
greater than another signal

Check that input signal has specified
resolution

Check that gap exists in signal’s
range of amplitudes

1 Block Reference

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

Model-Wide Utilities

Block Support Table
DocBlock

Model Info

Time-Based Linearization

Trigger-Based Linearization

Ports & Subsystems

Action Port

Configurable Subsystem

Enable

1-10

Check that signal is greater than
(or optionally equal to) static lower
bound

Check that signal falls inside fixed
range of amplitudes

Check that signal is less than (or
optionally equal to) static upper
bound

View data type support for Simulink®
blocks

Create text that documents model
and save text with model

Display revision control information
in model

Generate linear models in base
workspace at specific times

Generate linear models in base
workspace when triggered

Implement Action subsystems used
by if and switch control flow
statements in Simulink® software.

Represent any block selected from
user-specified library of blocks

Add enabling port to subsystem

Ports & Subsystems

Enabled and Triggered Subsystem

Enabled Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Subsystem

If
If Action Subsystem

Inport

Model

Outport

Subsystem, Atomic Subsystem,
CodeReuse Subsystem

Switch Case

Switch Case Action Subsystem

Trigger

Represent subsystem whose

execution is enabled and triggered

by external input

Represent subsystem whose
execution is enabled by external
input

Represent subsystem that executes
repeatedly during simulation time

step

Execute function-call subsystem

specified number of times at specified

rate

Represent subsystem that can be
invoked as function by another block

Model if-else control flow

Represent subsystem whose
execution is triggered by If block

Create input port for subsystem or

external input

Include model as block in another

model

Create output port for subsystem or

external output

Represent system within another

system

Implement C-like switch control
flow statement

Represent subsystem whose
execution is triggered by Switch
Case block

Add trigger port to subsystem or
function-call model

1-11

1 Block Reference

1-12

Triggered Subsystem

While Iterator Subsystem

Signal Attributes

Bus to Vector

Data Type Conversion

Data Type Conversion Inherited

Data Type Duplicate
Data Type Propagation
Data Type Scaling Strip
IC

Probe

Rate Transition

Signal Conversion

Represent subsystem whose
execution is triggered by external
input

Represent subsystem that executes
repeatedly while condition is
satisfied during simulation time step

Convert virtual bus to vector

Convert input signal to specified
data type

Convert from one data type to
another using inherited data type
and scaling

Force all inputs to same data type

Set data type and scaling of
propagated signal based on
information from reference signals

Remove scaling and map to built in
integer

Set initial value of signal

Output signal’s attributes, including

width, dimensionality, sample time,
and/or complex signal flag

Handle transfer of data between
blocks operating at different rates

Convert signal to new type without
altering signal values

Signal Routing

Signal Specification Specify desired dimensions, sample
time, data type, numeric type, and
other attributes of signal

Weighted Sample Time Support calculations involving
sample time
Width Output width of input vector

Signal Routing

Bus Assignment Replace specified bus elements

Bus Creator Create signal bus

Bus Selector Select signals from incoming bus
Data Store Memory Define data store

Data Store Read Read data from data store

Data Store Write Write data to data store

Demux Extract and output elements of bus

or vector signal

Environment Controller Create branches of block diagram
that apply only to simulation or only
to code generation

From Accept input from Goto block

Goto Pass block input to From blocks

Goto Tag Visibility Define scope of Goto block tag

Index Vector Switch output between different
inputs based on value of first input

Manual Switch Switch between two inputs

Merge Combine multiple signals into single
signal

1-13

1 Block Reference

Multiport Switch Choose between multiple block
inputs

Mux Combine several input signals into
vector

Selector Select input elements from vector,

matrix, or multidimensional signal

Switch Switch output between first input
and third input based on value of
second input

Sinks

Display Show value of input

Outport Create output port for subsystem or
external output

Scope and Floating Scope Display signals generated during
simulation

Stop Simulation Stop simulation when input is
nonzero

Terminator Terminate unconnected output port

To File Write data to file

To Workspace Write data to MATLAB® workspace

XY Graph Display X-Y plot of signals using

MATLAB figure window

1-14

Sources

Sources

Band-Limited White Noise

Chirp Signal

Clock

Constant

Counter Free-Running
Counter Limited

Digital Clock

From File
From Workspace
Ground

Inport

Pulse Generator

Ramp

Random Number

Repeating Sequence

Repeating Sequence Interpolated

Introduce white noise into
continuous system

Generate sine wave with increasing
frequency

Display and provide simulation time
Generate constant value

Count up and overflow back to zero
after maximum value possible is
reached for specified number of bits

Count up and wrap back to zero after
outputting specified upper limit

Output simulation time at specified
sampling interval

Read data from MAT-file
Read data from workspace
Ground unconnected input port

Create input port for subsystem or
external input

Generate square wave pulses at
regular intervals

Generate constantly increasing or
decreasing signal

Generate normally distributed
random numbers

Generate arbitrarily shaped periodic
signal

Output discrete-time sequence and
repeat, interpolating between data
points

1-15

1 Block Reference

Repeating Sequence Stair Output and repeat discrete time
sequence
Signal Builder Create and generate interchangeable

groups of signals whose waveforms
are piecewise linear

Signal Generator Generate various waveforms
Sine Wave Generate sine wave

Step Generate step function
Uniform Random Number Generate uniformly distributed

random numbers

User-Defined Functions

Embedded MATLAB Function Include MATLAB® code in models
that generate embeddable C code

Fcn Apply specified expression to input

Level-2 M-File S-Function Use Level-2 M-file S-function in
model

MATLAB Fcn Apply MATLAB function or
expression to input

S-Function Include S-function in model

S-Function Builder Create S-function from C code that

you provide

1-16

Additional Math & Discrete

Additional Math & Discrete

Additional Discrete (p. 1-17)

Additional Math: Increment —
Decrement (p. 1-18)

Additional Discrete

Fixed-Point State-Space

Transfer Fen Direct Form 11
Transfer Fen Direct Form II Time
Varying

Unit Delay Enabled

Unit Delay Enabled External IC

Unit Delay Enabled Resettable

Unit Delay Enabled Resettable
External IC

Unit Delay External IC
Unit Delay Resettable

Unit Delay Resettable External IC

Provide additional discrete math
support

Increment or decrement value of
signal by one

Implement discrete-time state space

Implement Direct Form II realization
of transfer function

Implement time varying Direct Form
II realization of transfer function

Delay signal one sample period, if
external enable signal is on

Delay signal one sample period, if
external enable signal is on, with
external initial condition

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset

Delay signal one sample period, if
external enable signal is on, with
external Boolean reset and initial
condition

Delay signal one sample period, with
external initial condition

Delay signal one sample period, with
external Boolean reset

Delay signal one sample period, with
external Boolean reset and initial
condition

1-17

1 Block Reference

1-18

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled
Resettable

Unit Delay With Preview Enabled
Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

Output signal and signal delayed by
one sample period, if external enable
signal is on

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external Boolean
reset

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external RV reset

Output signal and signal delayed
by one sample period, with external
Boolean reset

Output signal and signal delayed by
one sample period, with external RV
reset

Additional Math: Increment — Decrement

Blocks — Alphabetical List

Abs

2-2

Purpose
Library

Description

A U P

Data Type
Support

Output absolute value of input
Math Operations

The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case,
the behavior of the block is controlled by the Saturate on integer
overflow check box. If checked, the absolute value of the data type
saturates to the most positive representable value. If not checked, the
absolute value of the most negative value represented by the data type
has no effect.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the absolute value

of -128 is not representable. If you select the Saturate on integer
overflow check box, then the absolute value of -128 is 127. If it is not
selected, then the absolute value of -128 remains at -128.

The Abs block accepts real signals of any data type supported by
Simulink® software, except Boolean. The Abs block supports real
fixed-point data types. The block also accepts complex single and
double inputs.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Abs

Parameters
and

Dialog

Box

The Main pane of the Abs block dialog appears as follows:

=1 Function Block Parameters: Abs

Ab
’7y=lul

Main | Signal Atributes |

¥ Enable zero crozzing detection

Sample time [-1 for inkernted]:

[-1

Ok

Cancel Help Apply

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

The Signal Attributes pane of the Abs block dialog appears as follows:

Abs

=1 Function Block Parameters: Abs x|

&b
’7y=lul

Main Signal Attributes |

Cutput maximn;

i

Cutput data type: | Inkent: Same as input j b5 |

Found integer calculations taward: | Floor ;I

[~ Saturate on integer averflow

] 4 Cancel Help | Apply

Output maximum

Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

2-4

Abs

Click the Show data type assistant button LI to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate. If selected, the block maps
signed integer input elements corresponding to the most negative
value of that data type to the most positive value of that data type:

® For 8-bit integers, -128 maps to 127.

® For 16-bit integers, -32768 maps to 32767.

® For 32-bit integers, -2147483648 maps to 2147483647.
Otherwise, the block does not act on signed integer input elements
corresponding to the most negative value of that data type:

® For 8-bit integers, -128 remains -128.

¢ For 16-bit integers, -32768 remains -32768.

® For 32-bit integers, -2147483648 remains -2147483648.

Characteristics pjrect Feedthrough Yes

Sample Time Specified in the Sample time parameter

2-5

Abs

Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing Yes, if enabled

2-6

Action Port

Purpose

Library

Description

Action

Implement Action subsystems used by if and switch control flow
statements in Simulink® software.

Ports & Subsystems

Action Port blocks implement Action subsystems used in if and switch
control flow statements. The Action Port block is available in the If
Action Subsystem and the Switch Case Action Subsystem. See the
references for the If and Switch Case blocks for examples using Action
Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case
block.

You can use an ordinary subsystem or an atomic subsystem. In either
case, the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is
now an Action subsystem.

Action subsystems execute their programming in response to the
conditional outputs of an If or Switch Case block. Use Action subsystems
as follows:

1 Create an Action subsystem for each output port configured for an
If or Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case
or default ports for the Switch Case block) to the Action port on an
Action subsystem.

When the connection is made, the icon for the subsystem and the
Action Port block it contains are changed to the name of the output

Action Port

port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ },
case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to
execute in response to the condition this subsystem covers.

The Action Port block has only the States when execution is
resumed parameter in its parameters dialog. If you set this field to
held (the default value) for an Action Port block, the states of its Action
subsystem are retained between calls even if other member Action
subsystems of an if-else or switch control flow statement are called.
If you set the States when execution is resumed field to reset, the
states of a member Action subsystem are reset to initial values when

it is reenabled.

Note All blocks in an Action subsystem driven by an If or Switch Case
block must run at the same rate as the driving block.

Data Type There are no data inputs or outputs for Action Port blocks.
Support
Parameters x
and)

. — Action Port
Dialog
Box Flace thiz block in a subsystem ta link to a signal fram an I Block or a Switch-Caze block.

— Parareter
States when execution is resumed: [held ;I

Cancel Help | Apply

Action Port

States when execution is resumed

Specifies how to handle internal states when the subsystem of
this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the
Action subsystem states retain their previous values when the
subsystem is reenabled. Otherwise, set this field to reset if you
want the states of the Action subsystem to be reinitialized when
the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the
condition of the call is true after having been previously false.
In the following example, the Action Port blocks for both Action
subsystems A and B have the States when execution is
resumed parameter set to reset.

case[1]:
—f Ul i
defaut:
case: §1
SwitchiGass
defadt: {} 4
E

If case[1] is true, Action subsystem A is called. This implies
that the default condition is false. When B is later called for the
default condition, its states are reset. In the same way, Action
subsystem A’s states are reset when it is called right after Action
subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states.

If A is called again right after a previous call to A, this does not

Action Port

reset A’s states because its condition, case[l], was not previously
false. The same applies to B.

Characteristics Sample Time Inherited from driving If or Switch Case
block

2-10

Algebraic Constraint

Purpose

Library

Description

f(z)

Salve

fiz}=0

Constrain input signal to zero
Math Operations

The Algebraic Constraint block constrains the input signal f(z) to zero
and outputs an algebraic state z. The block outputs the value necessary
to produce a zero at the input. The output must affect the input through
some direct feedback path, i.e., the feedback path solely contains blocks
with direct feedthrough. This enables you to specify algebraic equations
for index 1 differential/algebraic systems (DAEs).

By default, the Initial guess parameter is zero. You can improve the
efficiency of the algebraic loop solver by providing an Initial guess for
the algebraic state z that is close to the solution value.

For example, the following model solves these equations.

z2 + z1 =1
z2 - z1 =1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

2
—— =+
z1 224211 Salve 21
_a gl |men L —
+ ® fnep C >
- Algebraic Constraint Lisplay =1
Sum
z1
-{—
22 z2-21-1 Salve 22
e ol
>+ ® fnep ? >
—p— Algebraic Constrainti Display =2
Constant Sumi

2-11

Algebraic Constraint

Data Type The Algebraic Constraint block accepts and outputs real values of type
Support double.

Parameters =] Function Block Parameters: Algebraic Constrain x|

and Algebraic Constraint [mask] (link)
Dialog gebraic Constraint [mazk] (link]

Box Conztraing input signal f[z] to zero and outputs an algebraic state z. Thiz block
autputs the value necessary ta praduce a 2era at the input. The autput rmust affect
the input through zome feedback path. Provide an initial guess of the output o
improve algebraic loop solver efficiency.

— Parameter

[ritial Quess:
]

k. Cancel Help Smply

Initial guess
An initial guess for the solution value. The default is 0.

Characteristics pjrect Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero-Crossing No

2-12

Assertion

Purpose
Library

Description

Fo

Data Type
Support

Check whether signal is nonzero
Model Verification

The Assertion block checks whether any of the elements of the signal at
its input is nonzero. If all elements are nonzero, the block does nothing.
If any element is zero, the block halts the simulation, by default, and
displays an error message. The block’s parameter dialog box allows
you to

® Specify that the block should display an error message when the
assertion fails but allow the simulation to continue.

® Specify an M-expression to be evaluated when the assertion fails.

e Enable or disable the assertion.

You can also use the Model Verification block enabling setting on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do
not exceed specified limits during simulation. When you are satisfied
that a model is correct, you can turn error checking off by disabling the
verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break
the model.

The Assertion block accepts input signals of any dimensions and any
data type supported by Simulink® software, including fixed-point data

types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-13

Assertion

Parameters [1sink Block Parameters: Assertion x|

and -
Dialog ZEE0N

Box Azzert that the input signal iz non-zero. The default behavior in the abzence of a
callback iz to output an emor meszage when the agzertion fails.

— Parameter

¥ Enable assertion

Simulation callback when azsertion fails:

¥ Stop simulation when assertion Fails

S ample time [-1 for inkherited]:

[

(] 4 Cancel Help Apply

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Assertion block to halt the
simulation when the block’s input is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Characteristics pirect Feedthrough No

Sample Time Inherited from driving block

Scalar Expansion No

2-14

Assertion

Dimensionalized Yes

Zero Crossing No

2-15

Assignment

2-16

Purpose

Library

Description
R
TR

Assign values to specified elements of signal
Math Operations

The Assignment block assigns values to specified elements of the signal.
You can specify the indices of the elements to be assigned values either
by entering the indices in the block’s dialog box or by connecting an
external indices source or sources to the block. The signal at the block’s
data port, labeled U, specifies values to be assigned to Y. The block
replaces the specified elements of Y with elements from the data signal,
leaving unassigned elements unchanged from their initial values. If the
parameter Initialize output has a value of Initialize using input
port <Y0>, the signal at the input port YO initializes the output. If this
parameter is set to Specify size for each dimension in table, the
Output Size parameter requires you to specify the size of the block’s
output signal. The parameter dialog box and the block’s appearance
change to reflect the number of dimensions of the output. The Initialize
output parameter appears only if you select Index vector (port) or
Starting index (port) for the Index Option parameter.

Based on the value you enter for the Number of output dimensions
parameter, a table of index options is displayed. Each row of the table
corresponds to one of the output dimensions in Number of output
dimensions. For each dimension, you can define the elements of the
signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Assignment block for
multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The
table in the Assignment block dialog changes to include one row for each
dimension. If you define each dimension with the following entries:

1
Index Option, select Assign all
° 2

Index Option, select Index vector (dialog)

Assignment

Index, enter [1 3 5]
* 3
Index Option, select Starting index (dialog)
Index, enter 4
° 4
Index Option, select Starting index (port)
5
Index Option, select Index vector (port)
The assigned values will be Y(1:end,[1 3

5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4
and Idx5 are the input ports for dimensions 4 and 5.

The Assignment block’s data port is labeled U. The rest of this section
refers to the data port as U to simplify the explanation of the block’s
usage.

You can use the block to assign values to vector, matrix, or
multidimensional signals.

Iterated Assignment

You can use the Assignment block to assign values computed in a

For or While Iterator loop to successive elements of a vector, matrix,
or multidimensional signal in a single time step. For example, the
following model uses a For Iterator block to create a vector signal each
of whose elements equals 3*i where i is the index of the element.

2-17

Assignment

2-18

double

oo

Constant

u
Id><1|
Gain FAesignment
Lrizplay

Far. double

0
oubTE A v dauble)

Iterator

Far terator

Data Type
Support

Iterated assignment uses an iterator (For or While) block to generate
the indices required by the Assignment block. On the first iteration of
an iterated assignment, the Assignment block copies the first input
(Y0) to the output (Y) and assigns the second input (U) to the output
Y(E,). On successive iterations, the Assignment block simply assigns
the current value of U to Y(E,), i.e., without first copying YO to Y. All of
this occurs in a single time step.

The data and initialization ports of the Assignment block accept signals
of any data type supported by Simulink® software, including fixed-point
data types. The external indices port accepts any built-in data type,
except Boolean data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Assignment

Parameters
and

Dialog

Box

[Z)Function Block Parameters: Assignment |

— Azsignment

Azzigh values to specified elements of a multidimenzional output signal. The index to each element iz identified
from an input port or this dialog. Y'ou can choose the indexing method for each dimension by using the “Index
Option' parameter.

r— Parameter

Mumber of output dimensions: |1

Index mode: IDne-based LI
Index Option Index COutput Size
1 Ilndex wector [part] ;l from part <ldw1 s
1] | B
Initialize output [7]: ISpecif_l,l zize for each dimenzion in table ;I
Action if any output element iz not azsigned: INDne ;I

Sarmple time [-1 for inherited): |-‘I

0K I Catwzel | Help | Apply |

Number of output dimensions
Enter the number of dimensions of the output signal.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first element of
the input vector, 2, the second element, and so on. If Zero-based
is selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be
indexed. From the list, choose:

® Assign all

2-19

Assignment

2-20

This is the default. No further configuration is required. All
elements are assigned.

® Index vector (dialog)
Enables the Index column. Enter the index of the element.
® Index vector (port)

No columns are enabled. If the Initialize output (Y)
parameter is set to Initialize using input port <Y0>, the
block initializes the output port Y with the input port YO.

If the Initialize output (Y) parameter is set to Specify size
for each dimension in table, enter the width of the block’s
output signal in the Qutput Size column.

® Starting index (dialog)

Enables the Index column. Enter the starting index of the
range of elements to be assigned values.

e Starting index (port)

No columns are enabled. If the Initialize output (Y)
parameter is set to Initialize using input port <Y0>,
initializes the output port Y with the input port YO.

If the Initialize output (Y) parameter is set to Specify size
for each dimension in table, enter the width of the block’s
output signal in the Qutput Size column.

The Index and Output Size columns are displayed as relevant.

Index
If the Index Option is Index vector (dialog), enter the index
of each element you are interested in.

If the Index Option is Starting index (dialog), enter the
starting index of the range of elements to be selected. The number
of elements from the starting point is determined by the size of
this dimension at U.

Assignment

Output Size
Enter the width of the block output signal. If you select Specify
size for each dimension in table for the Initialize output
(Y) parameter, this column is enabled.

Initialize output (Y)
Specify how to initialize the output signal.

® Initialize using input port <YO>
The signal at the input port YO initializes the output.
® Specify size for each dimension in table

The block requires you to specify the width of the block’s output
signal in the Qutput Size parameter.

Action if any output element is not assigned
Specifies whether to produce a warning or error message if you
have not assigned all output element. Options include:

® Error
® Warning
* None
Characteristics pjrect Feedthrough Yes
Sample Time Specified by Sample time parameter
Scalar Expansion Yes
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-21

Backlash

2-22

Purpose
Library

Description

il

Model behavior of system with play
Discontinuities

The Backlash block implements a system in which a change in input
causes an equal change in output. However, when the input changes
direction, an initial change in input has no effect on the output. The
amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output. This figure shows the
block’s initial state, with the default deadband width of 1 and initial
output of 0.

o0y 9 05 10 oyt

‘¢ deadhand -
A system with play can be in one of three modes:

¢ Disengaged - In this mode, the input does not drive the output and
the output remains constant.

* Engaged in a positive direction - In this mode, the input is increasing
(has a positive slope) and the output is equal to the input minus half
the deadband width.

¢ Engaged in a negative direction - In this mode, the input is decreasing
(has a negative slope) and the output is equal to the input plus half
the deadband width.

If the initial input is outside the deadband, the Initial output
parameter value determines whether the block is engaged in a positive
or negative direction, and the output at the start of the simulation is
the input plus or minus half the deadband width.

For example, the Backlash block can be used to model the meshing of
two gears. The input and output are both shafts with a gear on one
end, and the output shaft is driven by the input shaft. Extra space

Backlash

between the gear teeth introduces play. The width of this spacing is the
Deadband width parameter. If the system is disengaged initially,

the output (the position of the driven gear) is defined by the Initial
output parameter.

The following figures illustrate the block’s operation when the initial
input is within the deadband. The first figure shows the relationship
between the input and the output while the system is in disengaged

mode (and the default parameter values are not changed).

-10 03 0 0.3 1.0

i Input within deadband

The next figure shows the state of the block when the input has reached
the end of the deadband and engaged the output. The output remains
at its previous value.

-10 05 0 0.5 1.0

i Input reaches end of deadband (engaged|

The final figure shows how a change in input affects the output while
they are engaged.

-10 05 0 0.5 1.0

i Input moves in positive direction.

Cutput = Input - (deadband width/2)

If the input reverses its direction, it disengages from the output. The
output remains constant until the input either reaches the opposite end
of the deadband or reverses its direction again and engages at the same
end of the deadband. Now, as before, movement in the input causes
equal movement in the output.

2-23

Backlash

2-24

For example, if the deadband width is 2 and the initial output is 5, the
output, y, at the start of the simulation is as follows:

¢ 5 if the input, u, is between 4 and 6

e y+1ifu<4

e y-1lifu>6

This sample model and the plot that follows it show the effect of a sine
wave passing through a Backlash block.

Badklash
ST

b e To Workspace

Sine Wiave

The Backlash block parameters are unchanged from their default
values (the deadband width is 1 and the initial output is 0). Notice in
the plotted output following that the Backlash block output is zero until
the input reaches the end of the deadband (at 0.5). Now the input and
output are engaged and the output moves as the input does until the
input changes direction (at 1.0). When the input reaches 0, it again
engages the output at the opposite end of the deadband.

Backlash
|

A Input engages in positive
oat Input - direction. Change in input
B causes equal change in
agr 7 output.
04tk 1 A 1 BI .
nput disengages. Change
ozl | in input does not affect
output.
[—
sl Output 1 C Input engages in negative
) direction. Change in input
04l | causes equal change in
output.
_06 L -
D .
sl {1 D Input disengages. Change
in input does not affect
S+ output.
Data Type The Backlash block accepts and outputs real values of single, double,
Support and built-in integer data types.

2-25

Backlash

Parameters 1 Function Block Parameters: Backlash x|

and Backlazh
Dialog AEKas
Box todel backlazh where the deadband width specifies the amount af play in the
— Parameter
Deadband width:
[1
[ritial output;
|0

W Enable zero crossing detection

Sample time [-1 for inherited]:

|-

k. Cancel Help Spply

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This
parameter is tunable. Simulink® software does not allow the
initial output of this block to be inf or NaN.

Enable zero-crossing detection
Select to enable use of zero-crossing detection to detect
engagement with lower and upper thresholds. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Simulink documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample

2-26

Backlash
|

Time” in the “How Simulink Works” chapter of the Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing Yes, if you select Enable zero crossing
detection

2-27

Bad Link

Purpose Indicate unresolved reference to library block

Description This block indicates an unresolved reference to a library block (see
“Creating a Reference Block”). You can use this block’s parameter dialog
L box to fix the reference to point to the actual location of the library block.

)I Bad Link

Parameters
and

Dialog

Box

=1 Function Block Parameters: LineA i x|

—Reference

IInresalved libramy reference.

—Parameterz

Source block:
{mylib/Line

Source type:

k. Cancel Apply

Source block
Path of the library block that this link represents. To fix a bad
link, edit this field to reflect the actual path of the library block.
Then select Apply or OK to apply the fix and close the dialog box.

Source type
Type of library block that this link represents.

2-28

Band-Limited White Noise

Purpose
Library

Description

EY;

Introduce white noise into continuous system
Sources

The Band-Limited White Noise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

The primary difference between this block and the Random Number
block is that the Band-Limited White Noise block produces output at a
specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat
power spectral density (PSD), and a covariance of infinity. In practice,
physical systems are never disturbed by white noise, although white
noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink® software, you can simulate the effect of white noise by
using a random sequence with a correlation time much smaller than the
shortest time constant of the system. The Band-Limited White Noise
block produces such a sequence. The correlation time of the noise is the
sample rate of the block. For accurate simulations, use a correlation
time much smaller than the fastest dynamics of the system. You can get
good results by specifying

¢l on
i N lnnf.'?]ﬂ.'l.
where f, _is the bandwidth of the system in rad/sec.

The Algorithm Used in the Block Implementation

To produce the correct intensity of this noise, the covariance of the noise
is scaled to reflect the implicit conversion from a continuous PSD to a
discrete noise covariance. The appropriate scale factor is 1/¢c, where

tc is the correlation time of the noise. This scaling ensures that the
response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because

2-29

Band-Limited White Noise

2-30

Data Type
Support

Parameters
and

Dialog

Box

of this scaling, the covariance of the signal from the Band-Limited
White Noise block is not the same as the Noise power (intensity)
dialog box parameter. This parameter is actually the height of the
PSD of the white noise. While the covariance of true white noise is
infinite, the approximation used in this block has the property that the
covariance of the block output is the Noise Power divided by tc.

The Band-Limited White Noise block outputs real values of type double.

=1 source Block Parameters: Band-Limit x|

— Band-Limited '#hite Maize. [mazk] [link]

The Band-Limited *hite Moize block generates normally
diztributed random numbers that are zuitable for uge in continuous

— Parameter

M oize power:
f10.1]
S ample birne:

01

Seed:
[[23341)

¥ Interpret vectar parameters as 1-0

k. Cancel Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink documentation.

Band-Limited White Noise

Noise power

The height of the PSD of the white noise. The default valueis 0.1.

Sample time

The correlation time of the noise. The default value is 0.1. See
“Specifying Sample Time” in the “How Simulink Works” chapter
of the Simulink documentation.

Seed

The starting seed for the random number generator. The default

value is 23341.

Interpret vector parameters as 1-D
Output a 1-D array if the block’s parameters are vectors.
Otherwise, output a 2-D array one of whose dimensions is 1. See
“Determining the Output Dimensions of Source Blocks” in the
“Working with Signals” chapter of the Simulink documentation.

Characteristics sample Time

Specified in the Sample time parameter

Scalar Expansion

Yes, of Noise power and Seed
parameters and output

Dimensionalized

Yes

Zero Crossing

No

2-31

Bias

2-32

Purpose
Library

Description

oA u+0.0 p

Data Type
Support

Parameters
and

Dialog

Box

Add bias to input

Math Operations

The Bias block adds a bias, or offset, to the input signal according to

Y = U+ Bias

where U is the block input and Y is the output.

The Bias block accepts and outputs real or complex values of any data
type supported by Simulink® software, except Boolean. The Bias block

supports fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”

chapter of the Simulink documentation.

1 Function Block Parameters: Bias x|
— Bia

Add biaz ta input,

= +Biaz.

— Parameter

Biaz

[

[T Saturate on integer overflow

] Cancel Help Apply

Bias

Specify the value of the offset to add to the input signal.

Bias

Saturate on integer overflow
If the input (and hence the output) is an integer data type (for
example, int8) and the data type cannot accommodate the
output signal, selecting this option causes the block to output the
maximum value allowed by the data type. Otherwise, in this case,
the block outputs the result of using twos-complement arithmetic
to add the input to the output, i.e., the value is the result of
adding the bias to the input modulo the maximum representable
value of the data type.

Characteristics pjrect Feedthrough Yes
Sample Time Inherited from the driving block
Scalar Expansion Yes
States 0
Dimensionalized Yes
Zero Crossing No

2-33

Bit Clear

Purpose
Library

Description

Clear
bit 0

b
W

Data Type
Support

Parameters
and

Dialog

Box

Examples

2-34

Set specified bit of stored integer to zero
Logic and Bit Operations

The Bit Clear block sets the specified bit, given by its index, of the
stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Clear block supports Simulink® integer, fixed-point, and
Boolean data types. True floating-point data types are not supported.

1 Function Block Parameters: Bit Clear x|

— Bit Clear [mazk] [link]

Clear ith bit of the stared integer to 0. Scaling iz ignored.

— Parameter

|ndes af bit [0 iz leazt zsignificant]:
]

k. Cancel Help Spply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of
constants 2.A[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010
00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

Bit Clear
|

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Bit Set

2-35

Bit Set

Purpose
Library

Description

Set
1 bito [

Data Type
Support

Parameters
and

Dialog

Box

Examples

2-36

Set specified bit of stored integer to one
Logic and Bit Operations

The Bit Set block sets the specified bit of the stored integer to one.
Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Set block supports Simulink® integer, fixed-point, and Boolean
data types. True floating-point data types are not supported.

1 Function Block Parameters: Bit Set x|

— Bit Set [mazk] [link]

Set ith bit af the stored integer ta 1. Scaling iz ignored.

— Parameter

[ndewx af bit [0 is leazt zignificant]:
]

] Cancel Help Apply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of
constants 2.7[0 1 2 3 4] is represented in binary as [00001 00010
00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110
00100 01100 10100], which is represented in decimal as [5 6 4 12 20].

Bit Set
|

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
See Also Bit Clear

2-37

Bitwise Operator

2-38

Purpose
Library

Description

Bitwise
3y AND p
OxDg

Perform specified bitwise operation on inputs

Logic and Bit Operations

The Bitwise Operator block performs the specified bitwise operation

on its operands.

Unlike the logic operations performed by the Logical Operator block,
bitwise operations treat the operands as a vector of bits rather than
a single number. You select the bitwise Boolean operation from the

Operator parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is
TRUE

NAND TRUE if at least one of the corresponding bits is
FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are
TRUE

NOT TRUE if the input is FALSE (available only for

single input)

The Bitwise Operator block does not support shift operations. For shift
operations, see the Shift Arithmetic block.

The size of the output of the Bitwise Operator block depends on the
number of inputs, their vector size, and the selected operator:

¢ The NOT operator accepts only one input, which can be a scalar or
a vector. If the input is a vector, the output is a vector of the same
size containing the bitwise logical complements of the input vector

elements.

Bitwise Operator

* For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. If a bit mask is not
specified, then the output is a scalar. If a bit mask is specified, then
the output is a vector.

® For two or more inputs, the block performs the operation between all
of the inputs. If the inputs are vectors, the operation is performed
between corresponding elements of the vectors to produce a vector
output.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE® Standard
for Logic Elements.

If you do not select the Use bit mask check box, then the block can
accept multiple inputs. You select the number of input ports from the
Number of input ports parameter. The input data types must be
identical.

If you select the Use bit mask check box, then a single input is
associated with the bit mask you specify from the Bit Mask parameter.
You specify the bit mask using any valid MATLAB® expression. For
example, you can specify the bit mask 00100101 as 2~5+2~2+2"0.
Alternatively, you can use strings to specify a hexadecimal bit mask
such as {'FE73"', '12AC"'}. If the bit mask is larger than the input
signal data type, then it is ignored.

Note The output data type, which is inherited from the driving block,
should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

The Treat mask as parameter list controls how the mask is treated.
The possible values are Real World Value and Stored Integer. In
terms of the general encoding scheme described in the “Scaling” section
of the Simulink® Fixed Point™ documentation, Real World Value

2-39

Bitwise Operator

2-40

Data Type
Support

treats the mask as V = SQ + B where S is the slope and B is the bias.
Stored Integer treats the mask as a stored integer, @.

You can use the bit mask to perform a bit set or a bit clear on the input.
To perform a bit set, set the Operator parameter list to OR and create
a bit mask with a 1 for each corresponding input bit that you want to
set to 1. To perform a bit clear, set the Operator parameter list to
AND and create a bit mask with a 0 for each corresponding input bit
that you want to set to 0.

For example, suppose you want to perform a bit set on the fourth
bit of an 8-bit input vector. The bit mask would be 00010000, which
you can specify as 2°4 in the Bit mask parameter. To perform a
bit clear, the bit mask would be 11101111, which you can specify as
2°7+276+2"5+2°3+2"2+2~1+270 in the Bit mask parameter.

The Bitwise Operator block supports Simulink® integer, fixed-point,
and Boolean data types. The block does not support true floating-point
data types.

Bitwise Operator

Parameters
and

Dialog

Box

E! Function Block Parameters: Bitwise Dperator

— Bitwize Operatar [mask] (link]

ghould represent zero exacty.

Perfarm the specified bitwize operation on the inputz. The output data type

— Parameter

Dperator; I.-'l‘-.ND
¥ Usze bit mask ...

Murnber of input parts:;

|1

Bit Mazk

[bin2dec(11011001

Treat mazk az: IStu:ureu:I |nteger

ok

Cancel Help | Apply

Operator

The bitwise logical operator associated with the specified

operands.

Use bit mask

Specify if the bit mask is used (single input only).

Number of input ports

The number of inputs.

2-41

Bitwise Operator

Bit Mask
The bit mask to associate with a single input. The Bit Mask
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Treat mask as
Treat the mask as a real-world value or as a stored integer.

Examples To help you understand the Bitwise Operator block logic operations,
consider the fixed-point model shown below.
108
01101001
Constant

Bitui
188 o double
— — —
;=1
10114100 — (50

Constant Bitrize [rata Type Conwversion Display
Operatar
45
ooq01104
Constant2

The Constant blocks are configured to output an 8-bit unsigned integer
(uint(8)). The results for all logic operations are shown below.

Operation Binary Value Decimal Value
AND 00101000 40

OR 11111101 253

NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

2-42

Bitwise Operator
|

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes, of inputs
Multidimensionalized Yes

2-43

Block Support Table

2-44

Purpose
Library

Description

Block Support
Table

Data Type
Support

Parameters
and

Dialog

Box

Characteristics

View data type support for Simulink® blocks

Model-Wide Utilities

The Block Support Table block enables you to access a table that
summarizes the data types supported by the blocks in the Simulink
libraries. Double-click the block to view the table.

Not applicable.

E! Block Parameters: Block Support Table

Block Suppart Table [mazk] [link]

Double-clicking the block will launch the Simulink Block Data Tepe Support

T able.

k. Cancel

Help

Apply

Not applicable.

Bus Assignment

Purpose

Library

Description

Bus

Bus

= zignal

Replace specified bus elements
Signal Routing

The Bus Assignment block assigns signals connected to its Assignment
input ports (:=) to specified elements of the bus connected to its Bus
input port, replacing the signals previously assigned to those elements.
The change does not affect the signals themselves, it affects only the
composition of the bus. Signals not replaced are unaffected by the
replacement of other signals.

Connect the bus to be changed to the first input port. Use the block’s
dialog box to specify the bus elements to be replaced. The block displays
an assignment input port for each such element. The signal connected
to the assignment port must have the same structure, data type, and
numeric type as the bus element to which it corresponds.

You cannot use the Bus Assignment block to replace a bus that is nested
within another bus. Thus no element selected in the dialog box for
replacement can be a bus, and no signal connected to an Assignment
port can be a bus.

Note All signals in a nonvirtual bus must have the same sample time,
even if the elements of the associated bus object specify inherited
sample times. Any bus operation that would result in a nonvirtual bus
that violates this requirement generates an error.

All buses and signals input to a Bus Assignment block that modifies a
nonvirtual bus must therefore have the same sample time. You can use
a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus, to allow the signal or bus to be included
in a nonvirtual bus.

2-45

Bus Assignment

2-46

Data Type
Support

Parameters
and

Dialog

Box

The bus input port of the Bus Assignment block accepts and outputs
real or complex values of any data type supported by Simulink®
software, including fixed-point data types. The assignment input ports
accept the same data and numeric types as the bus elements to which
they correspond.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

E! Block Parameters: Bus Assignment : x|

—Buzhzzighment

Thiz block acceptz a bug az input and allows zignals in the buz to be assigned with new signal values. The left istbox
shows the zignalzs in the input bus, Use the Select button to select the signals that are to be assigned. The right listbox
shows the zelectionz. Usze the Up, Down, or Femove button to reorder the selections.

—Parameters

Sighals in the bus | B | Signals that are being assigned Up
zighall
Selects» | Dowry
Refresh | Femove

il

Ok I Lancel Help Apply

Signals in the bus

Displays the names of the signals contained by the bus at the
block’s Bus input port. Click any item in the list to select it. To
find the source of the selected signal, click the adjacent Find
button. Simulink software opens the subsystem containing the
signal source, if necessary, and highlights the source’s icon. Use
the Select>> button to move the currently selected signal into
the adjacent list of signals to be assigned values (see Signals
that are being assigned below). To refresh the display (e.g., to

Bus Assignment

reflect modifications to the bus connected to the block), click the
adjacent Refresh button.

Signals that are being assigned
Lists the names of bus elements to be assigned values. This block
displays an assignment input port for each bus element in this
list. The label of the corresponding input port contains the name
of the element. You can order the signals by using the Up, Down,
and Remove buttons. Port connectivity is maintained when the
signal order is changed.

Three question marks (???) before the name of a bus element
indicate that the input bus no longer contains an element of
that name, for example, because the bus has changed since the
last time you refreshed the Bus Assignment block’s input and
bus element assignment lists. You can fix the problem either by
modifying the bus to include a signal of the specified name or by
removing the name from the list of bus elements to be assigned
values.

Characteristics Multidimensionalized Yes

2-47

Bus Creator

2-48

Purpose
Library

Description

i

Create signal bus
Signal Routing

The Bus Creator block combines a set of signals into a bus, i.e., a group
of signals represented by a single line in a block diagram. The Bus
Creator block, when used in conjunction with the Bus Selector block,
allows you to reduce the number of lines required to route signals from
one part of a diagram to another. This makes your diagram easier to
understand.

To bundle a group of signals with a Bus Creator block, set the block’s
Number of inputs parameter to the number of signals in the group.
The block displays the number of ports that you specify. Connect the
signals to be grouped to the resulting input ports. The signals in the
bus will be order from the top input port to the bottom input port. See
“Changing the Orientation of a Block” in the Simulink® documentation
for a description of the port order for various block orientations.

You can connect any type of signal to the inputs, including other bus
signals. To ungroup the signals, connect the block’s output port to
a Bus Selector port.

Note Simulink software hides the name of a Bus Creator block when
you copy it from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that

it creates. This allows you to refer to signals by name when searching
for their sources (see “Browsing Bus Signals” on page 2-50) or selecting
signals for connection to other blocks. The block offers two bus signal
naming options. You can specify that each signal on the bus inherits the
name of the signal connected to the bus (the default) or that each input
signal must have a specific name.

Bus Creator

1

Constant

1

Constantl

1

Gain

Constanti

To specify that bus signals inherit their names from input ports, select
Inherit bus signal names from input ports from the list box on
the block’s parameter dialog box. The names of the inherited bus
signals appear in the Signals in bus list box.

- . .
emmmmm=="" Signals in bus:
s
Gain H
)
P L
Di=plaxr
=
.- Eename selected signal: I
Eu= ---.----I----I .

Creatarl

The Bus Creator block generates names for bus signals whose
corresponding inputs do not have names. The names are of the form
signaln, where n is the number of the port to which the input signal is
connected.

You can change the name of any signal by editing its name on the block
diagram or in the Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must
close and reopen the dialog box or click the Refresh button next to the
Signals in bus list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require
input signal names to match signals below from the list box in
the block’s parameter dialog box. The block’s parameter dialog box
displays the names of the signals currently connected to its inputs, or
a generated name (for example, signal2) for an anonymous input. You
can now use the parameter dialog box to change the required names

of the block’s inputs.

To change the required signal name, select the signal in the Signals in
bus list. The selected signal’s name appears in the Rename selected
signal field. Edit the name in the field and click Apply or OK.

Bus Creator

Browsing Bus Signals

The Signals in bus list on a Bus Creator block’s parameter dialog box
displays a list of the signals entering the block. A plus sign (+) next to
a signal indicates that the signal is itself a bus. You can display its
contents by clicking the plus sign. If the expanded input includes bus
signals, plus signs appear next to the names of those bus signals. You
can expand them as well. In this way, you can view all signals entering
the block, including those entering via buses. To find the source of
any signal entering the block, select the signal in the Signals in bus
list and click the adjacent Find button. Simulink software opens the
subsystem containing the signal source, if necessary, and highlights
the source’s icon.

Data Type The Bus Creator block accepts and outputs real or complex values of
Suppori‘ any data type supported by Simulink software, including fixed-point
data types.

For a discussion on the data types supported by Simulink software,
refer to “Data Types Supported by Simulink” in the “Working with
Data” chapter of the Simulink documentation.

2-50

Bus Creator

Parameters
and

Dialog

Box

E! Function Block Parameters: Bus Creator

r—BusCreator

This block creates a bus signal from its inputs.

—Paramsters

Inherit bus signal names from input ports

MNumber of inputs: |2

Signals in bus

signal
L gignal?

Rename selected signal:

I~ Specify properties via bus object

Bus object: IBusOhject
I~ Output a5 nonvitual bus

ok | Cancel

Signal naming options

Select Inherit bus signal names from input ports to assign
input signal names to the corresponding bus signals. Select
Require input signal names to match signals below to
specify that inputs must have the names listed in the Signals in
bus list. Selecting this option enables the Rename selected

signal field.

Number of inputs

Specifies the number of input ports on this block.

Signals in bus

The Signals in bus list box shows the signals in the output bus.
A plus sign (+) next to a signal name indicates that the signal
is itself a bus. Click the plus sign to display the subsidiary bus

2-51

Bus Creator

2-52

signals. Click the Refresh button to update the list after editing
the name of an input signal. Click the Find button to highlight
the source of the currently selected signal.

Rename selected signal
Lists the name of the signal currently selected in the Signals in
bus list when you select the Require input signal names to
match signals below option. Edit this field to change the name
of the currently selected signal.

Specify properties via bus object
Select this option to use a bus object to define the structure of the
bus created by this block (see “Working with Data Objects” in
the “Working with Data” chapter of the Simulink documentation
and the Simulink.Bus class in the online Simulink reference to
learn how to create bus objects).

Bus object
This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of bus object used
to define the structure of the bus created by this block. At
the beginning of a simulation or when you update the model’s
diagram, Simulink software checks whether the signals connected
to this Bus Creator block have the specified structure. If not,
Simulink software displays an error message.

Output as nonvirtual bus
This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block outputs
a nonvirtual bus; otherwise, it outputs a virtual bus (see “Virtual
and Nonvirtual Buses” in the “Working with Signals” chapter
of the Simulink documentation). Select this option if you want
code generated from this model to use a C structure to define the
structure of the bus signal output by this block.

Bus Creator

Note All signals in a nonvirtual bus must have the same sample
time, even if the elements of the associated bus object specify

inherited sample times. Any bus operation that would result in a
nonvirtual bus that violates this requirement generates an error.

If you select this option, all of the signals entering the Bus Creator
block must therefore have the same sample time. You can use a
Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus, to allow the signal or bus to be
included in a nonvirtual bus.

Characteristics Multidimensionalized Yes

2-53

Bus Selector

Purpose Select signals from incoming bus

Librury Signal Routing

Description The Bus Selector block outputs a specified subset of the elements of
the bus at its input. The block can output the selected elements as
multiple standalone signals or as elements of a new bus. When selecting
elements from the bus, each element is output from a separate port

from top to bottom on the block. (See “Changing the Orientation of
a Block”in the Simulink® documentation for a description of the port
order for various block orientations.)

Note Simulink software hides the name of a Bus Selector block when
you copy it from the Simulink library to a model.

Data Type A Bus Selector block accepts and outputs real or complex values of any
Support data type supported by Simulink software, including fixed-point data
types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-54

Bus Selector

Parameters
and

Dialog

Box

E! Function Block Parameters: Bus Selector il

—BuzSelectar

Thiz block accepts a bus as input which can be created from a Mus, Bus Creatar, Bus Selector or a block that defines its
output using a bus object. The left listhox shows the signalz in the input bus. Uze the Select button to select the output
signals. The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check M used
output’ to multiples the output.

—Parameters

Signals in the bus | Fitidl | Selected signals P

7 zignall

Select:> | 297 signal2 Dsiin
Refresh | e

d§

[~ Output as bus

aK I Cancel Help Spply

Signals in the bus
The Signals in the bus list shows the signals in the input bus.
Use the Select>> button to select output signals. To find the
source of any signal entering the block, select the signal in the
Signals in the bus list and click the adjacent Find button.
Simulink software opens the subsystem containing the signal
source, if necessary, and highlights the source’s icon. To refresh
the display (e.g., to reflect modifications to the bus connected to
the block), click the adjacent Refresh button.

Selected signals
The Selected signals list box shows the output signals. You can
order the signals by using the Up, Down, and Remove buttons.
Port connectivity is maintained when the signal order is changed.

2-55

Bus Selector

If an output signal listed in the Selected signals list box is not
an input to the Bus Selector block, the signal name is preceded
by three question marks (??7?).

Output as bus
If selected, this option causes the block to output the selected
elements as a bus. Otherwise, the block outputs the elements as
standalone signals, each from its own output port and labeled
with the corresponding element’s name.

Characteristics Multidimensionalized Yes

2-56

Bus to Vector

Purpose
Library

Description

4+

Data Type
Support

Convert virtual bus to vector
Signal Attributes

The Bus to Vector block converts a virtual bus signal to a vector signal.
The input bus signal must consist of scalar, 1-D, or either row or column
vectors having the same data type, signal type, and sampling mode. If
the input bus contains row or column vectors, this block outputs a row
or column vector, respectively; otherwise, it outputs a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector
conversion with an equivalent explicit conversion. See “Bus signal
treated as vector” and “Correcting Buses Used as Muxes” for more
information.

Note Simulink® software hides the name of a Bus to Vector block when
you copy it from the Simulink library to a model.

The Bus to Vector block accepts and outputs real or complex values of
any data type supported by Simulink software, including fixed-point
data types.

For a discussion of the data types supported by Simulink software, refer
to “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-57

Bus to Vector

2-58

Parameters 1 Function Block Parametets: Bus to Yector x|
and
. Bug to Yector

Dialog

Box Corwert a wirtual bug zignal to a wector zignal. The input bus zignal must consigt of
zcalar, 1-0, or either row or column vectars having the zame data tupe, zignal tupe,
and zampling mode. If the input buz contains mw or column vectars, this block
outputz a row or column vector, respectively; othenwize, it outputz a 1-0 amay.

ok Cancel Help Apply
This block has no user-accessible parameters.
Characteristics \fyitidimensionalized Yes

Check Discrete Gradient

Purpose

Library

Description

Y

Data Type
Support

Check that absolute value of difference between successive samples of
discrete signal is less than upper bound

Model Verification

The Check Discrete Gradient block checks each signal element at its
input to determine whether the absolute value of the difference between
successive samples of the element is less than an upper bound. The
block’s parameter dialog box allows you to specify the value of the upper
bound (1 by default). If the verification condition is true, the block does
nothing. Otherwise, the block halts the simulation, by default, and
displays an error message in the Simulation Diagnostics Viewer.

The Model Verification block enabling setting under Debugging on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box lets you enable or disable all model verification blocks,
including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Discrete Gradient block accepts single, double, int8,
int16, and int32 input signals of any dimensions.

2-59

Check Discrete Gradient

Parameters
and

Dialog

Box

2-60

[=1sink Block Parameters: Check Discrete Gradien x|

— Checks Gradient [mazk] [link]

Azzert that the abzolute value of the difference bebween succeszsive zamples of a
dizcrete signal iz less than an upper bound.

— Parameter

b axirnum gradient:
[1
¥ Enable assertion

Simulation callback when azsertion fails [aptional];

¥ Stop simulation when assertion Fails

[T Output azzertion zignal

Select icon wpe: |araphic ;I

k. Cancel Help | Spply

Maximum gradient

Upper bound on the gradient of the discrete input signal.

Enable assertion

Unchecking this option disables the Check Discrete Gradient
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-expression to be evaluated when the assertion fails.

Check Discrete Gradient

Stop simulation when assertion fails
If checked, this option causes the Check Discrete Gradient block
to halt the simulation when the block’s output is zero and display
an error message in the Simulink® Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Discrete Gradient block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on

the Simulation and code generation optimization pane of
Simulink Configuration Parameters dialog box. Otherwise the
data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-61

Check Dynamic Gap

Purpose

Library

Description

Data Type
Support

2-62

Check that gap of possibly varying width occurs in range of signal’s
amplitudes

Model Verification

The Check Dynamic Gap block checks that a gap of possibly varying
width occurs in the range of a signal’s amplitudes. The test signal

is the signal connected to the input labeled sig. The inputs labeled
min and max specify the lower and upper bounds of the dynamic gap,
respectively. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Dynamic Gap block accepts input signals of any dimensions
and of any data type supported by Simulink® software. All three input
signals must have the same dimension and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Check Dynamic Gap

Parameters
and

Dialog

Box

E! Sink Block Parameters: Check Dynamic Gap x|

— Checks DGap [mazk] [link]

Azzert that the input signal ‘zig' is always less than the lower bound 'min' or greater
than the upper bound ‘'max’. The first input iz the upper-bound of the gap; the
zecond input, the lower-bound; the third input, the test zsignal.

— Parameter

¥ Enable azzertion

Simulation calback when azsertion fails [optional];

¥ Stop zimulation when assertion Failz

[T Output assertion signal

Select icon tppe: |graphic ;I

] Cancel Help | Apply

Enable assertion
Unchecking this option disables the Check Dynamic Gap block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Gap block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics

2-63

Check Dynamic Gap

2-64

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Dynamic Gap block

to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Dynamic Lower Bound

Purpose
Library

Description

min
zig

Data Type
Support

Check that one signal is always less than another signal
Model Verification

The Check Dynamic Lower Bound block checks that the amplitude of a
reference signal is less than the amplitude of a test signal at the current
time step. The test signal is the signal connected to the input labeled sig.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Dynamic Lower Bound block accepts input signals of any
data type supported by Simulink® software. The test and the reference
signals must have the same dimensions and data type. If the inputs are
nonscalar, the block checks each element of the input test signal to the
corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-65

Check Dynamic Lower Bound

Parameters [=1sink Block Parameters: Check Dynamic Lower E x|

n

a N d — Checks DMin [masgk] [link]

Dialog

Box Azzert that one zighal is alwavs lezs than anather zignal. The first input iz the

[ower-bound zignal. The zecond input iz the test zsignal.

— Parameter

¥ Enable assertion

Simulation callback when azsertion failz [optional);

W Stop zimulation when azsertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

] Cancel Help | Apply

Enable assertion
Unchecking this option disables the Check Dynamic Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Lower Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails

An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Lower Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics

2-66

Check Dynamic Lower Bound

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Lower Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-67

Check Dynamic Range

Purpose

Library

Description

max
min \]
sig

Data Type
Support

2-68

Check that signal falls inside range of amplitudes that varies from time
step to time step

Model Verification

The Check Dynamic Range block checks that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary
from time step to time step. The input labeled sig is the test signal. The
inputs labeled min and max are the lower and upper bounds of the valid
range at the current time step. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Dynamic Range block accepts input signals of any
dimensions and of any data type supported by Simulink® software. All
three input signals must have the same dimension and data type. If the
inputs are nonscalar, the block checks each element of the input test
signal to the corresponding elements of the reference signals.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Check Dynamic Range

Parameters
and

Dialog

Box

[*1sink Block Parameters: Check Dynamic Range x|

— Checks_DRange [maszk] [link]

Azzert that one zighal always liez between bwo other signals. The first input iz the
upper-bound zignal; the second input, the lower-bound; the third input, the test

— Parameter

¥ Enable assertion

Simulation callback when azsertion failz [optional);

W Stop zimulation when azsertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

] Cancel Help | Apply

Enable assertion
Unchecking this option disables the Check Dynamic Range
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Range block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics

2-69

Check Dynamic Range

2-70

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Dynamic Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Dynamic Upper Bound

Purpose
Library

Description

max
=ig

Data Type
Support

Check that one signal is always greater than another signal
Model Verification

The Check Dynamic Upper Bound block checks that the amplitude of

a reference signal is greater than the amplitude of a test signal at the

current time step. The test signal is the signal connected to the input

labeled sig. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Upper Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error-checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Dynamic Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software. The
test and the reference signals must have the same dimensions and data
type. If the inputs are nonscalar, the block compares each element of the
input test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-71

Check Dynamic Upper Bound

Parameters E! Sink Block Parameters: Check Dynamic Upper E il

and .
N — Checks DM ax [mazk] [link]
Dialog
Box Azzert that one zighal is alwavs greater than another signal. The first input iz the

upper-biound zignal. The second input is the kest zignal.

— Parameter

¥ Enable assertion

Simulation callback when azsertion failz [optional);

W Stop zimulation when azsertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

] Cancel Help | Apply

Enable assertion
Unchecking this option disables the Check Dynamic Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Upper Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails

An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Dynamic Upper Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics

2-72

Check Dynamic Upper Bound

viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Dynamic Upper Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-73

Check Input Resolution

2-74

Purpose
Library

Description

o

Data Type
Support

Check that input signal has specified resolution
Model Verification

The Check Input Resolution block checks whether the input signal has
a specified scalar or vector resolution (see Resolution). If the resolution
is a scalar, the input signal must be a multiple of the resolution within
a 10e-3 tolerance. If the resolution is a vector, the input signal must
equal an element of the resolution vector. If the verification condition is
true, the block does nothing. If not, the block halts the simulation, by
default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Input Resolution block accepts input signals of data type
double and of any dimension. If the input signal is nonscalar, the block
checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink® software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Check Input Resolution

Parameters
and

Dialog

Box

=1sink Block Parameters: Check Input Resolutio x|

— Checks_Rezolution [maszk] [link]

Azzert that the input gianal haz a zpecified resalution. |F the resolution iz a zcalar,
the input zignal must be a multiple of the resalution within a 10e-3 tolerance. f the
rezolution iz a vector, the input zsignal must equal an element of the rezolution

— Parameter
Rezolution:

[

¥ Enable azzertion

Simulation callback when azsertion fails [optional];

¥ Stop simulation when assertion Fails

[T Output azzertion zignal

(] Cancel Help Apply

Resolution
Resolution that the input signal must have.

Enable assertion

Unchecking this option disables the Check Input Resolution
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Input Resolution blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

2-75

Check Input Resolution

2-76

Stop simulation when assertion fails
If checked, this option causes the Check Input Resolution block
to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal

If checked, this option causes the Check Input Resolution block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected

the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Characteristics pjrect Feedthrough

No

Sample Time

Inherited from driving block

Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

Check Static Gap

Purpose
Library

Description

[3

Vi

N4

Data Type
Support

Check that gap exists in signal’s range of amplitudes
Model Verification

The Check Static Gap block checks that each element of the input signal
is less than (or optionally equal to) a static lower bound or greater than
(or optionally equal to) a static upper bound at the current time step.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Static Gap block accepts input signals of any dimensions and
of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-77

Check Static Gap

2-78

Parameters
and

Dialog

Box

[1sink Block Parameters: Check Static Gap x|

— Checks SGap [mask] [link]

Azzert that the input gignal iz less than [or optionally equal ta] a static lower bovund
ar greater than [or optionally equal ta] a static upper bound.

— Parameter

lpper bound:
{100

¥ Inclusive upper bound
Lower bound:
|o

V¥ Inclusive lower bound
¥ Enable azzertion
Simulation calback when azsertion fails [optional];

¥ Stop zimulation when assertion Failz

[T Output assertion signal

Select icon tppe: |graphic ;I

] Cancel Help | Apply

Upper bound
Upper bound of the gap in the input signal’s range of amplitudes.

Inclusive upper bound
If checked, this option specifies that the gap includes the upper
bound.

Lower bound
Lower bound of the gap in the input signal’s range of amplitudes.

Check Static Gap

Inclusive lower bound
If checked, this option specifies that the gap includes the lower
bound.

Enable assertion
Unchecking this option disables the Check Static Gap block, that
is, causes the model to behave as if the block did not exist. The
Model Verification block enabling setting under Debugging
on the Data Validity diagnostics pane of the Configuration
Parameters dialog box allows you to enable or disable all model
verification blocks in a model, including Check Static Gap blocks,
regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Gap block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Gap block to output
a Boolean signal that is true (1) at each time step if the assertion
succeeds and false (0) if the assertion fails. The data type of the
output signal is Boolean if you have selected the Implement
logic signals as boolean data option on the Simulation
and code generation optimization pane of the Configuration
Parameters dialog box. Otherwise the data type of the output
signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-79

Check Static Gap

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-80

Check Static Lower Bound

Purpose

Library

Description

&

WAV

+—

Data Type
Support

Check that signal is greater than (or optionally equal to) static lower
bound

Model Verification

The Check Static Lower Bound block checks that each element of the
input signal is greater than (or optionally equal to) a specified lower
bound at the current time step. The block’s parameter dialog box allows
you to specify the value of the lower bound and whether the lower
bound is inclusive. If the verification condition is true, the block does
nothing. If not, the block halts the simulation, by default, and displays
an error message.

The Check Static Lower Bound block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Static Lower Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-81

Check Static Lower Bound

Parameters [=1sink Block Parameters: Check Static Lower Bo x|

and Checks_Skin [maszk] [link)
. — Checks i [magk] [lin
Dialog - ’
Box Azzert that the input signal iz greater than [or optionally equal ta] a static lower
— Parameter
Lower bound:
|0

V¥ Inclusive boundany
¥ Enable assertion
Simulation callback when azzertion failz [optional):

¥ Stop simulation when assertion Fails

[T Output azzertion zignal

Select icon wpe: |araphic ;I

(] 4 Cancel Help | Apply

Lower bound
Lower bound on the range of amplitudes that the input signal

can have.

Inclusive boundary
Checking this option makes the range of valid input amplitudes

include the lower bound.

Enable assertion
Unchecking this option disables the Check Static Lower Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

2-82

Check Static Lower Bound

disable all model verification blocks in a model, including Check
Static Lower Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Lower Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Lower Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pirect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No

2-83

Check Static Lower Bound

Dimensionalized Yes

Zero Crossing No

2-84

Check Static Range

Purpose
Library

Description

f

AWAWAWS

T

Data Type
Support

Check that signal falls inside fixed range of amplitudes
Model Verification

The Check Static Range block checks that each element of the input
signal falls inside the same range of amplitudes at each time step. The
block’s parameter dialog box allows you to specify the upper and lower
bounds of the valid amplitude range and whether the range includes
the bounds. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Static Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

The Check Static Range block accepts input signals of any dimensions
and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-85

Check Static Range

2-86

Parameters
and

Dialog

Box

[=1sink Block Parameters: Check Static Range x|

— Checks_SHange [maszk] [link]

Azzert that the input signal lies between a static lower and upper bowund or
optionally equalz either bound.

— Parameter

Ipper bound:
{100

¥ Inclugive upper bound

Laower bound:
|0

¥ Inclusive lower bound
¥ Enable azzertion
Simulation callback when azsertion failz [optional);

¥ Stop simulation when assertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

] Cancel Help | Apply

Upper bound
Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound

Checking this option specifies that the valid signal range includes

the upper bound.

Lower bound
Lower bound of the range of valid input signal amplitudes.

Check Static Range

Inclusive lower bound
Checking this option specifies that the valid signal range includes
the lower bound.

Enable assertion

Unchecking this option disables the Check Static Range block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Static Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Range block to halt
the simulation when the block’s output is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB® Command
Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Range block to
output a Boolean signal that is true (1) at each time step if the
assertion succeeds and false (0) if the assertion fails. The data
type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the

2-87

Check Static Range

expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-88

Check Static Upper Bound

Purpose
Library

Description

&

 EEE—_—

Data Type
Support

Check that signal is less than (or optionally equal to) static upper bound
Model Verification

The Check Static Upper Bound block checks that each element of the
input signal is less than (or optionally equal to) a specified upper bound
at the current time step. The block’s parameter dialog box allows you to
specify the value of the upper bound and whether the bound is inclusive.
If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

The Check Static Upper Bound block accepts input signals of any
dimensions and of any data type supported by Simulink® software.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-89

Check Static Upper Bound

Parameters
and

Dialog

Box

2-90

[=1sink Block Parameters: Check Static Upper Bo x|

— Checks_Skax [mask] [link]

Azzert that the input signal iz less than [or optionally equal ta] a ztatic upper bound.

— Parameter

|Ipper baund:
|0

V¥ Inclusive boundany
¥ Enable assertion
Simulation callback when azzertion failz [optional):

¥ Stop simulation when assertion Fails

[T Output azzertion zignal

Select icon wpe: |araphic ;I

(] 4 Cancel Help | Apply

Upper bound

Upper bound on the range of amplitudes that the input signal
can have.

Inclusive boundary

Checking this option makes the range of valid input amplitudes
include the upper bound.

Enable assertion

Unchecking this option disables the Check Static Upper Bound
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting

under Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or

Check Static Upper Bound

disable all model verification blocks in a model, including Check
Static Upper Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-expression to be evaluated when the assertion fails.

Stop simulation when assertion fails
If checked, this option causes the Check Static Upper Bound
block to halt the simulation when the block’s output is zero
and display an error message in the Simulation Diagnostics
viewer. Otherwise, the block displays a warning message in the
MATLAB® Command Window and continues the simulation.

Output assertion signal
If checked, this option causes the Check Static Upper Bound block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected
the Implement logic signals as boolean data option on the
Simulation and code generation optimization pane of the
Configuration Parameters dialog box. Otherwise the data type
of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics pirect Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No

2-91

Check Static Upper Bound

Dimensionalized Yes

Zero Crossing No

2-92

Chirp Signal

Purpose
Library

Description

"l

Data Type
Support

Generate sine wave with increasing frequency
Sources

The Chirp Signal block generates a sine wave whose frequency increases
at a linear rate with time. You can use this block for spectral analysis of
nonlinear systems. The block generates a scalar or vector output.

The parameters, Initial frequency, Target time, and Frequency at
target time, determine the block’s output. You can specify any or all
of these variables as scalars or arrays. All the parameters specified

as arrays must have the same dimensions. The block expands scalar
parameters to have the same dimensions as the array parameters. The
block output has the same dimensions as the parameters unless you
select the Interpret vector parameters as 1-D option. If you select
this option and the parameters are row or column vectors, the block
outputs a vector (1-D array) signal.

The Chirp Signal block outputs a real-valued signal of type double.

2-93

Chirp Signal

Parameters =1 source Block Parameters: Chirp Signa x|

and hirp [azk)] [link]
. — chirp [mazk] [lin
Dialog : :
Box Output a linear chirp zignal [gine wave whose frequency varies

lirearly with time].

— Parameter

Imitial frequency [Hz]:

01

Target time [zecz);
{100

Frequency at target time [Hz]:
[1

¥ Interpret wectors parameters az 1-0

k. Cancel Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink® documentation.

Initial frequency
The initial frequency of the signal, specified as a scalar or matrix
value. The default is 0.1 Hz.

Target time
The time at which the frequency reaches the Frequency at
target time parameter value, a scalar or matrix value. The
frequency continues to change at the same rate after this time.
The default is 100 seconds.

Frequency at target time
The frequency of the signal at the target time, a scalar or matrix
value. The default is 1 Hz.

2-94

Chirp Signal

Interpret vector parameters as 1-D
If selected, column or row matrix values for the Initial
frequency, Target time, and Frequency at target time
parameters result in a vector output whose elements are the
elements of the row or column. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Simulink documentation.

Characteristics sample Time

Continuous

Scalar Expansion

Yes, of parameters

Dimensionalized

Yes

Zero Crossing

No

2-95

Clock

Purpose Display and provide simulation time

Library Sources

Desc ription The Clock block outputs the current simulation time at each simulation

@ step. This block is useful for other blocks that need the simulation time.
When you need the current time within a discrete system, use the

Digital Clock block.

Data Type The Clock block outputs a real-valued signal of type double.
Support
Parameters E Source Block Parameters: Clock x|
and
N —Clock

Dialog o

Output the current imulation time.
Box

—Parameters

[T Display time

Decimatior:

|10

ok Cancel Help

Display time
Use the Display time check box to display the current simulation
time inside the Clock icon.

Decimation
The Decimation parameter value is the increment at which
Simulink® software updates the Clock icon when Display time
is checked. Specify a positive integer (the default is 10). For

2-96

Clock

example, if the decimation is 1000, then, for a fixed integration
step of 1 millisecond, the Clock icon updates at 1 second, 2
seconds, and so on.

Characteristics Sample Time Continuous
Scalar Expansion N/A
Dimensionalized No
Zero Crossing No

2-97

Combinatorial Logic

2-98

Purpose
Library

Description

[11]

Implement truth table
Logic and Bit Operations

The Combinatorial Logic block implements a standard truth table for
modeling programmable logic arrays (PLAs), logic circuits, decision
tables, and other Boolean expressions. You can use this block in
conjunction with Memory blocks to implement finite-state machines
or flip-flops.

You specify a matrix that defines all possible block outputs as the
Truth table parameter. Each row of the matrix contains the output
for a different combination of input elements. You must specify outputs
for every combination of inputs. The number of columns is the number
of block outputs.

The relationship between the number of inputs and the number of
rows is

number of rows = 2 *~ (number of inputs)

Simulink® software returns a row of the matrix by computing the row’s
index from the input vector elements. Simulink software computes
the index by building a binary number where input vector elements
having zero values are 0 and elements having nonzero values are 1,
then adding 1 to the result. For an input vector, u, of m elements,

row index = 1 + u(m)*2° + u(m-1)*2! + ... + u(1)*2™!

Example of Two-Input AND Function

This example builds a two-input AND function, which returns 1 when
both input elements are 1, and 0 otherwise. To implement this function,
specify the Truth table parameter value as [0; 0; 0; 1]. The portion
of the model that provides the inputs to and the output from the
Combinatorial Logic block might look like this.

Combinatorial Logic

Input 1

—
Input 2 bz M‘.— [] | Output
—
P e Cambinatarial
Lagic

The following table indicates the combination of inputs that generate
each output. The input signal labeled “Input 1” corresponds to the
column in the table labeled Input 1. Similarly, the input signal “Input
2” corresponds to the column with the same name. The combination of
these values determines the row of the Output column of the table that
is passed as block output.

For example, if the input vector is [1 0], the input references the third
row:

(271*1 + 1)

The output value is 0.

Row Input 1 Input 2 Output
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

Example of Circuit

This sample circuit has three inputs: the two bits (a and b) to be
summed and a carry-in bit (¢). It has two outputs: the carry-out bit (¢’)
and the sum bit (s). Here are the truth table and the outputs associated
with each combination of input values for this circuit.

Inputs Outputs

a b c c’ s

2-99

Combinatorial Logic

Data Type
Support

2-100

Inputs Outputs
a b c c s
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

To implement this adder with the Combinatorial Logic block, you enter
the 8-by-2 matrix formed by columns ¢’ and s as the Truth table
parameter.

You can also implement sequential circuits (that is, circuits with states)
with the Combinatorial Logic block by including an additional input
for the state of the block and feeding the output of the block back into
this state input.

The type of signals accepted by a Combinatorial Logic block depends on
whether you selected the Boolean logic signals option (see “Implement
logic signals as boolean data (vs. double)” in the “Working with Data”
chapter of the Simulink documentation). If this option is enabled, the
block accepts real signals of type Boolean or double. The Truth table
parameter can have Boolean values (0 or 1) of any data type, including
fixed-point data types. If the table contains non-Boolean values, the
table’s data type must be double.

The type of the output is the same as that of the input except that
the block outputs double if the input is Boolean and the truth table
contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic
block accepts only signals of type Boolean. The block outputs double if

Combinatorial Logic

Parameters
and
Dialog
Box

the truth table contains non-Boolean values of type double. Otherwise,
the output is Boolean.

1 Function Block Parameters: Combinatorial Logi x|

— Cambinatarial Logic

Look up the elements of the input vector [treated az boaolean values] in the truth
table and outputs the comesponding row of the 'Truth table' parameter. The input
zide af the truth table is implicit.

— Parameter

Truith table:
[[00:07.01:10:011 01 0:1 1]

Sample time [-1 for inherited]:

[

] Cancel Help Apply

Truth table
The matrix of outputs. Each column corresponds to an element
of the output vector and each row corresponds to a row of the
truth table.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink
documentation.

2-101

Combinatorial Logic

Characteristics pirect Feedthrough

2-102

Yes

Sample Time

Inherited from driving block

Scalar Expansion

No

Dimensionalized

Yes; the output width is the number of
columns of the Truth table parameter

Zero Crossing

No

Compare To Constant

Purpose
Library

Description

<=3 p

Data Type
Support

Determine how signal compares to specified constant
Logic and Bit Operations

The Compare To Constant block compares an input signal to a constant.
Specify the constant in the Constant value parameter. Specify how the
input is compared to the constant value with the Operator parameter.
The Operator parameter can have the following values:

e == Determine whether the input is equal to the specified constant.
® ~= — Determine whether the input is not equal to the specified
constant.

® < — Determine whether the input is less than the specified constant.

e <= — Determine whether the input is less than or equal to the
specified constant.

® > Determine whether the input is greater than the specified
constant.

® >= — Determine whether the input is greater than or equal to the
specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

The Compare To Constant block accepts inputs of any data type
supported by Simulink® software, including fixed-point data types.
The block first converts its Constant value parameter to the input
data type, and then performs the specified operation. The block output
is uint8 or boolean as specified by the Output data type mode
parameter.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-103

Compare To Constant

Pa:lameters [Z1Block Parameters: Compare To Constant x|
CIE\ —LCompare To Constant [mazk] [link]
Dialog : :
Dretermine how a signal compares to a constant.
Box
—Parameters
EEEEEEE s s
Conztant walue:
|20
Output data bppe mode; I Lints LI
[~ Enable zero crossing detection
ok Cancel Help Apply
Operator
Specify how the input is compared to the constant value, as
discussed in Description.
Constant value
Specify the constant value to which the input is compared.
Output data type mode
Specify the data type of the output, uint8 or boolean.
Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.
Characteristics pjrcct Feedthrough Yes

2-104

Scalar Expansion Yes

Compare To Constant

Multidimensionalized Yes
Zero Crossing Yes, if enabled.
See Also Compare To Zero

2-105

Compare To Zero

Purpose
Library

Description

"<=0Pp

Data Type
Support

2-106

Determine how signal compares to zero
Logic and Bit Operations

The Compare To Zero block compares an input signal to zero. Specify
how the input is compared to zero with the Operator parameter. The
Operator parameter can have the following values:

e == Determine whether the input is equal to zero.

® ~=_— Determine whether the input is not equal to zero.

® < — Determine whether the input is less than zero.

® <= — Determine whether the input is less than or equal to zero.

® > Determine whether the input is greater than zero.

® >= — Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

The Compare To Zero block accepts inputs of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uint8 or boolean as specified by the Output data type
mode parameter.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Compare To Zero

Parameters
and

Dialog

Box

[Z1Block Parameters: Compare To Zero x|

—LCompare To Zera [mazk] [link]

Determine how a signal compares to zera.

—Parameterz
Operatar: | £= ll
Output data tppe mode: | wint3 LI

[~ Enable zero crossing detection

QK | Eancel : H Elp Epph’,

Operator
Specify how the input is compared to zero, as discussed in
Description.

Output data type mode
Specify the data type of the output, uint8 or boolean.

Enable zero crossing detection
Select to enable zero-crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes

Zero Crossing Yes, if enabled.

Multidimensionalized Yes

See Also Compare To Constant

2-107

Complex to Magnitude-Angle

Purpose
Library

Description

il
e

Data Type
Support

Parameters
and

Dialog

Box

2-108

Compute magnitude and/or phase angle of complex signal
Math Operations

The Complex to Magnitude-Angle block accepts a complex-valued signal
of type double or single. It outputs the magnitude and/or phase angle
of the input signal, depending on the setting of the Output parameter.
The outputs are real values of the same data type as the block input.
The input can be an array of complex signals, in which case the output
signals are also arrays. The magnitude signal array contains the
magnitudes of the corresponding complex input elements. The angle
output similarly contains the angles of the input elements.

See the preceding description.

E! Function Block Parameters: Complex to Magnit x|

— Complex to M agnitude-4ngle

Compute magnitude and/ar radian phaze angle of the input.

— Parameter

Cutpuk; IMagnitude and angle ;I

Sample time [-1 for inherited]:

[

] Cancel Help Apply

Output
Determines the output of this block. Choose from the following
values: Magnitude and angle (outputs the input signal’s
magnitude and phase angle in radians), Magnitude (outputs the

Complex to Magnitude-Angle
|

input’s magnitude), Angle (outputs the input’s phase angle in
radians).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-109

Complex to Real-lmag

Purpose
Library
Description

Feiu)
Trmifu)

T

Data Type
Support

Parameters
and

Dialog

Box

2-110

Output real and imaginary parts of complex input signal
Math Operations

The Complex to Real-Imag block accepts a complex-valued signal of any
data type supported by Simulink® software, including fixed-point data
types. It outputs the real and/or imaginary part of the input signal,
depending on the setting of the Qutput parameter. The real outputs
are of the same data type as the complex input. The input can be an
array (vector or matrix) of complex signals, in which case the output
signals are arrays of the same dimensions. The real array contains the
real parts of the corresponding complex input elements. The imaginary
output similarly contains the imaginary parts of the input elements.

See the preceding description. For a discussion on the data types
supported by Simulink software, see “Data Types Supported by
Simulink” in the “Working with Data” chapter of the Simulink
documentation.

E! Function Block Parameters: Complex to Real-1 x|

— Comples to Real-lmag

Cutput the real and/or imaginary componentz of the input.

— Parameter

Dutput; IHeaI and imag |

Sample time [-1 for nhented]:

[

k. Cancel Help Apply

Complex to Real-lmag

Output
Determines the output of this block. Choose from the following
values: Real and imag (outputs the input signal’s real and
imaginary parts), Real (outputs the input’s real part), Imag
(outputs the input’s imaginary part).

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink

documentation.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-111

Configurable Subsystem

Purpose

Library

Description

Template

2-112

Represent any block selected from user-specified library of blocks
Ports & Subsystems

The Configurable Subsystem block represents one of a set of blocks
contained in a specified library of blocks. The block’s context menu lets
you choose which block the configurable subsystem represents.

Configurable Subsystem blocks simplify creation of models that
represent families of designs. For example, suppose that you want to
model an automobile that offers a choice of engines. To model such a
design, you would first create a library of models of the engine types
available with the car. You would then use a Configurable Subsystem
block in your car model to represent the choice of engines. To model a
particular variant of the basic car design, a user need only choose the
engine type, using the configurable engine block’s dialog.

To create a configurable subsystem in a model, you must first create a
library containing a master configurable subsystem and the blocks that
it represents. You can then create configurable instances of the master
subsystem by dragging copies of the master subsystem from the library
and dropping them into models.

You can add any type of block to a master configurable subsystem
library. Simulink® software derives the port names for the configurable
subsystem by making a unique list from the port names of all the
choices. Note that Simulink software uses default port names for
non-subsystem block choices.

Note that Simulink software does not allow you to break library links in
a configurable subsystem because Simulink software needs the links

to reconfigure the subsystem when you choose a new configuration.
Breaking links would be useful only if you never intended to reconfigure
the subsystem, in which case you could simply replace the configurable
subsystem with a nonconfigurable subsystem that implements the
permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

Configurable Subsystem

1 Create a library of blocks representing the various configurations
of the configurable subsystem.

2 Save the library.
3 Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the
Simulink Ports & Subsystems library into the library you created in
the preceding step.

4 Display the Configurable Subsystem block’s dialog by double-clicking
it. The dialog displays a list of the other blocks in the library.

5 Under List of block choices in the dialog box, select the blocks that
represent the various configurations of the configurable subsystems
you are creating.

6 Click the OK button to apply the changes and close the dialog box.

7 Select Block Choice from the Configurable Subsystem block’s
context menu.

The context menu displays a submenu listing the blocks that the
subsystem can represent.

8 Select the block that you want the subsystem to represent by default.

9 Save the library.

Note If you add or remove blocks from a library, you must recreate
any Configurable Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a
configurable subsystem, the change does not immediately propagate to
the configurable subsystem. To propagate this change, do one of the
following:

2-113

Configurable Subsystem

2-114

® Change the default block choice to another block in the subsystem,
then change the default block choice back to the original block.

® Recreate the configurable subsystem block, including the selection of
the updated block as the default block choice.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model,

1 Open the library containing the master configurable subsystem.
2 Drag a copy of the master into the model.
3 Select Block Choice from the copy’s context menu.

4 Select the block that you want the configurable subsystem to
represent.

The instance of the configurable system displays the icon and parameter
dialog box of the block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a
configurable subsystem instance to set the instance’s parameters
interactively and the set_param command to set the parameters from
the MATLAB® command line or in an M-file program. If you use
set_param, you must specify the full path name of the configurable
subsystem’s current block choice as the first argument of set_paranm,

e.g.,

curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];

set_param(curr_choice, 'MaskValues', ...);

Mapping 1/O Ports

A configurable subsystem displays a set of input and output ports
corresponding to input and output ports in the selected library.

Configurable Subsystem

Simulink software uses the following rules to map library ports to
Configurable Subsystem block ports:

® Map each uniquely named input/output port in the library to a
separate input/output port of the same name on the Configurable
Subsystem block.

e Map all identically named input/output ports in the library to the
same input/output ports on the Configurable Subsystem block.

¢ Terminate any input/output port not used by the currently selected
library block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a
Configurable Subsystem block without having to rewire connections to
the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and
that block A has input ports labeled a, b, and ¢ and an output port
labeled d and that block B has input ports labeled a and b and an
output port labeled e. A Configurable Subsystem block based on this
library would have three input ports labeled a, b, and ¢, respectively,
and two output ports labeled d and e, respectively, as illustrated in
the following figure.

a a a dk
bodp ofp =F| —— I8 [
5 B Configumble

A Subsystem

In this example, port a on the Configurable Subsystem block connects to
port a of the selected library block no matter which block is selected. On
the other hand, port ¢ on the Configurable Subsystem block functions
only if library block A is selected. Otherwise, it simply terminates.

2-115

Configurable Subsystem

Data Type
Support

Parameters
and

Dialog

Box

2-116

Note A Configurable Subsystem block does not provide ports that
correspond to non-I/O ports, such as the trigger and enable ports on
triggered and enabled subsystems. Thus, you cannot use a Configurable
Subsystem block directly to represent blocks that have such ports. You
can do so indirectly, however, by wrapping such blocks in subsystem
blocks that have input or output ports connected to the non-I/O ports.

The Configurable Subsystem block accepts and outputs signals of the
same types as are accepted or output by the block that it currently
represents. The data types may be any supported by Simulink software,
including fixed-point data types.

«): Configuration dialog : Configurable Subsystem - |D|ﬂ
rListof block choices——————————————Portnames
Block name Member Inpors Outports |

Pulse Generator

Randorm Mumber I 4

Sine \Wave 2 ;l

5
oK Cancel Help Apply

List of block choices
Select the blocks you want to include as members of the
configurable subsystem. You can include user-defined subsystems
as blocks.

Configurable Subsystem

Port information
Lists of input and output ports of member blocks. In the case of
multiports, you can rearrange selected port positions by clicking
the Up and Down buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block
that it currently represents. Double-clicking the block opens the dialog
box for the block that it currently represents.

2-117

Constant

Purpose
Library

Description

Data Type
Support

2-118

Generate constant value
Sources

The Constant block generates a real or complex constant value. The
block generates scalar (one-element array), vector (1-D array), or matrix
(2-D array) output, depending on the dimensionality of the Constant
value parameter and the setting of the Interpret vector parameters
as 1-D parameter. Also, the block can generate either a sample-based
or frame-based signal, depending on the setting of the Sampling mode
parameter.

The output of the block has the same dimensions and elements as the
Constant value parameter. If you specify a vector for this parameter,
and you want the block to interpret it as a vector (i.e., a 1-D array),
select the Interpret vector parameters as 1-D parameter; otherwise,
the block treats the Constant value parameter as a matrix (i.e., a
2-D array).

By default, the Constant block outputs a signal whose data type
and complexity are the same as that of the block’s Constant value
parameter. However, you can specify the output to be any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data
chapter of the Simulink documentation.

”»

Constant

Parameters The Main pane of the Constant block dialog appears as follows:
and

Dialog [Z1source Block Parameters: Constant x|

Box Congtant

Output the constant specified by the 'Canstant value' parameter. [F 'Constant valug' iz
a wector and 'Interpret vector parameters az 1-0° iz on, treat the constant value az a
1-D array. Othenwize, autput a matris with the 2ame dimensions as the conztant
wvalle.

G ET] | Signal.-'—‘-.ttril:uutesl

Constant walue:
[

I |rterpret vector parameters as 1-0

Sampling mode; ISampIe bazed ;I

Sample tirme;

inf

] Cancel | Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink documentation.

Constant value
Specify the constant value output by the block. You can enter
any MATLAB® expression in this field, including the Boolean
keywords, true or false, that evaluates to a matrix value. The
Constant value parameter is converted from its data type to
the specified output data type offline using round-to-nearest and
saturation.

2-119

Constant

Interpret vector parameters as 1-D
If you select this check box, the Constant block outputs a vector
of length N if the Constant value parameter evaluates to an
N-element row or column vector, i.e., a matrix of dimension 1xN
or Nx1. If you uncheck this option, you can interact with the
Sampling mode parameter. See “Determining the Output
Dimensions of Source Blocks” in the “Working with Signals”
chapter of the Simulink documentation.

Sampling mode
Specify whether the output signal is Sample based or Frame
based. For more information about these types of signals, see
“Sample-Based Signals” and “Frame-Based Signals” in the Signal
Processing Blockset™ User’s Guide.

Note To generate frame-based signals, you must have the Signal
Processing Blockset product installed.

Sample time
Specify the interval between times that the Constant block’s
output can change during simulation (e.g., as a result of tuning
its Constant value parameter). The default sample time is inf,
i.e., the block’s output can never change. This setting speeds
simulation and generated code by avoiding the need to recompute
the block’s output. See “Specifying Sample Time” in the “How
Simulink Works” chapter of the Simulink documentation.

The Signal Attributes pane of the Constant block dialog appears as
follows:

2-120

Constant

=1source Block Parameters: Constank x|

Congtant

Output the conztant specified by the 'Congtant walue' parameter. If 'Constant value' iz a
vector and '|nterpret vector parameters az 1-0° iz an, treat the constant value az a 1-0
array. Othemwize, autput a matrix with the zame dimenziong as the constant value.

b ain Signal Attributes |

gt it Cutput magirm:

i i

Clutput data type: I [nherit; Inherit from 'Constant value’ LI Fr |

(] Cancel Help

Output minimum

Specify the minimum value that the block should output. The

default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
® Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The

default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)

¢ Simulation range checking (see “Checking Signal Ranges”)

2-121

Constant

® Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Characteristics pirect Feedthrough N/A
Sample Time Specified in the Sample time parameter
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-122

Coulomb and Viscous Friction

Purpose
Library

Description
|~

Data Type
Support

Model discontinuity at zero, with linear gain elsewhere
Discontinuities

The Coulomb and Viscous Friction block models Coulomb (static) and
viscous (dynamic) friction. The block models a discontinuity at zero
and a linear gain otherwise. The offset corresponds to the Coulombic
friction; the gain corresponds to the viscous friction. The block is
implemented as

y = sign(u) * (Gain * abs(u) + Offset)

where y is the output, u is the input, and Gain and 0ffset are block
parameters.

The block accepts one input and generates one output. The input can be
a scalar, vector, or matrix. If using a vector or matrix input, the offset
and gain must have the same dimensions as the input or be scalars.

If using a scalar input, the output will be a scalar, vector, or matrix
based on the dimensions of the offset and gain. For example, passing

a scalar input to the block when using the default offset produces an
output vector with four elements.

The Coulomb and Viscous Friction block accepts and outputs real
signals of type double.

2-123

Coulomb and Viscous Friction

Pa:lameters 1 Function Block Parameters: Coulomb & Yiscous x|
an
. — Coulombic: and izcous Friction [mazk] [link]
Dialog
Box A dizcontinuity offzet at zero models coulomb friction. Linear gain models viscous
friction.
— Parameter
Coulomb friction value [Offset]:
EEL
Coefficient of wizcous friction [Eain];
[1
(] 4 Cancel Help Apply
Coulomb friction value
The offset, applied to all input values. The defaultis [1 3 2 0].
Coefficient of viscous friction
The signal gain at nonzero input points. The default is 1.
Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing Yes, at the point where the static friction
is overcome

2-124

Counter Free-Running

Purpose

Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

Count up and overflow back to zero after maximum value possible is
reached for specified number of bits

Sources

The Counter Free-Running block counts up until the maximum possible
value, 2V - 1. is reached, where Nbits is the number of bits. Then the
counter overflows to zero, and restarts counting up. The counter is
always initialized to zero.

You can specify the number of bits with the Number of Bits parameter.
You can specify the sample time with the Sample time parameter.

The output is an unsigned integer. If you select the global doubles
override, the Counter Free-Running block does not wrap back to zero.

The Counter Free-Running block outputs an unsigned integer.

E Source Block Parameters: Counter Free-Running 5[

— Counter Free-Running [maszk] [link]

Thiz block iz a free-running counter that overflows back to zero after it haz reached
the marimum value poszible for the zpecified number of bitz. The count is always
initialized to zero. The output iz nomally an unsigned integer with the zpecified

— Parameter

Murnber of Bits
|15

Sample hime:

|-

k. Cancel Help

2-125

Counter Free-Running

Number of Bits
Specified number of bits.

Sample time
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.
Characteristics Sample Time Specified in the Sample time parameter
Scalar Expansion No
See Also Counter Limited

2-126

Counter Limited

Purpose
Library

Description

”?Ifl .

Data Type
Support

Parameters
and

Dialog

Box

Count up and wrap back to zero after outputting specified upper limit
Sources

The Counter Limited block counts up until the specified upper limit is
reached. Then the counter wraps back to zero, and restarts counting
up. The counter is always initialized to zero.

You can specify the upper limit with the Upper limit parameter.

You can specify the sample time with the Sample time parameter. A
Sample time of - 1 means that the sample time is inherited.

The output is an unsigned integer of 8, 16, or 32 bits, with the smallest
number of bits needed to represent the upper limit.

The Counter Limited block outputs an unsigned integer.

E! Block Parameters: Counter Limited x|
—Counter Limited [mazk] [link]

Thiz block iz a counter that wraps back to zero after it haz output the zpecified upper
limit. The count iz always initialized to zero. The output iz nommally an unzigned
integer af 3, 16, or 32 bitz. The smallest number of bits needed ta represent the
upper limit iz uzed.

—Parameterz
|Ipper limit;
|7

Sample time:

[

ok Cancel Help

2-127

Counter Limited

Upper limit
Upper limit.

Sample time

Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink®

documentation.

Characteristics sampie Time

Specified in the Sample time parameter

Scalar Expansion

No

See Also Counter Free-Running

2-128

Data Store Memory

Purpose
Library

Description

A

Define data store
Signal Routing

The Data Store Memory block defines and initializes a named shared
data store, which is a memory region usable by Data Store Read and
Data Store Write blocks with the same data store name.

The location of the Data Store Memory block that defines a data store
determines the Data Store Read and Data Store Write blocks that can
access the data store:

e If the Data Store Memory block is in the top-level system, the data
store can be accessed by Data Store Read and Data Store Write
blocks located anywhere in the model.

e If the Data Store Memory block is in a subsystem, the data store
can be accessed by Data Store Read and Data Store Write blocks
located in the same subsystem or in any subsystem below it in the
model hierarchy.

Note You can use signal objects in addition to or instead of Data
Store Memory blocks to define data stores. See “Working with Data
Stores” for more information.

You initialize the data store by specifying a scalar value or an array of
values in the Initial value parameter. The dimensions of the array
determine the dimensionality of the data store. Any data written to the
data store must have the dimensions designated by the Initial value
parameter. Otherwise, an error occurs.

2-129

Data Store Memory

Data Type
Support

2-130

The Data Store Memory block stores real or complex signals of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Data Store Memory

Parameters
and

Dialog

Box

The Main pane of the Data Store Memory block dialog appears as

follows:

E! Block Parameters: Data Store Memory

X

[rataStoretd emony

Lefine a memony region for use by the Data Store Read and Data Store 'wite
blocks. All Bead and *rite blocks that are in the curent [zubjeystem level or
below and have the zame data store name will be able to read from ar write o thiz

block.

b ain | Signal Attributes Diagnnsticsl

[rata ztore name; I.-’-'-.

Cormrezponding Data Store Bead M rite blocks:

refresh

[ritial walue: IEI

[Data store name must resolve to Simulink signal objsct

RT'wW storage class: I.-’-'-.ut-:u

AT wpe qualifier: I

¥ |rterpret wector parameters az 1-0

ok

Cancel

Help

Apply

2-131

Data Store Memory

2-132

Data store name
Specify a name for the data store you are defining with this block.
Data Store Read and Data Store Write blocks with the same name
will be able to read from and write to the data store initialized
by this block.

Corresponding Data Store Read blocks
This parameter lists all the Data Store Read and Data Store
Write blocks that have the same data store name as the current
block, and that are in the current (sub)system or in any subsystem
below it in the model hierarchy. Double-click any entry on this list
to highlight the block and bring it to the foreground.

Initial value
Specify the initial value or values of the data store. The
dimensions of this value determine the dimensions of data that
may be written to the data store.

Data store must resolve to Simulink signal object
Causes Simulink software, when compiling the model, to search
the model and base workspace for a Simulink.Signal object
having the same name. If such an object is not found, Simulink
software halts the compilation and displays an error. Otherwise
Simulink software compares the attributes of the signal object
with the corresponding attributes of the data store memory block.
If the block and the object attributes are inconsistent, Simulink
software halts model compilation and displays an error.

These following parameters pertain to code generation and have no
effect during model simulation:

¢ Data store name must resolve to Simulink signal object

e RTW storage class

e RTW type qualifier

See “Block State Storage and Interfacing” in the Real-Time Workshop®
documentation for more information.

Data Store Memory

Interpret vector parameters as 1-D
If selected and the Initial value parameter is specified as a
column or row matrix, the data store is initialized to a 1-D array
whose elements are equal to the elements of the row or column
vector. See “Determining the Output Dimensions of Source
Blocks” in the “Working with Signals” chapter of the Simulink
documentation.

The Signal Attributes pane of the Data Store Memory block dialog
appears as follows:

2-133

Data Store Memory

[Z1Block Parameters: Data Store Memory x|

D ataStoretd emony
Define a memary region for uze by the Data Store FRead and Data Staore YWWrite blockz.
All Bead and Yrite blocks that are in the curent [sublaystem level or below and have
the same data store name will be able to read from or wiite to thiz block.
b airy Signal Attributes Diagnostics I

kdimirnum: I[] bl &irnamn: I[]

[rata t_l,lpe:llnherit: auto ;I *r |

Signal type: Iautl:u ;I

2k, Cancel Help Apply
Minimum

Specify the minimum value that the block should output. The

default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)

¢ Simulation range checking (see “Checking Signal Ranges”)

2-134

Data Store Memory

¢ Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit: auto
¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specify the numeric type, real or complex, of the values stored
in the data store.

The Diagnostics pane of the Data Store Memory block dialog appears
as follows:

2-135

Data Store Memory

m Block Parameters: Data Store Memory x|

D ataStoretd emony

Define a memary region for uze by the Data Store FRead and Data Staore YWWrite blockz.
All Bead and Yrite blocks that are in the curent [sublaystem level or below and have
the zame data store name will be able ta read fram or wite to thiz block.

ETY Signal Attributes Diaghostics

Detect read before write: Iwarning

Detect write after read: Iwarning

Ll L] L

Detect write after write; Iwaming

2k, Cancel Help Apply

Detect read before write
The model is attempting to read data from this data store without
having previously written data into the store in the current time
step.

2-136

Data Store Memory

Detect write after read
The model is attempting to store data in this data store after
previously reading data from it in the current time step.

Detect write after write
The model is attempting to store data in this data store twice in
succession in the current time step.

Characteristics sampie Time N/A
Dimensionalized Yes
Multidimensionalized Yes

See Also Data Store Read, Data Store Write

2-137

Data Store Read

Purpose
Library

Description

A P

Data Type
Support

2-138

Read data from data store
Signal Routing

The Data Store Read block copies data from the named data store to
its output.

The data store from which the data is read is determined by the location
of the Data Store Memory block or signal object that defines the data
store. For more information, see “Working with Data Stores”and Data
Store Memory.

More than one Data Store Read block can read from the same data store.

Note Be careful when setting an execution priority on a Data Store
Read block. Make sure that the block reads from the data store after
the store is updated by any Data Store Write blocks that write to the
store in the same time step.

The Data Store Read block can output a real or complex signal of any
data type supported by Simulink® software, including fixed-point data

types.
For a discussion on the data types supported by Simulink software,

see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Data Store Read

Parameters
and

Dialog

Box

=1 source Block Parameters: Data Store x|

— D ataStoreRead

Fead values from specified data store.

— Parameter

D ata store name; | 4 ;I

Data store memony block: hone

Cormrezponding D ata Store Write blocks: refrezh

Sample tirme; |0

[k, Cancel Help

Data store name
Specifies the name of the data store from which this block reads
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Read block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

When Simulink software compiles the model containing this
block, Simulink software searches the model upwards from this
block’s level for a Data Store Memory block having the specified

2-139

Data Store Read

data store name. If Simulink software does not find such a block,
it searches the model workspace and the MATLAB® workspace
for a Simulink.Signal object having the same name. If Simulink
software finds the signal object, it creates a hidden Data Store
Memory block at the model’s root level having the properties
specified by the signal object and an initial value of 0. If Simulink
software finds neither the Data Store Memory block nor the signal
object, it halts the compilation and displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store from which this block reads.

Data store write blocks
This parameter lists all the Data Store Write blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
The sample time, which controls when the block reads from
the data store. A value of -1 indicates that the sample time
is inherited. See “Specifying Sample Time” in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes
Multidimensionalized Yes
See Also Data Store Memory, Data Store Write

2-140

Data Store Write

Purpose
Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

Write data to data store
Signal Routing

The Data Store Write block copies the value at its input to the named
data store.

Each write operation performed by a Data Store Write block writes over
the data store, replacing the previous contents.

The data store to which this block writes is determined by the location
of the Data Store Memory or signal object that defines the data store.
For more information, see “Working with Data Stores” and Data Store
Memory. The size of the data store is set by the signal object or the
Data Store Memory block that defines and initializes the data store.
Each Data Store Write block that writes to that data store must write
the same amount of data.

More than one Data Store Write block can write to the same data store.
However, if two Data Store Write blocks attempt to write to the same
data store during the same simulation step, results are unpredictable.

The Data Store Write block accepts a real or complex signal of any data
type supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Data store name
Specifies the name of the data store to which this block writes
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Write block or at higher levels. To change the name,
select a name from the pull-down list or enter the name directly
in the edit field.

2-141

Data Store Write

When Simulink software compiles the model containing this
block, Simulink software searches the model upwards from this
block’s level for a Data Store Memory block having the specified
data store name. If Simulink software does not find such a block,
it searches the model workspace and the MATLAB® workspace
for a Simulink.Signal object having the same name. If Simulink
software finds the signal object, it creates a hidden Data Store
Memory block at the model’s root level having the properties
specified by the signal object and an initial value of 0. If Simulink
software finds neither the Data Store Memory block nor the signal
object, it halts the compilation and displays an error.

Data store memory block
This field lists the Data Store Memory block that initialized the
store to which this block writes.

Data store read blocks
This parameter lists all the Data Store Read blocks with the same
data store name as this block that are in the same (sub)system or
in any subsystem below it in the model hierarchy. Double-click
any entry on this list to highlight the block and bring it to the
foreground.

Sample time
Specify the sample time that controls when the block writes
to the data store. A value of -1 indicates that the sample
time is inherited. See “Specifying Sample Time” in the online
documentation for more information.

Characteristics Sample Time Specified in the Sample time parameter

Dimensionalized Yes
Multidimensionalized Yes
See Also Data Store Memory, Data Store Read

2-142

Data Type Conversion

Purpose
Library

Description

Convert input signal to specified data type
Signal Attributes

The Data Type Conversion block converts an input signal of any
Simulink® software data type to the data type and scaling specified by
the block’s Output data type parameter. The input can be any real-
or complex-valued signal. If the input is real, the output is real. If the
input is complex, the output is complex.

Note This block requires that you specify the data type and/or scaling
for the conversion. If you want to inherit this information from an input
signal, you should use the Data Type Conversion Inherited block.

The Input and output to have equal parameter controls how the
input is processed. The possible values are Real World Value (RWV)
and Stored Integer (SI):

® Select Real World Value (RWV) to treat the input as V=S@Q + B
where S is the slope and B is the bias. V is used to produce @ = (V -
B)/S, which is stored in the output. This is the default value.

® Select Stored Integer (SI) to treat the input as a stored integer,
@. The value of @ is directly used to produce the output. In this
mode, the input and output are identical except that the input is a
raw integer lacking proper scaling information. Selecting Stored
Integer may be useful in these circumstances:

= Ifyou are generating code for a fixed-point processor, the resulting
code only uses integers and does not use floating-point operations.

= If you want to partition your model based on hardware
characteristics. For example, part of your model may involve
simulating hardware that produces integers as output.

2-143

Data Type Conversion

Data Type
Support

2-144

Working with Fixed-Point Values Greater than 32 Bits

The MATLAB® built-in integer data types are limited to 32 bits. If you
want to output fixed-point numbers that range between 33 and 53 bits
without loss of precision or range, you should break the number into
pieces using the Gain block, and then output the pieces using the Data
Type Conversion block to store the value inside a double.

For example, suppose the original signal is an unsigned 128-bit value
with default scaling. You can break this signal into four pieces using

four parallel Gain blocks configured with the gain and output settings
shown below.

Piece Gain Output Data Type

1 270 uint(32) - Least significant 32 bits
2 27-32 uint(32)

3 2°-64 uint(32)

4 2°-96 uint(32) - Most significant 32 bits

For each Gain block, you must also configure the Round integer
calculations toward parameter to Floor, and the Saturate on
integer overflow check box must be cleared.

The Data Type Conversion block handles any data type supported by
Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Data Type Conversion

Parameters
and

Dialog

Box

m Function Block Parameters: Data Type Conversi ﬂ

— Data Tupe Conversioh

Corwert the input to the data type and scaling of the output,

The converzion has bwo poszible goals. One goal iz to have the Real ‘World Yalues
of the input and the output be equal. The other goal iz to have the Stored Integer
Yalues of the input and the output be equal. Overflows and quantization erars can
prevvent the goal from being fully achieved.

The input and the output support all built-in and fixed point data bpes.

— Parameter
Clutput minimum: Clutput marimurm;
i in
Cutput data type: | Inkent: Inhent via back propagation LI b |
[nput and autput ta have equal: IFIeaI World Y alue [FwA ;I
Round integer calculations toward: IFI::u:ur ;I

[T Saturate on integer overflow

Sample time [-1 far inkerited]:

[-1

k. Cancel Help Apply

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

* Automatic scaling of fixed-point data types

2-145

Data Type Conversion

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the

Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Input and output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same.

2-146

Data Type Conversion

Examples

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the
sample time, set this parameter to -1. See “Specifying Sample
Time” in the “How Simulink Works” chapter of the Simulink
documentation.

Example 1 — Real World Values Versus Stored Integers

This example uses the Data Type Conversion block to help you
understand the difference between a real-world value and a stored
integer. Consider the two fixed-point models shown below.

2-147

Data Type Conversion

15 —.i_d-:-uble Conwert sfix$_End Conwert —Fdnuble

Constant [rata Type Conversion Crata Type Conversiond Display
Conwert double

S
(=0
Crata Twpe Conversion2 Dizplay
15 double) Convert =find_EnZ Canwert double) Wi
(=h
Constant Crata Type Conwversion3 Crata Type Conversiong Displayz

2-148

Data Type ConmversionS Display3

In the top model, the Data Type Conversion block treats the input as a
real-world value, and maps that value to an 8-bit signed generalized
fixed-point data type with a scaling of 22. When the value is then output
from the Data Type Conversionl block as a real-world value, the scaling
and data type information is retained and the output value is 001111.00,
or 15. When the value is output from the Data Type Conversion2 block
as a stored integer, the scaling and data type information is not retained
and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Data Type Conversion3 block treats the input
as a stored integer, and the data type and scaling information is not
applied. When the value is then output from the Data Type Conversion4
block as a real-world value, the scaling and data type information is
applied to the stored integer, and the output value is 000011.11, or 3.75.

Data Type Conversion

When the value is output from the Data Type Conversion5 block as a
stored integer, you get back the original input value of 15.

Example 2 — Real World Values and Stored Integers in
Summations

The model shown below illustrates how a summation operation applies
to real-world values and stored integers, and how scaling information is
dealt with in generated code.

W Comer [>
Crata Type Conwversion3 Crizplayvd
— Convert double I 09375
[rata Type Conwersion2 Crizplaya
+ + double ._ 15 0
e+
Ll
Sumn Displayz
int 16 =fin16_EnZ
. B Convert W st s | double " 0T
—._ + Ll Ll
Constant [rata Type Conwversion 5 -
um [rata Type Conversions Display1
15 int 16 > Cormvert =fin16_End > Cormvert double - 510
(sh (Sl
Caonstant Cata Type Conwversion Data Type Conwversiond Dizplay

Note that the summation operation produces the correct result when
the Data Type Conversion (2 or 5) block outputs a real-world value.
This is because the specified scaling information is applied to the stored
integer value. However, when the Data Type Conversion4 block outputs
a stored integer value, then the summation operation produces an
unexpected result due to the absence of scaling information.

2-149

Data Type Conversion

If you generate code for the above model, then the code captures

the appropriate scaling information. The code for the Sum block is
shown below. The inputs to this block are tagged with the specified
scaling information so that the necessary shifts are performed for the
summation operation.

/* Sum Block: <Root>/Sum

*

* y = uo+ ul

*

* InputO0 Data Type: Fixed Point S16 2"-2
* Input1 Data Type: Fixed Point S16 2"-4
* QutputO Data Type: Fixed Point S16 2"-5
*

* Round Mode: Floor

* Saturation Mode: Wrap

*

*/

sum = ((in1) << 3);

sum += ((in2) << 1);

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion N/A
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No
See Also Data Type Conversion Inherited

2-150

Data Type Conversion Inherited

Purpose

Library

Description

w

Convert y

AU

Data Type
Support

Convert from one data type to another using inherited data type and
scaling

Signal Attributes

The Data Type Conversion Inherited block forces dissimilar data types
to be the same. The first input is used as the reference signal and the
second input is converted to the reference type by inheriting the data
type and scaling information. (See “Changing the Orientation of a
Block” in the Simulink® documentation for a description of the port
order for various block orientations.) Either input is scalar expanded
such that the output has the same width as the widest input.

Inheriting the data type and scaling provides these advantages:

® It makes reusing existing models easier.

® It allows you to create new fixed-point models with less effort since
you can avoid the detail of specifying the associated parameters.

The Data Type Conversion Inherited block handles any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-151

Data Type Conversion Inherited

Parameters x
and) . :
N — Corveersion Inherited [magk] [link]
Dialog
Box Correert the second input to the data twpe and zcaling of the first input.
The converzion haz bwo pozzible goals. One goal iz to have the Real 'World ' alues
of the input and the output be equal. The ather goal is to have the Stared [nteger
Walues of the input and the output be equal. Owerflows and quantization errorz can
prexvent the goal from being fully achieved.
The input and the output support all buil-in and fized point data wpes.
— Parameter
|nput and Output ba have equal: |Real World Walue ;I
Round toward: |Floor ;I
[Saturate to max of min when overflows ocour
(] Cancel Help | Apply
Input and Output to have equal
Specify whether the Real World Value (RWV) or the Stored
Integer (SI) of the input and output should be the same. Refer
to Description in the Data Type Conversion block reference page
for more information about these choices.
Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.
Saturate to max or min when overflows occur
Select to have overflows saturate.
Characteristics pjrect Feedthrough Yes

2-152

Data Type Conversion Inherited

See Also Data Type Conversion

2-153

Data Type Duplicate

Purpose
Library

Description

Same
OT

Data Type
Support

2-154

Force all inputs to same data type
Signal Attributes

The Data Type Duplicate block forces all inputs to have exactly the
same data type. Other attributes of input signals, such as dimension,
complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of
data types among blocks. If all signals do not have the same data type,
the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to
the block controls the data type for all other blocks. The other blocks
are set to inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks
can be placed in any model, and the data type for all library blocks are
configured according to the usage in the model. To create a library block
with more complex data type rules than duplication, use the Data Type
Propagation block.

The Data Type Duplicate block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Data Type Duplicate

Parameters
and

Dialog

Box

E! Sink Block Parameters: Data Type Duplicate

— [Data Tope Duplicate [mazk] [link]

Force all inputs to have the exact same data type.

— Parameter

Mumnber of input porks:

2

ok

Cancel Help

Apply

Number of input ports

Number of input ports.

Characteristics gscalar Expansion

Yes

States

2-155

Data Type Propagation

Purpose

Library

Description

A .

Het1
Ref2
Frop

2-156

Set data type and scaling of propagated signal based on information
from reference signals

Signal Attributes

The Data Type Propagation block allows you to control the data

type and scaling of signals in your model. You can use this block in
conjunction with fixed-point blocks that have their OQutput data type
parameter configured to Inherit: 1Inherit via back propagation.

The block has three inputs: Refl and Ref2 are the reference inputs,
while the Prop input back propagates the data type and scaling
information gathered from the reference inputs. This information is
then passed on to other fixed-point blocks.

The block provides you with many choices for propagating data type
and scaling information. For example, you can:

® Use the number of bits from the Refl reference signal, or use the
number of bits from widest reference signal.

® Use the range from the Ref2 reference signal, or use the range of the
reference signal with the greatest range.

® Use a bias of zero, regardless of the biases used by the reference
signals.

® Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the
Propagated data type parameter list. If the parameter list is
configured as Specify via dialog, then you manually specify the data
type via the Propagated data type edit field. If the parameter list is
configured as Inherit via propagation rule, then you must use the
parameters described in “Parameters and Dialog Box” on page 2-159.

You specify how scaling information is propagated with the Propagated
scaling parameter list. If the parameter list is configured as Specify
via dialog, then you manually specify the scaling via the Propagated
scaling edit field. If the parameter list is configured as Inherit via

Data Type Propagation

propagation rule, then you must use the parameters described in
“Parameters and Dialog Box” on page 2-159.

After you use the information from the reference signals, you can apply
a second level of adjustments to the data type and scaling by using
individual multiplicative and additive adjustments. This flexibility has
a variety of uses. For example, if you are targeting a DSP, then you
can configure the block so that the number of bits associated with a
MAC (multiply and accumulate) operation is twice as wide as the input
signal, and has a certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force
the computed number of bits to a useful value. For example, if you are
targeting a 16-bit micro, then the target C compiler is likely to support
sizes of only 8 bits, 16 bits, and 32 bits. The block will force these three
choices to be used. For example, suppose the block computes a data type
size of 24 bits. Since 24 bits is not directly usable by the target chip, the
signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals.
This makes it easier to create designs that are easily retargeted from
fixed-point chips to floating-point chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful
subsystems that will be properly configured based on the connected
signals. Without this data type propagation process, a subsystem

that you use from a library will almost certainly not work as desired
with most integer or fixed-point signals, and manual intervention to
configure the data type and scaling would be required. This block can
eliminate the manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to
bottom. Additionally:

® Double-precision reference inputs have precedence over all other
data types.

2-157

Data Type Propagation

Data Type
Support

2-158

® Single-precision reference inputs have precedence over integer and
fixed-point data types.

® Multiplicative adjustments are carried out before additive
adjustments.

® The number of bits is determined before the precision or positive
range is inherited from the reference inputs.

The Data Type Propagation block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.
For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data
chapter of the Simulink documentation.

”»

Data Type Propagation

Parameters The Propagated type pane of the Data Type Propagation block dialog
and appears as follows:

Dialog
Box E! Sink Block Parameters: Data Type Propagatic 5[

— D'ata Tupe Propagation [mazk] [link]

Set the Data Type and Scaling of the propagated zignal bazed on infarmatian from
the reference signals.

Motes:

1] Itemz clogzer ta the top af the dialag have higher priarity/precedence.

a] Reference inputz of type double havwve priority over all others.,

b] Singles hawe prionty over integer and fixed point data types.

] Multiplicative adjustments are camied out before additive adjustments.

d] Humber-of-Bitz iz determined before the precizion or pozsitive-range iz inhented from
the reference signals.

2] PozRange iz one bit higher than the exact maxirmum positive range of the zignal.
3] The computed Mumber-of-Bits iz promaoted to the smallest allowable value that iz
greater than or equal. If none exizts, then emor.

Propagated type I Propagated scalingl

1. Propagated data type: IInherit wia propagation rule

1.1. [any reference input iz double, output i Iu:h:uul:ule

1.2, [F any reference input iz single, autput iz Isingle

1.3 Is-Signed:IISSigned'l or |z5Signed?

Ll Ll L L] L

1.4.1. Humber-of-Bits: Easelma:-:[[NumEiitﬂ MHumBits2]]
1.4.2. Humber-of-Bitz; Multiplicative adjustment

[

1.4.3. Number-of-Bits; Additive adjustment

|0

1.4.4. Number-af-Bitz: Allowable final values
[1:128

] Cancel Help Apply

2-159

Data Type Propagation

2-160

Propagated data type
Use the parameter list to propagate the data type via the dialog
box, or inherit the data type from the reference signals. Use the
edit field to specify the data type via the dialog box.

If any reference input is double, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or vice versa.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

If any reference input is single, output is
Specify single or double. This parameter makes it easier to
create designs that are easily retargeted from fixed-point chips to
floating-point chips or visa versa.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Is-Signed
Specify the sign of Prop as one of the following values:
Parameter
Value Description
IsSignedH Prop is a signed data type if Refl is a signed
data type.
IsSigned2 Prop is a signed data type if Ref2 is a signed

data type.

IsSignedi or

Prop is a signed data type if either Refl or

IsSigned2 Ref2 are signed data types.

TRUE Refl and Ref2 are ignored, and Prop is always
a signed data type.

FALSE Refl and Ref2 are ignored, and Prop is always

an unsigned data type.

Data Type Propagation

For example, if the Refl signal is ufix (16), the Ref2 signal
is sfix(16), and the Is-Signed parameter is IsSigned1 or
IsSigned2, then Prop is forced to be a signed data type.

This parameter is visible only if Inherit via propagation rule

is selected for the Propagated data type parameter list.

Number-of-bits: Base

Specify the number of bits used by Prop for the base data type
as one of the following values:

Parameter Value

Description

NumBits1 The number of bits for Prop is given by the
number of bits for Refl.
NumBits2 The number of bits for Prop is given by the

number of bits for Ref2.

max ([NumBits1
NumBits2])

The number of bits for Prop is given by
the reference signal with largest number
of bits.

min([NumBits1

The number of bits for Prop is given by

NumBits2]) the reference signal with smallest number
of bits.
NumBits1+NumBits2 The number of bits for Prop is given by the

sum of the reference signal bits.

Refer to Targeting an Embedded Processor in the Simulink®
Fixed Point™ User’s Guide for more information about the base

data type.

This parameter is visible only if Inherit via propagation rule

is selected for the Propagated data type parameter list.

2-161

Data Type Propagation

2-162

Number-of-bits: Multiplicative adjustment

Specify the number of bits used by Prop by including a
multiplicative adjustment. For example, suppose you want to
guarantee that the number of bits associated with a multiply and
accumulate (MAC) operation is twice as wide as the input signal.
To do this, you configure this parameter to the value 2.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Additive adjustment

Specify the number of bits used by Prop by including an additive
adjustment. For example, if you are performing multiple additions
during a MAC operation, the result might overflow. To prevent
overflow, you can associate guard bits with the propagated data
type. To associate four guard bits, you specify the value 4.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

Number-of-bits: Allowable final values

Force the computed number of bits used by Prop to a useful value.
For example, if you are targeting a processor that supports only 8,
16, and 32 bits, then you configure this parameter to [8,16,32].
The block always propagates the smallest specified value that
fits. If you want to allow all fixed-point data types, you would
specify the value 1:128.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated data type parameter list.

The Propagated scaling pane of the Data Type Propagation block
dialog appears as follows:

Data Type Propagation

E! Sink Block Parameters: Data Type Propagation 5[

— D'ata Tupe Propagation [mazk] [link]

Set the Data Type and Scaling of the propagated zignal bazed on infarmatian from
the reference signals.

Motes:

1] Itemz clogzer ta the top af the dialag have higher priarity/precedence.

a] Reference inputz of type double havwve priority over all others.,

b] Singles hawe prionty over integer and fixed point data types.

] Multiplicative adjustments are camied out before additive adjustments.

d] Humber-of-Bitz iz determined before the precizion or pozsitive-range iz inhented from
the reference signals.

2] PozRange iz one bit higher than the exact maxirmum positive range of the zignal.
3] The computed Mumber-of-Bits iz promaoted to the smallest allowable value that iz
greater than or equal. If none exizts, then emor.

Propagated type Propagated zcaling

2. Propagated zcaling: IInherit wia propagation rule

=
=

21.1. Slope; Baselmin[[SIu:upe'I Shope?])
21.2 Slope: Multiplicative adjustment

[1

2.1.3. Slope; Additive adjustment

|0

221 Bias: Base|Bias1 |
2.2.2 Biaz Multiplicative adjustment;

[1

2.2.3. Biaz: Additive adjuztrment;

|0

] Cancel Help Apply

2-163

Data Type Propagation

Propagated scaling
Use the parameter list to propagate the scaling via the dialog box,
inherit the scaling from the reference signals, or calculate the
scaling to obtain best precision.

Propagated scaling (Slope or [Slope Bias])
Specify the scaling as either a slope or a slope and bias.

This parameter is visible only if Specify via dialog is selected
for the Propagated scaling parameter list.

Values used to determine best precision scaling
Specify any values to be used to constrain the precision, such as
the upper and lower limits on the propagated input. Based on
the data type, the scaling will automatically be selected such
that these values can be represented with no overflow error and
minimum quantization error.

This parameter is visible only if Obtain via best precision is
selected for the Propagated scaling parameter list.

Slope: Base
Specify the slope used by Prop for the base data type as one of
the following values:

Parameter Value Description

Slopeft The slope of Prop is given by the slope
of Refl.

Slope2 The slope of Prop is given by the slope
of Ref2.

max ([Slope1 The slope of Prop is given by the

Slope2]) maximum slope of the reference
signals.

min([Slope1 The slope of Prop is given by the

Slope2]) minimum slope of the reference
signals.

2-164

Data Type Propagation

Parameter Value

Description

Slopei1*Slope2

The slope of Prop is given by the
product of the reference signal slopes.

Slope1/Slope2

The slope of Prop is given by the ratio
of the Refl slope to the Ref2 slope.

PosRange1 The range of Prop is given by the range
of Refl.
PosRange2 The range of Prop is given by the range

of Ref2.

max ([PosRange1
PosRange2])

The range of Prop is given by the
maximum range of the reference
signals.

min([PosRange1
PosRange2])

The range of Prop is given by the
minimum range of the reference
signals.

PosRange1*PosRange2

The range of Prop is given by the
product of the reference signal ranges.

PosRange1/PosRange2

The range of Prop is given by the ratio
of the Refl range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and
you control the range of Prop with PosRange1 and PosRange2.
Additionally, PosRange1 and PosRange?2 are one bit higher than
the maximum positive range of the associated reference signal.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Multiplicative adjustment
Specify the slope used by Prop by including a multiplicative
adjustment. For example, if you want 3 bits of additional precision
(with a corresponding decrease in range), the multiplicative

adjustment is 2~ - 3.

2-165

Data Type Propagation

2-166

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Slope: Additive adjustment
Specify the slope used by Prop by including an additive
adjustment. An additive slope adjustment is often not needed.
The most likely use is to set the multiplicative adjustment to
0, and set the additive adjustment to force the final slope to a

specified value.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Base

Specify the bias used by Prop for the base data type. The
parameter values are described as follows:

Parameter

Value Description

Bias1 The bias of Prop is given by the bias of Refl.
Bias2 The bias of Prop is given by the bias of Ref2.

max ([Bias1
Bias2])

The bias of Prop is given by the maximum
bias of the reference signals.

min([Bias1
Bias2])

The bias of Prop is given by the minimum
bias of the reference signals.

Bias1*Bias2

The bias of Prop is given by the product of
the reference signal biases.

Bias1/Bias2

The bias of Prop is given by the ratio of the
Refl bias to the Ref2 bias.

Bias1+Bias2

The bias of Prop is given by the sum of the
reference biases.

Bias1-Bias2

The bias of Prop is given by the difference of
the reference biases.

Data Type Propagation

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Multiplicative adjustment
Specify the bias used by Prop by including a multiplicative
adjustment.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Bias: Additive adjustment
Specify the bias used by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is
zero, you should configure both the multiplicative adjustment and
the additive adjustment to 0.

This parameter is visible only if Inherit via propagation rule
is selected for the Propagated scaling parameter list.

Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes

2-167

Data Type Scaling Strip

Purpose Remove scaling and map to built in integer
Librclry Signal Attributes
Description The Scaling Strip block strips the scaling off a fixed point signal. It
maps the input data type to the smallest built in data type that has
enough data bits to hold the input. The stored integer value of the input
Seali ng is the value of the output. The output always has nominal scaling (slope
> Strip P = 1.0 and bias = 0.0), so the output does not make a distinction between
real world value and stored integer value.
Data Type The Data Type Scaling Strip block accepts signals of any data type
Support supported by Simulink® software, including fixed-point data types.
Parameters 1 Function Block Parameters: Data Type Scalin x|
and — Scaling Strip [mask] [link]
Dialog ’
Box Thiz block ztipz the szaling off a fised point signal. |t maps the input data type to the
amallest built-in data type that has sufficient bits to hold the input. The ztored [nteger
Walue aof the input will be the value of the output. The output always has nominal
zcaling [glope = 1.0 and biaz = 0.0], 20 the output does not have a distinction
between Real \World Yalue and Stored Integer 'Yalue.
k. Cancel Help Apply
Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes

2-168

Dead Zone

Purpose
Library

Description

f

/

Provide region of zero output
Discontinuities

The Dead Zone block generates zero output within a specified region,
called its dead zone. The lower and upper limits of the dead zone
are specified as the Start of dead zone and End of dead zone
parameters. The block output depends on the input and dead zone:

e Ifthe input is within the dead zone (greater than the lower limit and
less than the upper limit), the output is zero.

® If the input is greater than or equal to the upper limit, the output is
the input minus the upper limit.

¢ If the input is less than or equal to the lower limit, the output is

the input minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a
sine wave as input.

£
) Dead Zone Tl e
- -

Sine Wave Ml To Miorksp dce

This plot shows the effect of the Dead Zone block on the sine wave. While
the input (the sine wave) is between -0.5 and 0.5, the output is zero.

2-169

Dead Zone

Data Type
Support

2-170

The Dead Zone block accepts and outputs a real signal of any data type
supported by Simulink® software, except Boolean. The Dead Zone block
supports fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Dead Zone

Parameters
and

Dialog

Box

[Function Block Parameters: Dead Zone x|

— Dead £one

Output zero for inputs within the deadzone. Offzet input zignals by either the Start
or End walue when outzide of the deadzone.

— Parameter

Start of dead zone:

[-0.5

End of dead zone:
0.5

¥ 5aturate on integer overflow
¥ Treat as gain when linearizing
W Enable zero crossing detection

Sample time [-1 for inherited]:

|-

k. Cancel Help Spply

Start of dead zone
Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone
Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow
Select to have overflows saturate.

Treat as gain when linearizing
The linearization commands in Simulink software treat this block
as a gain in state space. Select this option to cause the commands
to treat the gain as 1; otherwise, the commands treat the gain as 0.

2-171

Dead Zone

Enable zero crossing detection
Select to enable zero crossing detection to detect when the
limits are reached. For more information, see Zero Crossing
Detection in the “How Simulink Works” chapter of the Simulink
documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to - 1. See Specifying Sample Time in the
“How Simulink Works” chapter of the Simulink documentation.

Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes, of parameters
Dimensionalized Yes
Zero Crossing Yes, if enabled
See Also Dead Zone Dynamic

2-172

Dead Zone Dynamic

Purpose
Library

Description

Aup
U7+4Y
2o

Set inputs within bounds to zero
Discontinuities

The Dead Zone Dynamic block dynamically bounds the range of the
input signal, providing a region of zero output. The bounds change
according to the upper and lower limit input signals where

® The input within the bounds is set to zero.

® The input below the lower limit is shifted down by the lower limit.
® The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower
limit is the 1o port.

Data Type The Dead Zone Dynamic block accepts signals of any data type
Support supported by Simulink® software, including fixed-point data types.
Pu;ameters E! Function Block Parameters: Dead Zone Dyn x|
n
a . Dead Zone Dunamic [mask] [link]
Dialog
Box Output zero for inputs within deadzone. Offzet input zignals by either the Start or
End walue when outzide of the deadzone,
] Cancel Help Apply

Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes

2-173

Dead Zone Dynamic

See Also Dead Zone

2-174

Decrement Real World

Purpose Decrease real world value of signal by one
Librclry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Real World block decreases the real world value of the
signal by one. Overflows always wrap.
o V—— p
Data Type The Decrement Real World block accepts signals of any data type
SUppOI“f supported by Simulink® software, including fixed-point data types.
Pa;ameters 1 Function Block Parameters: Decrement Real We x|
an
. R eal wiarld % alue Decrement [mask] [link]
Dialog
Box Decreaze the Real Wiorld Yalue of Signal by 1.0
Dverflows will always wrap.
k. Cancel Help Apply

Characteristics pjrect Feedthrough Yes

Scalar Expansion No
See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To

Zero, Increment Real World

2-175

Decrement Stored Integer

Purpose Decrease stored integer value of signal by one
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Stored Integer block decreases the stored integer value
of a signal by one.
Floating-point signals are also decreased by one, and overflows always

A Q—p wra

p.
Data Type The Decrement Stored Integer block accepts signals of any data type
Suppart supported by Simulink® software, including fixed-point data types.
Parameters zl
and .

. Stored Integer Yalue Decrement [mask] [link]

Dialog
Box Decreaze the Stored YWalue of Signal by 1

Floating Point zignals are decreazed by 1.0

Overflows will always wrap.

] Cancel Help Apply
Characteristics pjrect Feedthrough Yes
Scalar Expansion No

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero,

Increment Stored Integer

2-176

Decrement Time To Zero

Purpose Decrease real-world value of signal by sample time, but only to zero
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement Time To Zero block decreases the real-world value of
the signal by the sample time, Ts. The output will never go below zero.
This block only works with fixed sample rates.
max(V-Ts, 0)
Data Type The Decrement Time To Zero block accepts signals of any data type
Support supported by Simulink® software, including fixed-point data types.
Parameters x
and))
N — Decrement Time To Zero [mazk] [link]
Dialog
Box Decreaze the Real World Walue of Signal by the Sample Time Ts,
but newver go below zero.
Thiz block only warks with fixed sample rates, so it will not work, inzide a triggered
subsyztemn.
] Cancel Help Apply
Characteristics pjrect Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

2-177

Decrement To Zero

Purpose Decrease real-world value of signal by one, but only to zero
Librclry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Decrement To Zero block decreases the real-world value of the
signal by one. The output will never go below zero.
max(V—-0) p
Data Type The Decrement To Zero block accepts signals of any data type supported
Support by Simulink® software, including fixed-point data types.
x
Decrement To Zemo [maszk] [link]
Decreaze the Real Wiarld Yalue of Signal by 1.0,
but never go below zero.
k. Cancel Help Apply
Parameters
and
Dialog
Box
Characteristics Direct Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Decrement Stored Integer, Decrement Time

2-178

To Zero

Demux

Purpose
Library

Description

|

Extract and output elements of bus or vector signal
Signal Routing

The Demux block extracts the components of an input signal and
outputs the components as separate signals. The output signals are
ordered from top to bottom output port. (See “Changing the Orientation
of a Block”in the Simulink® documentation for a description of the port
order for various block orientations.) To avoid adding clutter to a model,
Simulink software hides the name of a Demux block when you copy it
from the Simulink library to a model.

The Number of outputs parameter allows you to specify the number
and, optionally, the dimensionality of each output port. If you do not
specify the dimensionality of the outputs, the block determines the
dimensionality of the outputs for you.

The Demux block operates in either vector mode or bus selection
mode, depending on whether you selected the Bus selection mode
parameter. The two modes differ in the types of signals they accept.
Vector mode accepts only a vector-like signal, that is, either a scalar
(one-element array), vector (1-D array), or a column or row vector (one
row or one column 2-D array). Bus selection mode accepts only the
output of a Mux block or another Demux block.

Note The MathWorks discourages enabling Bus selection mode
and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

The Demux block’s Number of outputs parameter determines the
number and dimensionality of the block’s outputs, depending on the
mode in which the block operates.

2-179

Demux

Specifying the Number of Outputs in Vector Mode

In vector mode, the value of the parameter can be a scalar specifying
the number of outputs or a vector whose elements specify the widths of
the block’s output ports. The block determines the size of its outputs
from the size of the input signal and the value of the Number of
outputs parameter.

The following table summarizes how the block determines the outputs
for an input vector of width n.

Parameter Value

Block outpuits...

Comments

p=n p scalar signals For example, if the input is
a three-element vector and
you specify three outputs,
the block outputs three
scalar signals.

p>n Error

p<n p vector signals each having | If the input is a six-element

hmod p = 0 n/p elements vector and you specify three
outputs, the block outputs
three two-element vectors.

p<n m vector signals each having | If the input is a five-element

nmod p =m (n/p)+1 elements and p-m vector and you specify

signals having n/p elements | three outputs, the block

outputs two two-element
vector signals and one scalar
signal.

[Py Py +-- Pyl m vector signals having If the input is a five-element

DHPy*. . 4P =N widths p;, py, ... P, vector and you specify [3,

m 2] as the output, the block
p; > 0 outputs three of the input

elements on one port and the
other two elements on the
other port.

2-180

Demux

Parameter Value

Block outpuits... Comments

[Py Py -+ Pyl
PPyt . . . +p, =N

some or all

m vector signals If pi is greater than zero,
the corresponding output
has width p,. If p, is -1, the
width of the corresponding
output is dynamically sized.

p; = -1

[Py Py -+ Pyl Error
P +Pyt. . P, =N

p; = >0

Note that you can specify the number of outputs as fewer than the
number of input elements, in which case the block distributes the
elements as evenly as possible over the outputs as illustrated in the
following example.

Terminator

Terminator?

MZ224567]

Canstant
Terminator

You can use -1 in a vector expression to indicate that the block should
dynamically size the corresponding port. For example, the expression
[-1, 3 -1] causes the block to output three signals in which the second
signal always has three elements while the sizes of the first and third
signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block
assigns as many elements as needed to the ports with positive values
and distributes the remain elements as evenly as possible over the ports
with -1 values. For example, suppose that the block input is seven

2-181

Demux

elements wide and you specify the output as [-1, 3 -1]. In this case,
the block outputs two elements on the first port, three elements on the
second, and two elements on the third.

Terminator

:

Terminator2

[MT224567]

Constant

Terminatord

Specifying the Number of Outputs in Bus Selection Mode

In bus selection mode, the value of the Number of outputs parameter
can be a

® Scalar specifying the number of output ports

The specified value must equal the number of input signals. For
example, if the input bus comprises two signals and the value of this
parameter is a scalar, the value must equal 2.

5
S > 0
Canstant Drisplay
3
3w - 0
Constanti Crizplay1

¢ Vector each of whose elements specifies the number of signals to
output on the corresponding port

2-182

Demux

For example, if the input bus contains five signals, you can specify
the output as [3, 2], in which case the block outputs three of the
input signals on one port and the other two signals on a second port.

o Cell array each of whose elements is a cell array of vectors specifying
the dimensions of the signals output by the corresponding port

The cell array format constrains the Demux block to accept only signals
of specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells
the block to accept only a bus signal comprising a 2-by-2 matrix, a
three-element vector, and a scalar signal. You can use the value -1 in

a cell array expression to let the block determine the dimensionality

of a particular output based on the input. For example, the following
diagram uses the cell array expression {{-1}, {-1,-1}} to specify the output
of the leftmost Demux block.

]

G
Drisplay
Caonstant
3w]
Constantd Displayt
=
Constant?

DrizplayZ
In bus selection mode, if you specify the dimensionality of an output

port, i.e., if you specify any value other than -1, the corresponding input
element must match the specified dimensionality.

2-183

Demux

Data Type
Support

Parameters
and

Dialog

Box

2-184

Note The MathWorks discourages enabling Bus selection mode
and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

The Demux block accepts and outputs complex or real signals of any
data type supported by Simulink software, including fixed-point data

types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

=] Function Block Parameters: Demux x|

—Demus

Split vectar zighals inta scalars ar emaller vectars. Check 'Buz Selection Mode' ta zplit
bz zignals.

—Parameterz
Murnber af cutputs:
|2
Dizplay option: | bar j

[T Bus selection mode

L Ok | Canesl Hep | ol

Number of outputs
The number and dimensions of outputs.

Demux

Display option

Options for displaying the Demux block. The options are

Option Description Example
bar Display the icon as a

solid bar of the block’s

foreground color.
none Display the icon as a box

containing the block’s
type name.

Do mux

Bus selection mode
Enable bus selection mode.

Note The MathWorks discourages enabling Bus selection mode

and using a Demux block to extract elements of a bus signal. Muxes
and buses should not be intermixed in new models. See “Intermixing
Composite Signal Types” for details.

2-185

Derivative

Purpose
Library

Description

A du/dt p

2-186

Output time derivative of input
Continuous

The Derivative block approximates the derivative of its input by
computing

du
dt
where du is the change in input value and dt is the change in time since

the previous simulation time step. The block accepts one input and
generates one output. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken
in the simulation. Smaller steps allow a smoother and more accurate
output curve from this block. Unlike blocks that have continuous states,
the solver does not take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the
input is an impulse when the value of the input changes, otherwise it is
0. You can obtain the discrete derivative of a discrete signal using

yik) = j—lrm Ri—nik=1n

and taking the z-transform

er]_l—z'l_ z-1
mizy At T Atz

See “Circuit Model” in Using Simulink® for an example on choosing
the best-form mathematical model to avoid using Derivative blocks
in your models.

Using linmod to linearize a model that contains a Derivative block
can be troublesome. To improve the accuracy of linearizations of this
block, use the optional linearization parameter within the block dialog
box. Additionally, for more information about how to avoid problems

Derivative

Data Type
Support

Parameters
and

Dialog

Box

linearizing Derivative blocks, see Linearizing Models in the “Analyzing
Simulation Results” chapter of the Simulink documentation.

The Derivative block accepts and outputs a real signal of type double.

=] Function Block Parameters: Derivative X|

—Derivative

Mumencal denvative: duddt.

—Parameters

Linearization Time Constant g/Ms + 17

inf

Cancel Help Apply

The exact linearization of the Derivative block is difficult due to the
fact that the block cannot be represented as a state space system since

the dynamic equation for the block is y =z . However, it is possible to
approximate the linearization by adding a pole to the Derivative to
create a proper transfer function. The addition of the pole has the effect
of filtering the signal before differentiating it, to remove the effect of
noise. The approximated linearization of the Derivative block is then

Nss+1 . You can change the Linearization Time Constant, N, to more

accurately approximate the linearization for your system. Its default
value is Inf, corresponding to a linearization of 0, but it is common

practice to change it to 2+, where fp is the break frequency for the filter.
b

2-187

Derivative

Characteristics pirect Feedthrough

See Also

2-188

Yes
Sample Time Continuous
Scalar Expansion N/A

States

2*[1+(number of input elements)]

Dimensionalized

Yes

Zero Crossing

No

Discrete Derivative

Detect Change

Purpose
Library

Description

> ~=U/z

Data Type
Support

Parameters
and

Dialog

Box

Detect change in signal’s value
Logic and Bit Operations

The Detect Change block determines if an input does not equal its
previous value where

® The output is true (equal to 1), when the input signal does not equal
its previous value.

® The output is false (equal to 0), when the input signal equals its
previous value.

The Detect Change block accepts signals of any data type supported by
Simulink® software, including fixed-point data types. The block output
is uints8.

1 Function Block Parameters: Detect Change x|

— Detect Change [maszk] [link]

[f the input does not equal ite previous value, then output TRUE, athenwize outprt
FaLSE. The initial condition determines the initial value of the previous input Uz,

— Parameter

[rnitial condition:
1]

] Cancel Help Apply

Initial condition
Set the initial condition for the previous input U/z.

2-189

Detect Change

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-190

Detect Decrease

Purpose
Library

Description

A U< Uz

Data Type
Support

Parameters
and

Dialog

Box

Detect decrease in signal’s value
Logic and Bit Operations

The Detect Decrease block determines if an input is strictly less than
its previous value where

® The output is true (equal to 1), when the input signal is less than
its previous value.

® The output is false (equal to 0), when the input signal is greater than
or equal to its previous value.

The Detect Decrease block accepts signals of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uints.

E! Function Block Parameters: Detect Decrease il

— Detect Decreaze [mazk] [link]

[f the input iz ztictly less than itz previous walue, then output TRUE, othenwize
output FALSE. The initial condition determines the initial value of the previous

— Parameter

[rnitial condition:
0.0

] Cancel Help Apply

Initial condition
Set the initial condition for the previous input U/z.

2-191

Detect Decrease

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-192

Detect Fall Negative

Purpose Detect falling edge when signal’s value decreases to strictly negative
value, and its previous value was nonnegative
Librclry Logic and Bit Operations
Descripl‘ion The Detect Fall Negative block determines if the input is less than zero,
and its previous value was greater than or equal to zero where
U<0 ® The output is true (equal to 1), when the input signal is less than
b | & NOT p zero, and its previous value was greater than or equal to zero.

Uiz <0 ® The output is false (equal to 0), when the input signal is greater than
or equal to zero, or if the input signal is nonnegative, its previous
value was positive or zero.

Data Type The Detect Fall Negative block accepts signals of any data type
Support supported by Simulink® software, including fixed-point data types. The
block output is uints8.
Parameters Initial condition
and Set the initial condition of the Boolean expression U/z < 0.
Dialog
Box
Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect

Increase, Detect Rise Nonnegative, Detect Rise Positive

2-193

Detect Fall Nonpositive

Purpose

Library

Description

Data Type
Support

Parameters
and

Dialog

Box

2-194

Detect falling edge when signal’s value decreases to nonpositive value,
and its previous value was strictly positive

Logic and Bit Operations

The Detect Fall Nonpositive block determines if the input is less than or
equal to zero, and its previous value was positive where

® The output is true (equal to 1), when the input signal is less than or
equal to zero, and its previous value was greater than zero.

® The output is false (equal to 0), when the input signal is greater than
zero, or if it is nonpositive, its previous value was nonpositive.

The Detect Fall Nonpositive block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uints8.

1 Function Block Parameters: Detect Fall Nonposi x|

— Detect Fall Monpositive [mazk] [link]

[the input iz nonpogitive and itz previous walue waz strictly pozitve, then output
TRUE. atherwize output FALSE. The initial condition determines the initial value
of the boolean expression Uz <= 0).

— Parameter

Irmitial condition:
1]

] Cancel Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z <= 0.

Detect Fall Nonpositive

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase,

Detect Rise Nonnegative, Detect Rise Positive

2-195

Detect Increase

Purpose
Library

Description

¥ U>U/z

Data Type
Support

Parameters
and

Dialog

Box

2-196

Detect increase in signal’s value
Logic and Bit Operations

The Detect Increase block determines if an input is strictly greater than
its previous value where

® The output is true (equal to 1), when the input signal is greater than
its previous value.

® The output is false (equal to 0), when the input signal is less than or
equal to its previous value.

The Detect Increase block accepts signals of any data type supported
by Simulink® software, including fixed-point data types. The block
output is uints.

E! Function Block Parameters: Detect Increase il

— Detect Increaze [mazk] [link]

[the input iz ztictly greater than ks previous value, then output TRUE, othenwize
output FALSE. The initial condition determines the initial value of the previous

— Parameter

[rnitial condition:
0.0

] Cancel Help Apply

Initial condition
Set the initial condition for the previous input U/z.

Detect Increase

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

2-197

Detect Rise Nonnegative

Purpose

Library

Description

Data Type
Support

Parameters
and

Dialog

Box

2-198

Detect rising edge when signal’s value increases to nonnegative value,
and its previous value was strictly negative

Logic and Bit Operations

The Detect Rise Nonnegative block determines if the input is greater
than or equal to zero, and its previous value was less than zero where

® The output is true (equal to 1), when the input signal is greater than
or equal to zero, and its previous value was less than zero.

® The output is false (equal to 0), when the input signal is less than
zero, or if nonnegative, its previous value was greater than or equal
to zero.

The Detect Rise Nonnegative block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uints8.

E! Function Block Parameters: Detect Rise Nonneg il

— Detect Rize Nonnegative [mazk] [link]

[f the input iz nonnegative and its previous value was strictly negative, then output
TRUE. atherwize output FALSE. The initial condition determines the initial value
of the boolean expression Uz == 0).

— Parameter

Irmitial condition:
1]

] Cancel Help Apply

Detect Rise Nonnegative

Initial condition
Set the initial condition of the Boolean expression U/z >= 0.

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Increase, Detect Rise Positive

2-199

Detect Rise Positive

Purpose

Library

Description

U=20
¥ & NOT p
Uiz=0

Data Type
Support

Parameters
and

Dialog

Box

2-200

Detect rising edge when signal’s value increases to strictly positive
value, and its previous value was nonpositive

Logic and Bit Operations

The Detect Rise Positive block determines if the input is strictly
positive, and its previous value was nonpositive where

® The output is true (equal to 1), when the input signal is greater than
zero, and its previous value was less than zero.

® The output is false (equal to 0), when the input is negative or zero, or
if the input is positive, its previous value was also positive.

The Detect Rise Positive block accepts signals of any data type
supported by Simulink® software, including fixed-point data types. The
block output is uints8.

1 Function Block Parameters: Detect Rise Positiy x|

— Detect Rize Paozitive [maszk] [link]

[f the input iz ztictly pozitve and ite previous value was nonpositive, then output
TRUE. atherwize output FALSE. The initial condition determines the initial value
of the boolean expreszion Uz = 0.

— Parameter

Irmitial condition:
1]

] Cancel Help Apply

Initial condition
Set the initial condition of the Boolean expression U/z > 0.

Detect Rise Positive

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall

Nonpositive, Detect Increase, Detect Rise Nonnegative

2-201

Difference

Purpose
Library

Description

z-1
} —

Data Type
Support

Parameters
and

Dialog

Box

2-202

Calculate change in signal over one time step
Discrete

The Difference block outputs the current input value minus the previous
input value.

The Difference block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

The Main pane of the Difference block dialog appears as follows:

1 Function Block Parameters: Difference x|

" Difference [mazk] [link]

Output the current input walue minug the previous input walue.

ET | Signal.-’-‘-.ttril:nutesl

Initial condition far previous input;
0.0

] Cancel Help Apply

Difference

Initial condition for previous output
Set the initial condition for the previous output.

The Signal Attributes pane of the Difference block dialog appears
as follows:

E Function Block Parameters: Difference x|

Difference [maszk] [link]
’V Cutput the current input walue minus the previous input value.
ETY Signal Attributes I
COutput minimLn; Cutput masimm;
i i
Cutput data type: I Inhent: Inhent via internal rule j £ |
Round toward: IFIn:u:nr ;I

[~ Saturate to max or min when overflows ocour

[k, Cancel Help | Apply

Output minimum
Specify the minimum value that the block should output. The

default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The

default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

2-203

Difference

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes, of inputs and gain

2-204

Digital Clock

Purpose
Library

Description

12:34

Data Type
Support

Parameters
and

Dialog

Box

Output simulation time at specified sampling interval
Sources

The Digital Clock block outputs the simulation time only at the specified
sampling interval. At other times, the output is held at the previous
value.

Use this block rather than the Clock block (which outputs continuous
time) when you need the current time within a discrete system.

The Digital Clock block outputs a real signal of type double.

=] Source Block Parameters: Digital Cloc x|

— Digital Clock

Cutput current simulation ime at the specified rate.

— Parameter

S ample time;
1

k. Cancel Help

Sample time
The sampling interval. The default value is 1 second. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Simulink® documentation.

2-205

Digital Clock

Characteristics gample Time

2-206

Specified in the Sample time parameter

Scalar Expansion

No

Dimensionalized

No

Zero Crossing

No

Direct Lookup Table (n-D)

Purpose Index into N-dimensional table to retrieve element, column, or 2-D
matrix
Librclry Lookup Tables

Description The Direct Lookup Table (n-D) block uses its block inputs as zero-based
indices into an n-D table. The number of inputs varies with the shape
of the output desired. The output can be an element, a column, or a
:kibp 2-D matrix. The lookup table uses zero-based indexing, so integer data

types can fully address their range. For example, a table dimension
using the uint8 data type can address all 256 elements.

2-DTH

You define a set of output values as the Table data parameter. You
specify what object the inputs select from the table: an element, a
column, or a 2-D matrix. The first input specifies the zero-based index
to the first dimension higher than the number of dimensions in the
output, the next input specifies the index to the next table dimension,
and so on, as shown by this figure:

Table(R,C,X2,%)
First Input 4
Second Inpur
Third Input

The figure shows a 5-D table with an output shape set to “2-D Matrix”;
the output is a 2-D Matrix with R rows and C columns. (See “Changing
the Orientation of a Block”in the Simulink® documentation for a
description of the port order for various block orientations.)

This figure shows the set of all the different icons that the Direct
Lookup Table block shows (depending on the options you choose in the
block’s dialog box).

2-207

Direct Lookup Table (n-D)

2-208

1-0 TH 2-0' TH] 30 TH 40 TH a0 TH

E_,—-{}b :kﬁ}b /E{}b o b [Lo |
T

Direct LookUp Direct Look-Up Direct Look-Up Direct Look-Up Direct Look-Up
Table (n-07 Table (n-Di3 Table (n-D% Table (n-0'@ Table (n-0)12

1-0 TH] 2-0 TH 20 TH 40 T 50 TH

1 (il [[@

Drirect Look-Up Lirect Laok-Up Direct Look-Up

=

irect Look-Up Direct Look-Up
Tabla (n-D Tabla (n-D Tabla (n-D77 Table (n-Di0 Table (D713
20 TH 20 TH 3D TH 40 TH 5D TH

Direct Look-Up Direct Laok-Up Direct Look-Up Direct Look-Up Direct Loak-Up
Table (n-Cr2 Table (n-L5 Table (n-05 Table (n-C1 Table (n-0014

With dimensions higher than 4, the icon matches the 4-D icons, but
shows the exact number of dimensions in the top text, e.g., “8-D T[k].”
The top row of icons is used when the block output is made from one
or more single-element lookups on the table. The blocks labeled “n-D
Direct Table Lookup5,” 6, 8, and 12 are configured to extract a column
from the table, and the two blocks ending in 7 and 9 are extracting a
plane from the table. Blocks in the figure ending in 10, 11, and 12 are
configured to have the table be an input instead of a parameter.

Example

In this example, the block parameters are defined as

Inputs select this object from table: "Column®
Table data: inti16(a)

Direct Lookup Table (n-D)

where a is a 4-D array of linearly increasing numbers calculated using
MATLAB® functions.

a = ones(20,4,5,7); L = prod(size(a));
a(t:L) = [1:L]";

The figure shows the block outputting a vector of the 20 values in the
second column of the fourth element of the third dimension from the
third element of the fourth dimension.

1061
1 Jenable - 40 TH —
intlb
Constant I > =]
. uintle 1054
uint18i3) Direct Lookup hi
Table (n-[) Drizplay
Constanti
intaczy |2
Constant2

Note that the output has the same data type as the table, i.e., int16.
Also note that the block uses zero-based indexing. The output values in
this example can be calculated manually using the following MATLAB
command (which uses 1-based indexing):

a(:,1+1,1+3,1+2)
ans =

1061
1062
1063
1064
1065
1066
1067
1068

2-209

Direct Lookup Table (n-D)

Data Type
Support

2-210

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

The Direct Lookup Table (n-D) block accepts mixed-type signals of data
type supported by Simulink software. For a discussion on the data
types supported by Simulink software, see “Data Types Supported

by Simulink” in the “Working with Data” chapter of the Simulink
documentation.

The output type can differ from the input type and can be any of the
types listed for input; the output type is inherited from the data type of
the Table data parameter.

In the case that the table comes into the block on an input port, the
output port type is inherited from the table input port. Inputs for
indexing must be real; table data can be complex.

Direct Lookup Table (n-D)
|

Parameters 1 Function Block Parameters: Direct Lookup Table x|

and . :
N — Lookupt DDirect [magk] [link]
Dialog
Box T able member zelection. |nputz are zero-based indices into the table, e.g.. an input

af 3 returns the fourth element in that dimenzion. Block can alzo be uzed to zelect a
colurmn ar 2-00 matris out of the table. The first selection index coresponds to the top
[or left] input port.

— Parameter
Mumber of table dimenzions: |2 j
Inputs zelect thiz object fram table; IEIement j
[~ Make table an input
T able data:
|[4 BE1619201018 23]
Action far out of range input; IWarning j
S ample time:

|1

(] Cancel Help | Apply

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables
for the table and hence the number of inputs to the block. The
options are 1, 2, 3, 4, or More dimensions. If you choose More,
the dialog box displays an edit field, Explicit number of table
dimensions, that allows you to enter a number of dimensions.

Explicit number of table dimensions
This field appears if you select more as the value of the Number

of table dimensions. Enter the number of table dimensions in
this field.

2-211

Direct Lookup Table (n-D)

2-212

Inputs select this object from table

Specify whether the output data is a single element, a column, or
a 2-D matrix. The number of ports changes for each selection:

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB indexing. For example, if
you have a 4-D table of data, to access a single element you must
specify four indices, as in array(1,2,3,4). To specify a column,

you need three indices, as in array(:,2,3,4). Finally, to specify
a 2-D matrix, you only need two indices, as in array(:,:,3,4).

Make table an input

Selecting this box forces the Direct Lookup Table (n-D) block to
ignore the Table Data parameter. Instead, a new port appears
with “T” next to it. Use this port to input table data.

Table data

The table of output values. The matrix size must match the
dimensions defined by the Number of table dimensions
parameter or by the Explicit number of dimensions parameter
when the number of dimensions exceeds four. During block
diagram editing, you can leave the Table data field empty, but for
running the simulation, you must match the number of dimensions
in the Table data to the Number of table dimensions. For
information about how to construct multidimensional arrays

in MATLAB software, see “Multidimensional Arrays” in the
MATLAB online documentation. (This field appears only if Make
table an input is not selected.)

Action for out of range input

None, Warning, Error.

Direct Lookup Table (n-D)

Sample time

The time interval between samples. To inherit the sample time,
set this parameter to -1. See “Specifying Sample Time” in the
Simulink documentation for more information.

Characteristics pjrect Feedthrough

Yes

Sample Time

Specified in the Sample time parameter

Scalar Expansion

For scalar lookups only (not when

returning a column or a 2-D matrix from
the table)

Dimensionalized

For scalar lookups only (not when

returning a column or a 2-D matrix from
the table)

Zero Crossing

No

2-213

Discrete Derivative

Purpose
Library

Description

Ki{z=1)

Ts z

Data Type
Support

2-214

Compute discrete time derivative
Discrete

The Discrete Derivative block computes an optionally scaled discrete
time derivative as follows

Ku(t,) Kult, ;)
T T

S S

y(t,) =

where u(¢,) and y(¢,) are the block’s input and output at the current
time step, respectively, u(¢,_1) is the block’s input at the previous time

step, K 1is a scaling factor, and T is the simulation’s discrete step size,
which must be fixed.

The Discrete Derivative block supports all Simulink® software data
types, including fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Discrete Derivative

Parameters
and

Dialog

Box

The Main pane of the Discrete Derivative block dialog appears as

follows:

E! Function Block Parameters: Discrete Derivative

Dizcrete Dervative [mask] [link)

Discrete-time derivative of the input.

Thiz block only works with fiked sample rates, zo it will not work inzide a tiggered

subzyztem.

b ain | Signal Attributes

[3ain value:

1.0

Initial condition for previous weighted input KAusT =

0.0

]9

Cancel

Help Apply

Gain value

Scaling factor used to weight the block’s input at the current

time step.

Initial condition for previous weighted input K*u/Ts
Set the initial condition for the previous scaled input.

The Signal Attributes pane of the Discrete Derivative block dialog box

appears as follows:

2-215

Discrete Derivative

2-216

m Function Block Parameters: Discrete Derivative ﬂ

Digorete Denvative [mazk] [link]

Digorete-time derivative of the input,

Thiz block only warks with fixed sample rates, so it will not wark inzide a riggered
subsystem.

b ain Signal Attributes I

Output minimLn:; Cutput masimm;

i i

Cutput data type: I Inhent: Inhent via internal rule j b5 |
Round toward: IFI::u:ur ;I

[~ Saturate to max or min when overflows ocour

[k, Cancel Help | Apply

Output minimum
Specify the minimum value that the block should output. The

default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The

default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

¢ Automatic scaling of fixed-point data types

Discrete Derivative

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes, of inputs and gain
See Also Derivative

2-217

Discrete Filter

Purpose Model IIR and FIR filters
Librclry Discrete
Description The Discrete Filter block models Infinite Impulse Response (ITR) and

Finite Impulse Response (FIR) filters using a direct form II structure

1 (also known as “control canonical form”). You specify the filter as a
14221 ratio of polynomials in z'1. You can specify that the block have a scalar
output or vector output where the elements correspond to a set of filters
that have the same denominator polynomial but different numerator
polynomials.

Use the Numerator coefficient parameter to specify the coefficients
of the discrete filter’s numerator polynomial or polynomials. Use a
vector to specify the coefficients for a single numerator polynomial. Use
a matrix to specify the coefficients of multiple numerator polynomials
where each row contains the coefficients of one of the polynomials. Use
the Denominator coefficient parameter to specify the coefficients of
the function’s denominator polynomial. The value of the Denominator
coefficient parameter must be a vector of coefficients.

You must specify the coefficients of the numerator and denominator
polynomials in ascending powers of z'1. The order of the denominator
must be greater than or equal to the order of the numerator.

If you specify a single numerator polynomial, i.e., a vector as the value
of the Numerator coefficient parameter, the block’s output is a scalar
signal. If you specify multiple numerator polynomials, i.e., a matrix as
the value of the Numerator coefficient parameter, the block’s output
is a vector signal whose width equals the number of matrix rows, i.e.,
the number or numerator polynomials.

The Discrete Filter block lets you use polynomials in z! (the delay
operator) to represent a discrete system, a method typically used by
signal processing engineers. By contrast, the Discrete Transfer Fen
block lets you use polynomials in z to represent a discrete system,
the method typically used by control engineers. The two methods are
identical when the numerator and denominator polynomials have the
same length.

2-218

Discrete Filter

Data Type
Support

Parameters
and

Dialog

Box

The block displays the numerator and denominator according to how
they are specified. For a discussion of how Simulink® software displays
the icon, see Transfer Fcn.

The Discrete Filter block accepts and outputs a real signal of type
single or double.

=1 Function Block Parameters: Discrete Filter x|

Dizcrete Filker

The numerator coefficient can be a wector or matny exprezsion. The denominator
coefficient must be a vectar. The autput width equals the number af rowes in the
numeratar coefficient. *row should zpecify the coefficients in ascending order of
powers of 14z,

GETY | State Attributes
Murmerator coefficient:
|1]
Denominatar coefficient:
{11 0.5]

Sample time [-1 far inhernted):

[1

k. Cancel Help Smply

Numerator coefficient
A vector of polynomial coefficients or a matrix of coefficients
where each row of coefficients corresponds to a distinct numerator
polynomial. You must specify the polynomial coefficients in
ascending powers of z''. If you specify a vector of coefficients,
i.e., a single numerator polynomial, the output of the block
is a scalar signal. If you specify a matrix of coefficients, i.e.,
multiple polynomials, the block’s output is a vector of signals,

Discrete Filter

each corresponding to the filter consisting off the corresponding
numerator polynomial and the denominator polynomial specified
by the Denominator coefficient parameter. The default is [1].

Denominator coefficient
The vector of denominator coefficients. The defaultis [1 0.5].
The width of the vector, i.e., the order of the denominator, must
be greater than or equal to the width of the numerator vector or
matrix rows, i.e., the order of the numerator.

Sample time
The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink
documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more
information.

Characteristics Dpjrect Feedthrough Only if the lengths of the Numerator and
g
Denominator parameters are equal

Sample Time Specified in the Sample time parameter
Scalar Expansion No

States Length of Denominator parameter -1
Dimensionalized No

Zero Crossing No

2-220

Discrete FIR Filter

Purpose
Library

Description

0.5+0.5z"1

1

Model FIR filters
Discrete

The Discrete FIR Filter block independently filters each channel of
the input signal with the specified digital FIR filter. The block can
implement static filters with fixed coefficients, as well as time-varying
filters with coefficients that change over time. You can tune the
coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over
time, treating each element of the input as an individual channel. The
output dimensions are always the same as those of the input signal that
is filtered, except in single-input/multi-output mode.

The outputs of this block numerically match the outputs of the Signal
Processing Blockset™ Digital Filter Design block and of the Signal
Processing Toolbox™ dfilt function.

This block supports the Simulink® state logging feature. See “States” in
the Simulink User’s Guide for more information.

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to
zero by default, which is equivalent to assuming that past inputs and
outputs are zero. You can optionally use the Initial states parameter
to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to
specify them, see the table on valid initial states. The Initial states
parameter can take one of the forms described in the next table.

2-221

Discrete FIR Filter

Valid Initial States

Initial Condition Description

Scalar The block initializes all delay elements in the filter to the scalar
value.

Vector or matrix Each vector or matrix element specifies a unique initial condition

(for applying different | for a corresponding delay element in a corresponding channel:
delay elements to each
channel) e The vector length must be equal to the product of the number
of input channels and the number of delay elements in the
filter, #_of_filter_coeffs-1.

¢ The matrix must have the same number of rows as the number
of delay elements in the filter, # of _filter_coeffs-1, and
must have one column for each channel of the input signal.

Data Type The Discrete FIR Filter block accepts and outputs real and complex

Support signals of any data type supported by Simulink except Boolean. The
same types are supported for the numerator coefficients. The input
states have the same data type as the block input.

The following diagrams show the filter structure and the data types
used within the Discrete FIR Filter block for fixed-point signals.

2-222

Discrete FIR Filter

(1)
input
h 4
1
r
h
-1
=z
I
w
v
¥
-1
g
|

2-223

Discrete FIR Filter
|

Input Froduct output Accunulator Cutput
data type data type data type data type
. =m B Cast A R . Cast
B - +
input Hunerator F 3 output
coefficient
v data type
[ZI]
4
Froduct output Accumulator
data tvpe data tvype
B | Cazt
L |
Humerator
coefficient
h 4 data type
[+]
z
J
w Froduct output Accumulator
1 data type data type
s _>>—>{ Cast
Humerator
coefficient
data tvpe

2-224

Discrete FIR Filter

Parameters
and

Dialog

Box

The Main pane of the Discrete FIR Filter block dialog appears as

follows.

E Function Block Parameters: Discrete FIR Filter

DiscreteFir

X

Independently filter each channel of the input over time using an FIR. filter. You can

specify filter coeffidents using either tunable dialog parameters or separate input

paorts, which are useful for time-varying coefficents,

Main | Fixed—pointl

Coefficent source: IDiaIu:ug parameters

Mumerator coefficient:

=l

|[0.50.5]
Initial states:

o
Sample time (-1 for inherited):

-1

Ok

Cancel

Help

Apply

2-225

Discrete FIR Filter

2-226

Coefficient source
Specify whether you want to input the filter coefficients on the
block mask or inherit them from an input port.

Numerator coefficient
Specify the vector of numerator coefficients of the filter’s transfer
function.

This parameter is only visible when Dialog parameters is
selected for the Coefficient source parameter.

Initial states
Specify the initial conditions of the filter states. To learn how to
specify initial states, see “Specifying Initial States” on page 2-221.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
“How Simulink Works” in the Simulink documentation.

Discrete FIR Filter

The Fixed-point pane of the Discrete FIR Filter block dialog appears

as follows.

E Function Block Parameters: Discrete FIR Filter

X

DiscreteFir

Independently filter each channel of the input over time using an FIR filter. You can
spedify filter coeffidents using either tunable dialog parameters or separate input

paorts, which are useful for time-varying coefficents,

Main Fixed-point

Coefficient minimum:

Coefficent maximum:

[i
Output minirmum: Cutput maximum:
[i
Coeffident data type: I Inherit: Same word length as input j =x
Product output data type: I Inherit: Inherit via internal rule j ==
Accumulator data type: I Inherit: Same as product output j ==
Output data type: I Inherit: Same as accumulator j ==
™ Lodk scaling against changes by the autoscaling tool
Round integer calculations toward: IFI::u:ur ;I
™ saturate on integer overflow

Ok Cancel Help Apply

2-227

Discrete FIR Filter

2-228

Coefficient minimum
Specify the minimum value that a filter coefficient should have.
The default value, [1, is equivalent to - Inf. Simulink software
uses this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Automatic scaling of fixed-point data types

Coefficient maximum
Specify the maximum value that a filter coefficient should have.
The default value, [], is equivalent to Inf. Simulink software
uses this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Automatic scaling of fixed-point data types

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
* Automatic scaling of fixed-point data types

Coefficient data type
Specify the coefficient data type. You can set it to:

® A rule that inherits a data type, for example, Inherit: Same
word length as input

® A built-in integer, for example, int8

Discrete FIR Filter

* A data type object, for example, a Simulink.NumericType
object

® An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button LI to
display the Data Type Assistant, which helps you set the
Coefficient data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Product output data type
Specify the product output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

® A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType
object

® An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button #l to
display the Data Type Assistant, which helps you set the

Product output data type parameter.
See “Using the Data Type Assistant” in Using Simulink for more
information.

Accumulator data type
Specify the accumulator data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit: Same
as product output

2-229

Discrete FIR Filter

¢ A built-in data type, for example, int8

¢ A data type object, for example, a Simulink.NumericType
object

® An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button LI to
display the Data Type Assistant, which helps you set the
Accumulator data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more
information.

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit: Same
as accumulator

¢ A built-in data type, for example, int8

* A data type object, for example, a Simulink.NumericType
object

® An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button #l to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs.

2-230

Discrete FIR Filter

Round integer calculations toward
Select the rounding mode for fixed-point operations.

Saturate on integer overflow
Select to have overflows saturate. Otherwise, they wrap.

Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time parameter
Scalar Expansion Yes, of initial states
States See “Specifying Initial States” on page
2-221
Dimensionalized Yes
Zero Crossing No

2-231

Discrete State-Space

Purpose
Library

Description

yin)=Cxin)+Du(n)
*(n+1)=Axin)+Bu(n)

Data Type
Support

2-232

Implement discrete state-space system
Discrete

The Discrete State-Space block implements the system described
xin+1l) = Axin)+Euin)

by ¥n) = Cx(r)+Duin)

where u is the input, x is the state, and y is the output. The matrix
coefficients must have these characteristics, as illustrated in the
following diagram:

* A must be an n-by-n matrix, where n is the number of states.

¢ B must be an n-by-m matrix, where m is the number of inputs.

¢ C must be an r-by-n matrix, where r is the number of outputs.

¢ D must be an r-by-m matrix.

n m
n A B
r C D

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.
The output vector width is determined by the number of rows in the C
and D matrices.

Simulink® software converts a matrix containing zeros to a sparse

matrix for efficient multiplication.

The Discrete State Space block accepts and outputs a real signal of
type single or double.

Discrete State-Space

Parameters
and

Dialog

Box

m Function Block Parameters: Discrete Skate-Space

Digorete State Space

Digcrete state-space model:

win+1] = Axln] + Buln)
wln] = Cxin] + Duln]

T | State.-'—‘-.ttril:uutesl

&
[

B:
[1

C:
[1

D:
[1

|nitial conditians:

|0

Sample time [-1 far inhernted):

[1

OF.

Cancel

Help

Apply

AB,CD

The matrix coefficients, as defined in the preceding equations.

Initial conditions

The initial state vector. The default is 0. Simulink software does

not allow the initial states of this block to be inf or NaN.

2-233

Discrete State-Space

Characteristics pjrect Feedthrough

2-234

Sample time

The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink

documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more

information.

Only if D # 0

Sample Time

Specified in the Sample time parameter

Scalar Expansion

Yes, of the initial conditions

States

Determined by the size of A

Dimensionalized

Yes

Zero Crossing

No

Discrete-Time Integrator

Purpose
Library

Description

kK T=

=1

Perform discrete-time integration or accumulation of signal
Discrete

You can use the Discrete-Time Integrator block in place of the Integrator
block to create a purely discrete system.

The Discrete-Time Integrator block allows you to

® Define initial conditions on the block dialog box or as input to the
block.

® Define an input gain (K) value.

® QOutput the block state.

® Define upper and lower limits on the integral.

® Reset the state depending on an additional reset input.

These features are described below.

Integration and Accumulation Methods

The block can integrate or accumulate using the Forward Euler,
Backward Euler, and Trapezoidal methods. For a given step n,
Simulink® software updates y (n) and x(n+1). In integration mode, T is
the block’s sample time (delta T in the case of triggered sample time). In
accumulation mode, T = 1; the block’s sample time determines when
the block’s output is computed but not the output’s value. K is the gain
value. Values are clipped according to upper or lower limits.

® Forward Euler method (the default), also known as Forward
Rectangular, or left-hand approximation.

For this method, 1/s is approximated by T/ (z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n-1)

2-235

Discrete-Time Integrator

Let x(n+1) = x(n) + K*T*u(n). The block uses the following steps
to compute its output:

Step O: y(0) = X(0) = IC (clip if necessary)
x(1) = y(0) + K*T*u(0)

x(1)
K*T*u (1)

Step 1: y(1)
x(2) = x(1)

+

Step n: y(n) x(n)
x(n+1) = x(n) + K*T*u(n) (clip if necessary)
With this method, input port 1 does not have direct feedthrough.

® Backward Euler method, also known as Backward Rectangular or
right-hand approximation.

For this method, 1/s is approximated by T*z/(z-1). The resulting
expression for the output of the block at step n is

y(n) = y(n-1) + K*T*u(n)

Let x(n) = y(n-1). The block uses the following steps to compute its
output

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step O: x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T*u(0)

Step 1: y(1)
x(2) =y(1)

X(1) + K*T*u(1)

Step n: y(n)
x(n+1) = y(n)

x(n) + K*T*u(n)

2-236

Discrete-Time Integrator

With this method, input port 1 has direct feedthrough.
Trapezoidal method. For this method, 1/s is approximated by

T/2*(z+1)/(z-1)
When T is fixed (equal to the sampling period), let
x(n) = y(n-1) + K*T/2 * u(n-1)
The block uses the following steps to compute its output

Step O: x(0) = IC (clipped if necessary)
x(1) = y(0) + K*T/2 * u(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) = y(0) = x(0) + K*T/2*u(0)

Step 1: y(1) = x(1) + K*T/2 * u(1)
X(2) = y(1) + K*T/2 * u(1)

Step n: y(n) = x(n) + K*T/2 * u(n)

x(n+1) = y(n) + K*T/2 * u(n)

Here, x(n+1) is the best estimate of the next output. It isn’t quite
the state, in the sense that x(n) != y(n).

If T is variable (i.e. obtained from the triggering times), the block
uses the following algorithm to compute its outputs

Step O: y(0) = x(0) = IC (clipped if necessary)
x(1) =y(0)

or, depending on Use initial condition as initial and reset value
for parameter:

Step O: y(0) = x(0) = IC (clipped if necessary)

2-237

Discrete-Time Integrator

x(1) = y(0) x(0) + K*T/2*u(0)

Step 1: y(1)
x(2) =y(1)

x(1) + T/2 * (u(1) + u(0))

Step n: y(n)
x(n+1) = y(n)

x(n) + T/2 * (u(n) + u(n-1))

With this method, input port 1 has direct feedthrough.

The block reflects the selected integration or accumulation method,
as this figure shows.

K T= KTsz K T=iz+1) 1 Kz K iz+12
—_— [[— F — F F
=1 =1 2iz-17 z-1 z-1 2iz1)
Dizcrete-Time Dizscrete-Time Dizcrete-Time Discrete-Time Discrete-Time Discrete-Time
Integratar Integratar Integrator Accumulator Accumulator Accumulator
Fomward Eular Badaward Euler Trapezoidal Fonward Euler Badaward Euler Trapezoidal

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

® To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

® To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

[nput
KTs Dutput
Inifalcandifion | — ;
¥y oz

Discrete-Time
Integratar

2-238

Discrete-Time Integrator

Using the State Port

In two situations, you must use the state port instead of the output port:

® When the output of the block is fed back into the block through the
reset port or the initial condition port, causing an algebraic loop. For
an example of this situation, see the sldemo_bounce model.

® When you want to pass the state from one conditionally executed
subsystem to another, which can cause timing problems. For an
example of this situation, see the sldemo_clutch model.

You can correct these problems by passing the state through the state
port rather than the output port. Although the values are the same,
Simulink software generates them at slightly different times, which
protects your model from these problems. You output the block state
by selecting the Show state port check box.

By default, the state port appears on the top of the block, as shown in
this figure.

Site

[nput K Ts Output

=1

Discrate-Time
Integrator

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter
fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

2-239

Discrete-Time Integrator

2-240

® When the integral is less than or equal to the Lower saturation
limit and the input is negative, the output is held at the Lower
saturation limit.

® When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

® When the integral is greater than or equal to the Upper saturation
limit and the input is positive, the output is held at the Upper
saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown in this figure.

Output

Input K Ts —
» =1 Saturatian
e

Discrete-Time
Integrator

The signal has one of three values:

¢ 1 indicates that the upper limit is being applied.
¢ (0 indicates that the integral is not limited.

¢ -1 indicates that the lower limit is being applied.

Resetting the State

The block can reset its state to the specified initial condition, based on
an external signal. To cause the block to reset its state, select one of the
External reset parameter choices. A trigger port appears below the
block’s input port and indicates the trigger type, as shown in this figure.

Discrete-Time Integrator

Input
» K Ts Output
Reset P 1

Discrete-Time
Integrator

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results. To resolve this loop, feed the
output of the block’s state port into the reset port instead. To access the
block’s state, select the Show state port check box.

Reset Trigger Types

The External reset parameter lets you determine the attribute of the
reset signal that triggers the reset. The trigger options include:

® rising

Resets the state when the reset signal has a rising edge. For example,
the following figure shows the effect that a rising reset trigger has
on backward Euler integration.

Reset
.. v P ! ' ' T 9 9 >
Rising Integrate | | NoIntegration { i
Reset AN R A R 7N I R R
+ /
Input

e falling

2-241

Discrete-Time Integrator

Resets the state when the reset signal has a falling edge. For
example, the following figure shows the effect that a falling reset
trigger has on backward Euler integration.

Reset |
P S T
Falling Integrate ntegration
Reset
Input E ! 5 E

® either

Resets the state when the reset signal rises or falls. For example,
the following figure shows the effect that an either reset trigger has
on backward Euler integration.

Reset‘ ; ;
T
Either Intégrate | iNo Integration
Reset SR D NG R T A /
Input /
FA\ .
- g

® level

2-242

Discrete-Time Integrator

Resets and holds the output to the initial condition while the reset
signal is nonzero. For example, the following figure shows the effect
that a level reset trigger has on backward Euler integration.

Reset‘

S T T T T A NS
Level Integrate N¢ Integration
Reset P\ e

Input‘

h

v

® sampled level

Resets the output to the initial condition when the reset signal is
nonzero. For example, the following figure shows the effect that a
sampled level reset trigger has on backward Euler integration.

A

Reset 7 T
Sampled n n n ' h m m >
LeveFI) Reset No Integraton | Integgrate
nput| | § \ P
P I~ '

2-243

Discrete-Time Integrator

Note The sampled level reset option requires fewer computations
and hence is more efficient than the level reset option. However,
the level reset option, but may introduces a discontinuity when
integration resumes.

Choosing All Options

When all options are selected, the icon looks like this.

‘sm
Ingut Output

——»
Reset FKTE —————*
Initial candfian ‘o =1 Saturatian

Drizzrete-Time

Integratar
Data Type The Discrete-Time Integrator block accepts real signals of any data type
Support supported by Simulink software, including fixed-point data types.

2-244

Discrete-Time Integrator

Parameters
and

Dialog

Box

E! Function Block Parameters: Discrete-Time Intec

The Main pane of the Discrete-Time Integrator block dialog appears
as follows:

Digcrete-Time |ntearator
’V Digorete-time integration or accumulation of the input zsignal.

ET | Signal Attributes I State Attributes

Integrator method: Ilntegratiun: Forward Euler

[3ain value:

[1.0

Esternal reset; Ir‘u:une

Initial condition zource; Iinternal

[nitial condition:

|0

Ilze inihal condition az initial and reszet walue for: [State and output

Sample tirme [-1 Far inkerited]:

[1
[Limit output

|lpper zaturation limit:

fin

Lawer saturation limit:

[-in
[T Show zaturation port
[~ Show state port

[lgnare limit and reset when linearizing

] Cancel Help

Apply

2-245

Discrete-Time Integrator

Integrator method
Specify the integration or accumulation method.

Gain value
Specify a value by which to multiply the integrator input.
Specifying a value other than 1.0 (the default) is semantically
equivalent to connecting a signal to the input of the integrator
via a Gain block, i.e., to

K T=
s =
_ z1 Outd
Gain Discrete-Time

Integratar

Using this parameter to specify the input gain eliminates a
multiplication operation in the generated code. Realizing this
benefit, however, requires that this parameter be nontunable.
Accordingly, the Real-Time Workshop® software generates

a warning during code generation if the Model Parameter
Configuration dialog box for this model declares this parameter
to be tunable. If you want to tune the input gain, set this
parameter to 1.0 and use an external Gain block to specify the
input gain.

External reset
Resets the states to their initial conditions when a trigger event
occurs in the reset signal. See “Resetting the State” on page 2-240
for more information.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (internal) or from an external block (external).
Simulink software does not allow the initial condition of this
block to be inf or NaN.

2-246

Discrete-Time Integrator

Initial condition
The states’ initial conditions. This parameter is only available
if the Initial condition source parameter is set to internal.
Simulink software does not allow the initial condition of this
block to be inf or NaN.

Use initial condition as initial and reset value for
When you set this parameter to State and output,

y(0) = IC
x(0) = IC
or at reset
y(n) = IC
x(n) = IC

When you set this parameter to State only (most efficient),

x(0) = IC
or at reset
x(n) = IC

Sample time
The time interval between samples. The default is 1. In
accumulation mode, the sample time specifies when the block’s
output is computed. See Specifying Sample Time in the “How
Simulink Works” chapter of the Simulink documentation.

Limit output
If selected, limits the block’s output to a value between the Lower
saturation limit and Upper saturation limit parameters.

2-247

Discrete-Time Integrator

2-248

Upper saturation limit
The upper limit for the integral. This parameter is only available
if you select the Limit output parameter.

Lower saturation limit
The lower limit for the integral. This parameter is only available
if you select the Limit output parameter.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

The Signal Attributes pane of the Discrete-Time Integrator block
dialog appears as follows:

Discrete-Time Integrator

m Function Block Parameters: Discrete-Time Inteqgrakol 5'

" Digorete-Time |nkeagrataor

Digorete-time integration or accumulation of the input zignal.

Main Signal Attributes I State.ﬁ.ttributesl

Output minimLn:; Cutput magimm;

i i

Output data tppes | Inhert: [nhert via internal nile j Fr |
Round integer calculations toward: IFI::u:ur LI

[T Saturate on integer overflow

] 4 Cancel Help Apply

2-249

Discrete-Time Integrator

Output minimum

Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

® Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

® Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to

display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Discrete-Time Integrator

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s

Guide.

Saturate on integer overflow
Select to have overflows saturate.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop User’s Guide for more

information.

Characteristics pjrect Feedthrough

Yes, of the reset and external initial
condition source ports. The input has
direct feedthrough for every integration
method except forward Euler and
accumulation forward Euler.

Sample Time

Specified in the Sample time parameter

Scalar Expansion

Yes, of parameters

States Inherited from driving block and
parameter

Dimensionalized Yes

Zero Crossing No

2-251

Discrete Transfer Fcn

Purpose
Library

Description

Data Type
Support

2-252

1

z+0 .5

Implement discrete transfer function
Discrete

The Discrete Transfer Fcn block implements the z-transform transfer
function described by the following equations:

m m=1 T —m
HI'E'] _numiz) _ RUMpE + AU Z + . tRHm, T

deniz) dengz" +d’enlz"_l+ .. +den_

where m+1 and n+1 are the number of numerator and denominator
coefficients, respectively. num and den contain the coefficients of the
numerator and denominator in descending powers of z. num can be

a vector or matrix, den must be a vector, and both are specified as
parameters on the block dialog box. The order of the denominator must
be greater than or equal to the order of the numerator.

Block input is scalar; output width is equal to the number of rows in
the numerator.

The Discrete Transfer Fen block represents the method typically used
by control engineers, representing discrete systems as polynomials in z.
The Discrete Filter block represents the method typically used by signal
processing engineers, who describe digital filters using polynomials

in z'! (the delay operator). The two methods are identical when the
numerator is the same length as the denominator.

The Discrete Transfer Fen block displays the numerator and
denominator within its icon depending on how they are specified. See
Transfer Fen for more information.

The Discrete Transfer Function block accepts and outputs real signals
of type single or double.

Discrete Transfer Fcn

Parameters
and

Dialog

Box

=1 Function Block Parameters: Discrete Transfer Fen x|

Dizcrete Transfer Fen

The numerator coefficient can be a wector or matny exprezsion. The denominator
coefficient must be a vectar. The autput width equals the number af rowes in the
numeratar coefficient. *rou should zpecify the coefficients in descending order of
powers of 2.

GETY | State Attributes
Murmerator coefficient:
|1]

Denominatar coefficient:
{11 0.5]

Sample time [-1 far inhernted):

[1

k. Cancel Help Smply

Numerator coefficient
The row vector of numerator coefficients. A matrix with multiple
rows can be specified to generate multiple output. The default
is [1].

Denominator coefficient
The row vector of denominator coefficients. The default is [1
0.5].

Sample time
The time interval between samples. The default is 1. See
Specifying Sample Time in the “How Simulink Works” chapter of
the Simulink® documentation.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage

2-253

Discrete Transfer Fcn

Characteristics pjrect Feedthrough

2-254

and Interfacing” in the Real-Time Workshop® User’s Guide for more

information.

Only if the lengths of the Numerator and
Denominator parameters are equal

Sample Time

Specified in the Sample time parameter

Scalar Expansion

No

States

Length of Denominator parameter -1

Dimensionalized

No

Zero Crossing

No

Discrete Zero-Pole

Purpose
Library

Description

(=1
Zz-0.5)

Data Type
Support

Model system defined by zeros and poles of discrete transfer function
Discrete

The Discrete Zero-Pole block models a discrete system defined by the
zeros, poles, and gain of a z-domain transfer function. This block
assumes that the transfer function has the following form

Ziz) _ (z—Z)iz-Z5)..(2-2Z,)

Hiz) :KPI'E'] - [g_Pl]fz—P‘z]...l'E—P_,t]

where Z represents the zeros vector, P the poles vector, and K the gain.
The number of poles must be greater than or equal to the number of
zeros (n 2 m). If the poles and zeros are complex, they must be complex
conjugate pairs.

The block displays the transfer function depending on how the
parameters are specified. See Zero-Pole for more information.

The Discrete Zero-Pole block accepts and outputs real signals of type
double.

2-255

Discrete Zero-Pole

Parameters [Function Block Parameters: Discrete Zero-Pole x|

and .
. Digcrete Zero-Pole
Dialog
Box t atrix expression for zeroz. Wector expreszsion for poles and gain. Output width equals

the number of columnz in 2eros matnix, or one if 2eros is a vector.

G ET | State Attributes
Zeros!
|11]
Fioles:
{[005]

G ain:
[1
Sample time [-1 far inherited):

[1

k. Cancel Help Apply

Zeros
The matrix of zeros. The defaultis [1].

Poles
The vector of poles. The defaultis [0 0.5].

Gain
The gain. The default is 1.

Sample time
The time interval between samples. See Specifying Sample
Time in the “How Simulink Works” chapter of the Simulink®
documentation.

2-256

Discrete Zero-Pole

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage
and Interfacing” in the Real-Time Workshop® User’s Guide for more

information.
Characteristics pjrect Feedthrough Yes, if the number of zeros and poles are
equal
Sample Time Specified in the Sample time parameter
Scalar Expansion No
States Length of Poles vector
Dimensionalized No
Zero Crossing No

2-257

Display

Purpose

Library

Description

2-258

[0]

Show value of input

Sinks

The Display block shows the value of its input on its icon.

You control the display format using the Format parameter:

short — displays a 5-digit scaled value with fixed decimal point
long — displays a 15-digit scaled value with fixed decimal point
short_e — displays a 5-digit value with a floating decimal point
long_e — displays a 16-digit value with a floating decimal point

bank — displays a value in fixed dollars and cents format (but with
no $ or commas)

hex (Stored Integer) — displays the stored integer value of a
fixed-point input in hexadecimal format

binary (Stored Integer) — displays the stored integer value of a
fixed-point input in binary format

decimal (Stored Integer) — displays the stored integer value of a
fixed-point input in decimal format

octal (Stored Integer) — displays the stored integer value of a
fixed-point input in octal format

The amount of data displayed and the time steps at which the data is
displayed are determined by the Decimation block parameter and
the SampleTime property:

The Decimation parameter enables you to display data at every nth
sample, where n is the decimation factor. The default decimation, 1,
displays data at every time step.

The SampleTime property, settable with set_param, enables you to
specify a sampling interval at which to display points. This property
is useful when you are using a variable-step solver where the interval

Display

between time steps might not be the same. The default value of -1
causes the block to ignore the sampling interval when determining
the points to display.

If the block input is an array, you can resize the block to show more
than just the first element. You can resize the block vertically or
horizontally; the block adds display fields in the appropriate direction.
A black triangle indicates that the block is not displaying all input
array elements. For example, the following figure shows a model that
passes a vector (1-D array) to a Display block. The black triangle on the
Display block indicates more data to be displayed.

A [1

Display

¥

The following figure shows the resized block displaying both input
elements.

]

- Display

1=

Note The Display block shows only the first 200 elements of a
one-dimensional (vector) signal and only the first 20 rows and 10
columns of a two-dimensional (matrix) signal.

2-259

Display

Data Type
Support

2-260

Display Abbreviations

The following abbreviations appear on the Display block to help you
identify the format of the number being displayed.

Symbol Description

(SI) This alerts you to the fact that the number being
displayed is the stored integer value. This symbol
does not appear when the signal is of an integer data

type.
hex The number being displayed is in hexadecimal
format.
bin The number being displayed is in binary format.
oct The number being displayed is in octal format.

Floating Display

To use the block as a floating display, select the Floating display
check box. The block’s input port disappears and the block displays
the value of the signal on a selected line. If you select the Floating
display option, you must turn off the signal storage reuse feature in
your Simulink® software. See “Signal storage reuse” in the “Running
Simulations” chapter of the Simulink documentation.

Note The floating display does not support multidimensional signals.
If you connect a multidimensional signal to a floating display, the
display generates an error.

The Display block accepts and outputs real or complex signals of any
data type supported by Simulink software, including fixed-point data

types.

Display
|

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Parameters =1 sink Block Parameters: Display x|
and — Dizpla
Dialog i
Box Murnernic dizplay of input walues.
— Parameter
Farmat: Ishu:urt ;I
Decimatiorn:
[1
[~ Floating dizplay
k. Cancel Help Spply
Format
Specify the format of the data displayed, as discussed in
Description. The default is short.
Decimation
Specify how often to display data. The default value, 1, displays
every input point.
Floating display
If selected, the block’s input port disappears, which enables the
block to be used as a floating Display block.
Characteristics SampleTime Use set_param to specify the SampleTime
property
Dimensionalized Yes

2-261

Divide

Purpose Multiply or divide inputs
Librclry Math Operations
Description The Divide block is an implementation of the Product block. See
Product for more information.
AX
>
>

2-262

DocBlock

Purpose
Library

Description

Data Type
Support

Create text that documents model and save text with model
Model-Wide Utilities

The DocBlock allows you to create and edit text that documents a
model, and save that text with the model. Double-clicking an instance
of the block creates a temporary file containing the text associated with
this block and opens the file in an editor. Use the editor to modify the
text and save the file. Simulink® software stores the contents of the
saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII
text document types. The default editors for these different document
types are

e HTML — Microsoft® Word (if available). Otherwise, the DocBlock
opens HTML documents using the editor specified on the
Editor/Debugger Preferences pane of the Preferences dialog box.

® RTF — Microsoft Word (if available). Otherwise, the DocBlock opens
RTF documents using the editor specified on the Editor/Debugger
Preferences pane of the Preferences dialog box.

® Text — The DocBlock opens text documents using the editor specified
on the Editor/Debugger Preferences pane of the Preferences
dialog box.

Use the docblock command to change the default editors.

Note Simulink software embeds DocBlock documents in the model file
(see Chapter 9, “Model File Format”). This can greatly increase the size
of a model file, for example, if the RTF document contains bitmapped
images, and can require more time to open and save the model.

Not applicable.

2-263

DocBlock

Parameters
and

Dialog

Box

2-264

Double-clicking an instance of the DocBlock opens an editor. To access
the DocBlock parameter dialog box, select the block in the Model Editor
and then select Mask Parameters from either the Edit menu or the

block’s context menu.

E! Block Parameters: DocBlock

—DocBlock [mazk] [link]

will apen an editar.

Iz this block to zave long descriphive test with the model. Double-clicking the block

—Parameters

BT Embedded Coder Flag

Document Tope| Tesxt

=l

Cancel

Help

Apply

RTW Embedded Coder Flag (Real-Time Workshop® Embedded

Coder™ license required)

Enter a template symbol name in this field. Real-Time Workshop
Embedded Coder software uses this symbol to add comments

to the code generated from the model. See “Adding Global
Comments” in the Real-Time Workshop Embedded Coder Module
Packaging Features documentation for more information.

Document Type

Specifies the type of document associated with the DocBlock. The

options are

® Text (the default)
® RTF

® HTML

DocBlock
|

Characteristics Not applicable

2-265

Dot Product

Purpose
Library

Description

Data Type
Support

2-266

Generate dot product of two vectors
Math Operations

The Dot Product block generates the dot product of the vectors at its
inputs. The scalar output, v, is equal to the MATLAB® operation

y = sum(conj(ul) .* u2)

where u1 and u2 represent the vectors at the block’s top and bottom
inputs, respectively. (See “Changing the Orientation of a Block”in
the Simulink® documentation for a description of the port order for
various block orientations.) The inputs can be vectors, column vectors
(single-column matrices), or scalars. If both inputs are vectors or
column vectors, they must be the same length. If u1 and u2 are both
column vectors, the block outputs the equivalent of the MATLAB
expression ul'*u2.

The elements of the input vectors can be real- or complex-valued
signals. The signal type (complex or real) of the output depends on the
signal types of the inputs.

Input 1 Input 2 Output
real real real

real complex complex
complex real complex
complex complex complex

To perform element-by-element multiplication without summing, use
the Product block.

The Dot Product block accepts and outputs signals of any data type
supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink”.

Dot Product
|

Parameters 1 Function Block Parameters: Dot Produck x|

and ~ Dot Product (mask] (iink]
Dialog ot Praduct [mask] [link]
Box Inner [daot) product.

y = sum[conjul] *uZ]. The operand ul corezponds to the top [or left] input port.

— Parameter

[+ Require all inputs to have same data type

Output data types | Inkerit: [nkert via inkernal mile ll T |

Round integer calculation toward: |Floor ;I

[T Saturate on integer averflow

(] 4 Cancel Help | Apply |

Require all inputs to have same data type
Select to require all inputs to have the same data type.

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button LI to
display the Data Type Assistant, which helps you set the
Output data type parameter.

2-267

Dot Product

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
States 0
Dimensionalized Yes
Zero Crossing No

2-268

Embedded MATLAB Function

Purpose
Library

Description

Embedded
A TLAE Function

File Edit Text

Debug Tools Window Help Ao

Include MATLAB® code in models that generate embeddable C code

User-Defined Functions

An Embedded MATLAB™ Function block lets you compose a MATLAB
function within a Simulink® model like the following example:

=1olx]

1 function [mweah,stdew] = stats(vals)
2
3 ¥ caloulates a statistical mean and a standard
4 % deviation for the wvalues in wvals.
=
6 - len = lengthiwvals):
T - ean = avg(vals, len):
8§ - astdev = agrtisumi i (vals-avg(vals, lenj).*211/ len):
= M plot(vals, ' —+'):
10
11 - function mean = avglarray,size)
12 = meah Zum (array) faize;
Ready [tn 1 col 1 4

The MATLAB function you create executes for simulation and generates
code for a Real-Time Workshop® target. If you are new to the Simulink
and MATLAB products, see “Using the Embedded MATLAB Function

2-269

Embedded MATLAB Function

2-270

Block” in the Simulink documentation for a comprehensive overview
including a step-by-step example.

You create the MATLAB function in the Embedded MATLAB Editor.
To learn about this editor’s capabilities see “The Embedded MATLAB
Function Editor”.

You specify input and output data to the Embedded MATLAB Function
block in the function header as arguments and return values. Notice

that the argument and return values of the preceding example function
correspond to the inputs and outputs of the block in the Simulink model.

E!call_stats_hlnck ;lglil

File Edit “iew Simulation Format Tools Help

DI@E@I%EISQI} llinf INn:nrmaI j|

Bl | .
mean
Disp laoy
(2 2 ¢ 8) —fuals StAS
i o I | —1
sonstant Embadd=d WA TLAE Function -
Ciisp lawy1
Ready |100% | | |odz45 &

The Embedded MATLAB Function block supports a subset of the
language for which it can generate efficient embeddable code. For details
about the Embedded MATLAB subset, see “Working with the Embedded
MATLAB Subset” in the Embedded MATLAB documentation.

To generate embeddable code, the Embedded MATLAB Function block
relies on an analysis that determines the size and class of each variable.
This analysis imposes the following additional restrictions on the way
in which the above features may be used.

Embedded MATLAB Function

1 The first definition of a variable must define both its class and size.
The class and size of a variable cannot be changed once it has been
set.

2 Whether data is complex or real is determined by the first definition.
Subsequent definitions may assign real numbers into complex
storage but may not assign complex numbers into real storage.

The preceding limitations require you to code in a certain style.
Some common idioms to avoid are listed in “Using Matrix Indexing
Operations” and “Working with Complex Numbers” in the Embedded
MATLAB documentation.

In addition to language restrictions, Embedded MATLAB Function
blocks support only a subset of the functions available in MATLAB. A
list of supported functions is given in the “Embedded MATLAB Function
Library Reference” in the Embedded MATLAB documentation. These
functions include functions in common categories like

® Arithmetic functions like plus, minus, and power

® Matrix operations like size, and length

® Advanced matrix operations like 1u, inv, svd, and chol

® Trigonometric functions like sin, cos, sinh, and cosh

to name just a few. See “Embedded MATLAB Function Library —

Categorical List” in the Embedded MATLAB documentation for a
complete list of function categories.

2-271

file:///B:/matlab/doc/src/techdoc/ref/arithmeticoperators.html

Embedded MATLAB Function

Data Type
Support

2-272

Note Although Embedded MATLAB software attempts to produce
exactly the same results as MATLAB software, there will be occasions
when they will differ due to rounding errors. These numerical
differences, which may be a few eps initially, might be magnified
after repeated operations. Reliance on the behavior of nan is not
recommended. Different C compilers may yield different results for the
same computation.

To support visualization of data, Embedded MATLAB Function blocks
support calls to MATLAB functions for simulation only. See “Calling
MATLAB Functions” in the Embedded MATLAB documentation to
understand some of the limitations of this capability, and how it

is integrated into Embedded MATLAB analysis. If these calls do

not directly affect any of the Simulink inputs or outputs, they are
eliminated from the generated code when generating code with
Real-Time Workshop.

You can declare an Embedded MATLAB input to be a Simulink
parameter instead of a port in the Model Explorer. The Embedded
MATLAB Function block also supports inheritance of types and size
for inputs, outputs, and parameters. If needed, you can also set these
explicitly using the Model Explorer. See “T'yping Function Arguments”,
“Sizing Function Arguments”, and “Parameter Arguments in Embedded
MATLAB Functions”, for more detailed descriptions of variables that
you use in Embedded MATLAB Functions.

Note that recursive calls are not allowed in Embedded MATLAB
functions.

The Embedded MATLAB Function block accepts inputs of any type
supported by Simulink software. For a discussion on the variable types
supported by Embedded MATLAB functions in Simulink software, refer
to “Data Types Supported by Simulink” in the Simulink documentation.

Embedded MATLAB Function

For more information on fixed-point support in Embedded MATLAB,
refer to “Working with the Fixed-Point Embedded MATLAB Subset” in
the Fixed-Point Toolbox™ documentation.

The Embedded MATLAB Function block supports Simulink frames.
See “Frame-Based Signals” in the Signal Processing Blockset™
documentation for more information.

Parameters The Block Parameters dialog box for an Embedded MATLAB Function

and block is identical to the Block Parameters dialog box for a Subsystem
Di‘:’k,g block. See the reference page for the Subsystem, Atomic Subsystem,
Box CodeReuse Subsystem blocks for an identification of each field.
Characteristics pjrect Feedthrough Yes

Sample Time Specified in the Sample time

parameter

Scalar Expansion Yes

Dimensionalized Yes

Multidimensionalized Yes

Zero Crossing No

2-273

Enable

Purpose Add enabling port to subsystem

Librclry Ports & Subsystems

Description Adding an Enable block to a subsystem makes it an enabled subsystem.
An enabled subsystem executes while the input received at the Enable

Il port is greater than zero.

At the start of simulation, Simulink® software initializes the states of
blocks inside an enabled subsystem to their initial conditions. When
an enabled subsystem restarts (executes after having been disabled),
the States when enabling parameter determines what happens to the
states of blocks contained in the enabled subsystem:

* reset resets the states to their initial conditions (zero if not defined).
® held holds the states at their previous values.
You can output the enabling signal by selecting the Show output

port check box. Selecting this option allows the system to process the
enabling signal.

A subsystem can contain no more than one Enable block.

Data Type The data type of the input of the Enable port, i.e., the enable port that

Support appears on the subsystem in which the Enable block resides, can be
any data type supported by Simulink software, including fixed-point
data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-274

Enable

Parameters [1Block Parameters: Enable x|

n
a N d — Enable Port
Dialog

Box

Place thiz block in a subsystem to create an ehabled subzystem.

— Parameter

Statez when enabling: | held ;I
[T Show output port

¥ Enable zero crossing detection

Cancel Help Apply

States when enabling
Specifies how to handle internal states when the subsystem
becomes reenabled.

Show output port
If selected, Simulink software draws the Enable block output port
and outputs the enabling signal.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Characteristics Sample Time Determined by the signal at the enable
port

Dimensionalized Yes

Zero Crossing Yes, if enabled.

2-275

Enabled and Triggered Subsystem

Purpose

Library

Description

2-276

Inl

n E3
tht1

Represent subsystem whose execution is enabled and triggered by
external input

Ports & Subsystems

This block is a Subsystem block that is preconfigured to serve as the
starting point for creating an enabled and triggered subsystem. For
more information, see “Iriggered and Enabled Subsystems” in the
online Simulink® help.

Enabled Subsystem
|

Purpose Represent subsystem whose execution is enabled by external input
Librclry Ports & Subsystems
Description This block is a Subsystem block that is preconfigured to serve as the

starting point for creating an enabled subsystem. For more information,
see “Enabled Subsystems” in the “Creating a Model” chapter of the
Simulink® documentation.

2-277

Environment Controller

Purpose

Library

Description

2-278

Create branches of block diagram that apply only to simulation or only
to code generation

Signal Routing

This block outputs the signal at its Sim port only if the model that
contains it is being simulated. It outputs the signal at its RTW port
only if code is being generated from the model. This allows you to create
branches of a model’s block diagram that apply only to simulation or
only to code generation. The table below describes various scenarios
where either the Sim or RTW port applies.

Scenario Output
Normal mode simulation Sim
Accelerator mode simulation Sim
Rapid Accelerator mode RTW
simulation

Simulation of a referenced model | Sim

External mode simulation RTW

Standard code generation RTW

Code generation of a referenced RTW
model

Processor-in-the-loop target code | Sim
generation

Real-Time Workshop® does not generate code for blocks connected to
the Sim port. If you enable block reduction optimization (see “Block
reduction” in the online Simulink® documentation), Simulink software
eliminates blocks in the branch connected to the block’s RTW port when
compiling the model for simulation.

Environment Controller

Note Real-Time Workshop eliminates the blocks connected to the Sim
branch only if the Sim branch has the same signal dimensions as the
RTW branch. Regardless of whether it eliminates the Sim branch,
Real-Time Workshop uses the sample times on the Sim branch as well
as the RTW branch to determine the fundamental sample time of the
generated code and may, in some cases, generate sample-time handling
code that applies only to sample times specified on the Sim branch.

Data Type The Environment Controller block accepts signals of any numeric or
SUppOI‘f data type. It outputs the type at its input.
Parameters =1 Block Parameters: Environment Controller 2=
and . :
Dialog E nvironment Contraller [mask] [link]
B Clutput the zimulation [Sim] or Beal-Time *Workshop [R T port depending on the

ox curent ervironment. Yfith optimizations enabled, unnecessany blocks l2ading to the

unugzed port are not executed,
L...0K | Cancel Help Apply

Characteristics Multidimensionalized Yes

2-279

Extract Bits

Purpose Output selection of contiguous bits from input signal
Librclry Logic and Bit Operations
Description The Extract Bits block allows you to output a contiguous selection of bits
from the stored integer value of the input signal. The Bits to extract
Extract Bits parameter defines the method by which you select the output bits.
Uppar Half
Exiroct Biis ® Select Upper half to output the half of the input bits that contain

the most significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

number of output bits = ceili number of input bits/2)

® Select Lower half to output the half of the input bits that contain
the least significant bit. If there is an odd number of bits in the input
signal, the number of output bits is given by the equation

number of output bits = ceili number of input bits/2)

® Select Range starting with most significant bit to output
a certain number of the most significant bits of the input signal.
Specify the number of most significant bits to output in the Number
of bits parameter.

® Select Range ending with least significant bit to output a
certain number of the least significant bits of the input signal.
Specify the number of least significant bits to output in the Number
of bits parameter.

e Select Range of bits to indicate a series of contiguous bits of the
input to output in the Bit indices parameter. You indicate the range
in [start end] format, and the indices of the input bits are labeled
contiguously starting at 0 for the least significant bit.

2-280

Extract Bits

Data Type
Support

Parameters
and

Dialog

Box

The Extract Bits block accepts inputs of any data type supported by
Simulink® software, including fixed-point data types. Floating-point
inputs are passed through the block unchanged. Boolean inputs are
treated as uint8 signals.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

E! Function Block Parameters: Extrack Bits x|

— Estract Bits [maszk] [link]

Dutput zelected bits from each of the fised-point input zamples. Selecting "Upper
half" or "Lower half" rezults in a postive number of bits in the output word length,
according to the equation numO utputBits = cellnumlnputBits £ 2).

— Parameter

Bitz to extract: ILlpper half

=l
Output zcaling mode; IF'reserve fiwed-point zzaling ;I

Cancel Help Apply

Bits to extract
Select the mode by which to extract bits from the input signal, as
discussed in Description.

Number of bits
(Not shown on dialog above.) Select the number of bits to output
from the input signal.

This parameter is only visible if you select Range starting
with most significant bit or Range ending with least
significant bit for the Bits to extract parameter.

2-281

Extract Bits

Example

2-282

Bit indices
(Not shown on dialog above.) Specify a contiguous range of bits
of the input signal to output. Specify the range in [start end]
format. The indices are assigned to the input bits starting with 0
at the least significant bit.

This parameter is only visible if you select Range of bits for
the Bits to extract parameter.

Output scaling mode
Select the scaling mode to use on the output bits selection:

® When you select Preserve fixed-point scaling, the fixed-point
scaling of the input is used to determine the output scaling during
the data type conversion.

® When you select Treat bit field as an integer, the fixed-point
scaling of the input is ignored, and only the stored integer is used to
compute the output data type.

Consider an input signal that is represented in binary by 110111001:

¢ If you select Upper half for the Bits to extract parameter, the
output is 11011 in binary.

¢ If you select Lower half for the Bits to extract parameter, the
output is 11001 in binary.

¢ Ifyou select Range starting with most significant bit for the
Bits to extract parameter, and specify 3 for the Number of bits
parameter, the output is 110 in binary.

¢ Ifyou select Range ending with least significant bit for the
Bits to extract parameter, and specify 8 for the Number of bits
parameter, the output is 10111001 in binary.

¢ Ifyou select Range of bits for the Bits to extract parameter, and
specify [4 7] for the Bit indices parameter, the output is 1011 in
binary.

Extract Bits

Characteristics pirect Feedthrough Yes
Sample Time Inherited
Scalar Expansion N/A
States None
Dimensionalized Inherited
Zero Crossing No

2-283

Fen

Purpose
Library

Description

2-284

)

Apply specified expression to input
User-Defined Functions

The Fen block applies the specified mathematical expression to its input.
The expression can be made up of one or more of these components:

® u — The input to the block. If u is a vector, u(i) represents the ith
element of the vector; u(1) or u alone represents the first element.

¢ Numeric constants

® Arithmetic operators (+ - * /*)

® Relational operators (== != > < >= <=) — The expression returns 1
if the relation is true; otherwise, it returns 0.

® Logical operators (&& || !) — The expression returns 1 if the
relation is true; otherwise, it returns 0.

e Parentheses

® Mathematical functions — abs, acos, asin, atan, atan2, ceil, cos,
cosh, exp, fabs, floor, hypot, 1n, 1og, 1og10, pow, power, rem, sgn,
sin, sinh, sqrt, tan, and tanh.

® Workspace variables — Variable names that are not recognized in
the preceding list of items are passed to MATLAB® for evaluation.
Matrix or vector elements must be specifically referenced (e.g.,
A(1,1) instead of A for the first element in the matrix).

The Fcn block observes the following rules of operator precedence:
1(0)

2 A

3 + - (unary)

4!

Fecn

Data Type
Support

10 ||

The expression differs from a MATLAB expression in that the
expression cannot perform matrix computations. Also, this block does
not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For
vector output, consider using the Math Function block. If a block input
is a vector and the function operates on input elements individually (for
example, the sin function), the block operates on only the first vector
element.

The Fcn block accepts and outputs signals of type single or double.

2-285

Fen

Parameters 1 Function Block Parameters: Fcn x|

and -
. — FCH
Dialog '
Box General expression block. Use "u'" as the input variable name.

Example: sinu[1] * expl2.3 * -u[2]]]

— Parameter

E spression:
Isin[u[‘l Ferpl2. 35 -ul210]

Sample time [-1 for inherited]:

[

(] 4 Cancel Help Apply

Expression
The mathematical expression applied to the input. Expression
components are listed above. The expression must be
mathematically well formed (i.e., matched parentheses, proper
number of function arguments, etc.).

Note You cannot tune the expression during accelerated-mode
simulation (see “Accelerating Models”), in referenced models
executing in Accelerator mode (see “Referencing a Model”, or in
generated code.

The Fen block does not support custom storage classes. See
“Custom Storage Classes”.

2-286

Fecn

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized No
Zero Crossing No

2-287

First-Order Hold

Purpose
Library

Description

SV

Data Type
Support

2-288

Implement first-order sample-and-hold
Discrete

The First-Order Hold block implements a first-order sample-and-hold
that operates at the specified sampling interval. This block has little
value in practical applications and is included primarily for academic
purposes.

This figure compares the output from a Sine Wave block and a
First-Order Hold block.

| 21

a P!
A £ N
Nt N
N Nt

The First-Order Hold block accepts and outputs signals of type double.

First-Order Hold

Parameters
and

Dialog

Box

Characteristics pjrect Feedthrough

51 Function Block Parameters: First-Drder Hold x|

— Firgt-Order Hold [mazk] [link]

First-order bald.

— Parameter

S ample tirme;

1

ok

Cancel Help Apply

Sample time

The time interval between samples. See “Specifying Sample
Time” in the online documentation for more information.

No

Sample Time Specified in the Sample time
parameter

Scalar Expansion No

States

1 continuous and 1 discrete per input
element

Dimensionalized

Yes

Zero Crossing

No

2-289

Fixed-Point State-Space

Purpose

Library

Description

y(n)=Cx(n}+Duin)
x(n+1)=Ax(n)+Bu(n)

Data Type
Support

2-290

Implement discrete-time state space
Additional Math & Discrete / Additional Discrete

The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

x(n+l) = Ax(n) + Bu(n)

where u is the input, x is the state, and y is the output. Both equations
have the same data type.

The matrices A, B, C and D have the following characteristics:

* A must be an n-by-n matrix, where n is the number of states.
* B must be an n-by-m matrix, where m is the number of inputs.
® C must be an r-by-n matrix, where r is the number of outputs.

* D must be an r-by-m matrix.
In addition:

¢ The state x must be a n-by-1 vector

® The input u must be a m-by-1 vector

® The output y must be a r-by-1 vector

The block accepts one input and generates one output. The input vector
width is determined by the number of columns in the B and D matrices.

The output vector width is determined by the number of rows in the C
and D matrices.

The Fixed-Point State-Space block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

Fixed-Point State-Space

Parameters
and

Dialog

Box

The Main pane of the Fixed-Point State-Space block dialog appears

as follows:

E! Function Block Parameters: Fixed-Poinkt State-Spa

Digcrete-time State-Space Realization

’—Fi:-:eu:l-F'Dint State-Space [mask] [link]

k4 ain I Signal Data Tepes |
State b atrix A

|[2.E‘-EIEEI 227323 06708;100:010]
[nput b atriz B:

[[1:0:0
Clutput b atris C:

|[EI.EI184 00024 0.0085]
Direct Feedthraough katrix D

|[0.0033]

Iritial condition for state;

0.0

Cancel Help

Apply

State Matrix A
Specify the matrix of states.

Input Matrix B
Specify the column vector of inputs.

Output Matrix C
Specify the column vector of outputs.

Direct Feedthrough Matrix D
Specify the matrix for direct feedthrough.

2-291

Fixed-Point State-Space

Initial condition for state
Specify the initial condition for the state.

The Signal Data Types pane of the Fixed-Point State-Space block

dialog appears as follows:

E! Function Block Parameters: Fikred-Point State-5 .:' C

Fixed-Paoint State-5pace [mazk] [link]
’7 Digorete-time State-Space Fealization

b ain | Signal Data Types

[ata type for internal calculations: ex #fix(16]. wint[2]. float'zsingle’]

| loat] double'
Scaling for State Equation &:+EBL: ex. 279

|20
Scaling far Output Equation Cx+D1L: ex. 279

[2"0

[T Lock output scaling against changes by the autoscaling ool

Found toward: | Floor

[T Saturate to mas o min when overfloss ocour

F. Cancel Help

....................................

Apply

Data type for internal calculations
Specify the data type for internal calculations.

Scaling for State Equation AX+BU
Specify the scaling for state equations.

Scaling for Output Equation CX+DU
Specify the scaling for output equations.

2-292

Fixed-Point State-Space

Lock output scaling against changes by the autoscaling tool
If you select this check box, the output scaling is locked.

Round toward

Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s

Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

Characteristics pjrect Feedthrough

Yes

Scalar Expansion

Yes, of initial conditions

2-293

For Iterator

Purpose Repeatedly execute contents of subsystem at current time step until
iteration variable exceeds specified iteration limit
Librclry Ports & Subsystems/For Iterator Subsystem
Description The For Iterator block, when placed in a subsystem, repeatedly executes
the contents of the subsystem at the current time step until an iteration
For | variable exceeds a specified iteration limit. You can use this block
ltermtar to implement the block diagram equivalent of a for loop in the C

programming language.

The output of a For Iterator subsystem can not be a function-call signal.
Simulink® software will display an error message if the simulation is
run or the diagram updated.

The block’s parameter dialog allows you to specify the maximum value
of the iteration variable or an external source for the maximum value
and an optional external source for the next value of the iteration
variable. If you do not specify an external source for the next value of
the iteration variable, the next value is determined by incrementing the
current value:

in+1 = in +1
The model in the following figure uses a For Iterator block to increment
an initial value of zero by 10 over 20 iterations at every time step.

2-294

For Iterator

20— forf .}

temtions
dﬂ_a—"# Forsubsystem el
O o
Itemtor
In
Far temtar
o (=1
—
= GEmph
=umm
R | [e——

10 [sur_increment

The following figure shows the result.

2-295

For Iterator

+} ¥ Graph _ (O] %]
X Plot
EOO I 1 1 1 1]
Points:
150 | i (1,10)
(2,20)
2 efc.
< 100} :
.
G0 L :
0 1 1 1 1
0 G 10 15 20
x A

The For Iterator subsystem in this example is equivalent to the
following C code.

sum = 0;

iterations = 20;

sum_increment = 10;

for (i = 0; i < iterations; i++) {
sum = sum + sum_increment;

}

Note Placing a For Iterator block in a subsystem makes it an atomic
subsystem if it is not already an atomic subsystem.

2-296

For Iterator

Data Type
Support

The following rules apply to the data type of the number of iterations
(N) input port:

¢ The input port accepts data of mixed types.

e Ifthe input port value is noninteger, it is first truncated to an integer.

¢ Internally, the input value is cast to an integer of the type specified
for the iteration variable output port.

¢ If no output port is specified, the input port value is cast to type
int32.

o If the input port value exceeds the maximum value of the output
port’s type, it is truncated to that maximum value.
Data output for the iterator value can be selected as double, int32,

int16, or int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

® It can appear only if the iteration variable output port is enabled.

® The data type of the iteration variable input port is the same as the
data type of the iteration variable output port.

2-297

For Iterator

Parameters
and

Dialog

Box

2-298

m Source Block Parameters: For Iterator

—Far Iterator

Fun the blocks in this subsyztem far a number of iterationz. The iteration limit may be
zpecified either in the block's dialog ar through an external input port. IF the iteration
warable iz incremented externally, then the nest ikeration value iz read in through an
external input part, atherwize it iz incremented by ohe. The iteration continues o run
Lntil the iteration vanable exceeds the iteration limit. [F the autput part iz zkhaowi, it will
output the current iteration number starting at zena or one. YWhen the iteration iz
gtarted, any states in the subsystem may be either reset to their initial value or held at
their previous value.

—Parameters

States when starting: 2

[teration limit zource:; I internal - I

[teration limit;
|5

[~ Set next i [iteration vanable] externally

[Show iteration variable

Index mcu:lel One-based

L] L

|teration wariable data pe: | int32

k. Cancel | Help

States when starting

Set this field to reset if you want the states of the For subsystem
to be reinitialized before the first iteration at each time step.

Otherwise, set this field to held (the default) to make sure that
these subsystem states retain their values from the last iteration
at the previous time step.

For Iterator

Iteration limit source
If you set this field to internal, the value of the Number of
iterations field determines the number of iterations. If you set
this field to external, the signal at the For Iterator block’s N port
determines the number of iterations. The iteration limit source
must reside outside the For Iterator subsystem.

Iteration limit
Set the number of iterations for the For Iterator block to this
value. This field appears only if you selected internal for the
Source of number of iterations field.

Set next i (iteration variable) externally
This option can be selected only if you select the Show iteration
variable option. If you select this option, the For Iterator block
displays an additional input for connecting an external iteration
variable source. The value of the input at the current iteration is
used as the value of the iteration variable at the next iteration.

Show iteration variable
If you select this check box, the For Iterator block outputs its
iteration value.

Index mode
If you set this field to Zero-based, the iteration number starts
at zero. If you set this field to One-based, the iteration number
starts at one.

Iteration variable data type
Set the type for the iteration value output from the iteration
number port to double, int32, int16, or int8.

Characteristics pjrect Feedthrough No
Sample Time Inherited from driving blocks
Scalar Expansion No

2-299

For Iterator

2-300

Dimensionalized

No

Zero Crossing

For Iterator Subsystem

Purpose

Library

Description

In1

for{...} Outi

Represent subsystem that executes repeatedly during simulation time
step

Ports & Subsystems

The For Iterator Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a subsystem
that executes repeatedly during a simulation time step. For more
information, see the For Iterator block in the online Simulink®
block reference and “Modeling Control Flow Logic” in the Simulink
documentation.

2-301

From

Purpose
Library

Description

Data Type
Support

2-302

Accept input from Goto block
Signal Routing

The From block accepts a signal from a corresponding Goto block, then
passes it as output. The data type of the output is the same as that of
the input from the Goto block. From and Goto blocks allow you to pass
a signal from one block to another without actually connecting them.
To associate a Goto block with a From block, enter the Goto block’s
tag in the Goto Tag parameter.

A From block can receive its signal from only one Goto block, although a
Goto block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent
to connecting the blocks to which those blocks are connected. In the
model at the left, Blockl passes a signal to Block2. That model is
equivalent to the model at the right, which connects Block1 to the Goto
block, passes that signal to the From block, then on to Block2.

—b(A A
Tota

From Block?

k.

Blaock 1 Block? Blackl

The visibility of a Goto block tag determines the From blocks that
can receive its signal. For more information, see Goto and Goto Tag
Visibility. The block indicates the visibility of the Goto block tag:

® A local tag name is enclosed in brackets ([]).

® A scoped tag name is enclosed in braces ({}).

¢ A global tag name appears without additional characters.

The From block outputs real or complex signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

From

Parameters
and

Dialog

Box

5] source Block Parameters: From x|

—From

Feceive zignalzs from the Goto block with the specified tag. [f the tag is defined as
‘zooped’ in the Gaoto block, then a Gota T ag Visibility Block must be uzed o define
the wizibility of the tag. After 'Update Diagram', the block icon dizplays the zelected
tag name [local tags are enclosed in brackets, [], and zocoped tag names are
enclozed in braces, {1].

—Parameterz

[Hoto Tag:lﬁ ;I |Ipdate Tags |

Goto Source: moms
lcon Displa_l,l:l Tag LI

] Cancel | Help |

Goto Tag
The tag of the Goto block that forwards its signal to this From
block. To change the tag, select a new tag from this control’s
drop-down list. The drop-down list displays the Goto tags that the
From block can currently see. An item labeled <More Tags...>
appears at the end of the list the first time you display the list in
a Simulink session. Selecting this item causes the block to update
the tags list to include the tags of Goto blocks residing in library
subsystems referenced by the model containing this From block.
Simulink software displays a progress bar while building the list of
library tags. Simulink software saves the updated tags list for the
duration of the Simulink session or until the next time you select
the adjacent Update Tags button. You need to update the tags
list again in the current session only if the libraries referenced by
the model have changed since the last time you updated the list.

2-303

From

Update Tags
Updates the list of tags visible to this From block, including tags
residing in libraries referenced by the model containing this From

block.

Goto Source
Path of the Goto block connected to this From block. Clicking the

path displays and highlights the Goto block.

Icon Display
Specifies the text to display on the From block’s icon. The
options are the block’s tag, the name of the signal that the block
represents, or both the tag and the signal name.

Characteristics Sample Time Inherited from block driving the Goto
block
Dimensionalized Yes
Multidimensionalized Yes

2-304

From File

Purpose
Library

Description

untitled.mat

Read data from MAT-file
Sources

The From File block outputs scalar or vector data of type double read
from a MAT-file. The block’s icon shows the pathname of the file
supplying the data. Simulink® software reads the MAT-file into memory
at the start of the simulation, automatically uncompressing it if it had
previously been saved and automatically compressed by MATLAB®.
Therefore:

* Enough memory must be available at the start of simulation to
contain the complete uncompressed MAT-file.

® A From File block cannot read data from a MAT-file written by a To
File block during the current simulation.

The MAT-file contains the stored data as a matrix of two or more rows.
The first element of each column contains a simulation time. The
remainder of each column contains scalar or vector data for the time
shown at the top of the column, one element for each data point in the
input. The time values in the first row must increase monotonically.
The matrix in the file has this form:

£y o ..ffinal
:511 :;12 "'”11":'::5!

I!EHI HHE "'””ﬁ'na!

The width of the output depends on the number of rows in the MAT-file.
The block uses the time data at the top of each column to determine
when to output the data values in the column, but does not output the
time value itself. This means that given a MAT-file containing m rows,
the block outputs a vector of length m-1, consisting of data from all
but the first row of each column.

2-305

From File

See “Importing Data from a Workspace” for guidelines on choosing time
vectors for discrete systems.

Missing and Duplicate Time Stamps

If an output value is needed at a time that falls between two values in
the MAT-file, the value is linearly interpolated between the appropriate
values. If the required time is less than the first time value or greater
than the last time value in the MAT-file, Simulink software extrapolates,
using the first two or last two data points to compute a value.

If the matrix includes two or more columns at the same time value, the
output is the data point for the first such column encountered. For
example, for a matrix that has this data:

time values: 0122
data points: 2345
At time 2, the output is 4, the data point for the first column
encountered at that time value.

Using Data Saved by a To File Block

The From File block can read data written by a To File block without
any modifications to the data or other special provisions.

Using Data Saved by a To Workspace Block

The From File block can read data written by a To Workspace block
subject to the following requirements:

¢ The data must include the simulation times. The easiest way to
include time data in the simulation output is to specify a variable
for time on the Data Import/Export pane of the Configuration
Parameters dialog box. See “Data Import/Export Pane” for more
information.

¢ The data must be the transposition of the data saved to the workspace
by the To Workspace block. Before saving the data to a MAT-file,
transpose it to the form expected by the From File block.

¢ The data in the file must be scalar or vector data of type double.

2-306

From File

Data Type
Support

Parameters
and

Dialog

Box

The From File block can read data only in MAT-file format. The block
can output only vector and scalar data of type double. The block cannot
output matrix signals or complex data.

=1 source Block Parameters: From File x|

— Frarn File

Read time and output walues from the first matrix in the specified
MAT file. The matrix rust contain time walues in row one.
Additional rows corespond bo output elements. Interpolates
between columrs.

— Parameter

File name:

Iuntitled.mat

S ample time:

|0

k. Cancel Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” for details.

File name
The fully qualified pathname or file name of the MAT-file
that contains the data used as input. On UNIX® systems, the
pathname can start with a tilde (~) character signifying your
home directory. The default file name is untitled.mat. If you
specify an unqualified file name, Simulink software assumes
that the MAT-file resides in the MATLAB working directory.
(To determine the working directory, enter pwd at the MATLAB
command line.) If Simulink software cannot find the specified file
name in the working directory, it displays an error message.

2-307

From File

Sample time

The sample period and offset of the data read from the file. The
default is 0, which specifies continuous sample time: the MAT-file
is read at the base (fastest) rate of the model. See “Specifying
Sample Time” for more information.

If the specified Sample time requires data at a time for which
the MAT-file contains no matching time stamp, Simulink
software extrapolates or interpolates to obtain the needed data,
as described in “Missing and Duplicate Time Stamps” on page
2-306. If the MAT-file contains columns with time stamps that the
specified Sample time never requires, the data points in columns
with those time stamps are ignored.

Characteristics sample Time

See Also

2-308

Specified in the Sample time
parameter

Scalar Expansion No
Dimensionalized 1-D array only
Zero Crossing No

From Workspace, To File, To Workspace

From Workspace

Purpose

Library

Description
simin

Read data from workspace
Sources

The From Workspace block reads data from a workspace. The block’s
Data parameter specifies the workspace data using a MATLAB®
expression that evaluates to a matrix (2-D array), a structure containing
an array of signal values and time steps, or a time series object (see
Simulink.Timeseries). The From Workspace icon displays the
expression specified in the Data parameter. The Simulink® software
evaluates this expression as described in “Resolving Symbols”.

The format of the matrix or structure is the same as that used to load
root-level input port data from the workspace. See “Importing Data
from a Workspace” for more information. See the documentation of
the sim command for some data import capabilities that are available
only for programmatic simulation.

Note You must use the structure-with-time format or a time series
object to load matrix (2-D) data from the workspace.

The From Workspace block’s Interpolate data parameter determines
the block’s output in the time interval for which workspace data is
supplied. If you select the Interpolate data option, the block uses
linear Lagrangian interpolation to compute data values for time steps
that occur between time steps for which the workspace supplies data.
In particular, the block linearly interpolates a missing data point from
the two known data points between which it falls. For example, suppose
the block reads the following time series from the workspace.

time: 1 2 3 4
signal: 253 254 ? 256

In this case, the block would output:

2-309

From Workspace

2-310

time: 1

3 4

signal: 253 254 255 256

If you do not select the Interpolate data option, the block uses the
most recent data value supplied from the workspace.

Note The data type of the workspace data can affect interpolated
values. See “How Data Types Affect Interpolation” on page 2-313 for

more information.

The block’s Form output after final data value by parameter
determines the block’s output after the last time step for which data
is available from the workspace. The following table summarizes the
output block based on the options that the parameter provides.

Form Output Interpolate | Block Output After Final

Option Option Data

Extrapolate On Extrapolated from final data
value

Extrapolate Off Error

SettingToZero On Zero

SettingToZero Off Zero

HoldingFinalValue On Final value from workspace

HoldingFinalValue Off Final value from workspace

CyclicRepetition On Error

CyclicRepetition Off Repeated from workspace.

This option is valid only
for workspace data in
structure-without-time format.

From Workspace

If the input array contains more than one entry for the same time
step, Simulink software detects a zero crossing at this time step. For
example, suppose the input array has this data:

time: 012283
signal: 23456
At time 2, there is a zero crossing from input signal discontinuity.

If the interpolation option is on, the block uses the last two known data
points to extrapolates data points that occur after the last known point.
Consider the following example.

o =] .3
Y Plat
1 .
0.5
-
3 0
rlr. ?_
7 -0.5
rjt-::ﬂ | AV
et] 5 10 15 20
{:}____. - K Az

Chack Sine Wawe

L ErT — i
Fiom Workepge 1
Wirkpace %
05
o
£ 0
.
{5
A . . ,
Y 0 5 10 15 0
: ¥ Asas

2-311

From Workspace

Data Type
Support

2-312

In this example, the From Workspace block reads data from the
workspace consisting of the output of the Simulink Sine block sampled
at one-second intervals. The workspace contains the first 16 samples of
the output. The top and bottom X-Y plots display the output of the Sine
Wave and From Workspace blocks, respectively, from 0 to 20 seconds.
The straight line in the output of the From Workspace block reflects
the block’s linear extrapolation of missing data points at the end of
the simulation.

Note A From Workspace block can directly read the output

of a To Workspace block (see To Workspace) if the output is in
structure-with-time format (see “Importing Data from a Workspace”
for a description of these formats).

See Importing Data from the MATLAB Workspace for guidelines on
choosing time vectors for discrete systems.

Using Data Saved by a To File Block

The From Workspace block requires data that is the transposition of the
data written by the To File block. To provide the required format, use
MATLAB commands to open, transpose, and resave the MAT-file. You
will then be able to use a From Workspace block to access the data after
loading the file to the workspace.

Using Data Saved by a To Workspace Block

In a To Workspace block, use the Structure with Time format to save
sample-based data if you intend to use a From Workspace block to play
back the data in another simulation.

The From Workspace block accepts from the workspace and outputs
real or complex signals of any type supported by Simulink software,
including fixed-point data types. Real signals of type double can be in
either structure or matrix format. Complex signals and real signals of
any type other than double must be in structure format.

From Workspace

How Data Types Affect Interpolation

The data type of the data supplied by the workspace can affect
interpolation and extrapolation of missing values in the following cases.

Integer data

If the input data type is an integer type and an interpolated data point
exceeds the data type’s range, the block sets the missing data point to
be the maximum value that the data type can represent. Similarly, if
the interpolated or extrapolated value is less than the minimum value
that the data type can represent, the block sets the missing data point
to the minimum value that the data type can represent. For example,
suppose that the data type is uint8 and the value interpolated for a
missing data point is 256.

time: 1 2 3 4
signal: 253 254 255 ?

In this case, the block sets the value of the missing point to 255, the
largest value that can be represented by the uint8 data type:

time: 1 2 3 4
signal: 253 254 255 255

Boolean data

If the input data is boolean, the block uses the value of the nearest
workspace data point as the value of missing data point when
determining missing data points that fall between the first and last
known points. For example, suppose the workspace supplies values at
time steps 1 and 4 but not at 2 and 3:

time:

1234
signal: 1?27?20
In this case, the block would use the value of data point 1 as the value
of data point 2 and the value of data point 4 as the value of data point 3:

2-313

From Workspace

time:

3 4
signal: 0o0

The block uses the value of the last known data point as the value of
time steps that occur after the last known data point.

Parameters E! Source Block Parameters: From Workspace x|

and
Dia Iog — From ‘workzpace
Box Fead data walues specified in array or structure format from MATLAB's workspace.
Auray [or matrix] format;
1-0 zignal;

war=[Time alues Datalfaluesz]

Far 2-0 zighal uze structure format
Structure format;

var time=[Time\ alues]

war.zignalz. valuez=[D atal/ alues]

war. zighalz. dimenzionz=[Dim* aluesz]
Select interpolation to interpolate ar extrapolate at time zteps for which data does not
enxizt,

— Parameter

Drata:
Isimin

S ample tirme;
|0
¥ Interpolate data

[+ Enable zero crossing detection

Faorm output after final data value by: IE:-:trapu:uIatiu:un ;I

] Cancel Help

2-314

From Workspace

Data

An expression that evaluates to an array or a structure containing
an array of simulation times and corresponding signal values. For
example, suppose that the workspace contains a column vector of
times named T and a vector of corresponding signal values named
U. Entering the expression [T,U] for this parameter yields the
required input array. If the required signal-versus-time array or
structure already exists in the workspace, enter the name of the
structure or matrix in this field.

Sample time

Sample rate of data from the workspace. See “Specifying Sample
Time” in the online documentation for more information.

Interpolate data

This option causes the block to linearly interpolate at time steps
for which no corresponding workspace data exists. Otherwise,
the current output equals the output at the most recent time for

which data exists.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Form output after final data value by
Select method for generating output after the last time point for
which data is available from the workspace.

Characteristics sample Time

Specified in the Sample time

parameter
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing Yes

2-315

From Workspace

See Also From File, To File, To Workspace

2-316

Function-Call Generator

Purpose

Library

Description

i)

[

Data Type
Support

Execute function-call subsystem specified number of times at specified
rate

Ports & Subsystems

The Function-Call Generator block executes a function-call subsystem
(for example, a Stateflow® state chart configured as a function-call
system) at the rate specified by the block’s Sample time parameter.
To execute multiple function-call subsystems in a prescribed order,
first connect a Function-Call Generator block to a Demux block that
has as many output ports as there are function-call subsystems to be
controlled. Then connect the output ports of the Demux block to the
systems to be controlled. The system connected to the first demux port
executes first, the system connected to the second demux port executes
second, and so on.

The Function-Call Generator block outputs a signal of type fcn_call.

2-317

Function-Call Generator

Parameters
and

Dialog

Box

2-318

E! Source Block Parameters: Function-Call Generake x|

— Function-Call Generatar [mazk] [link]

Thiz block implementz an iterator operation. On each time-step az defined by the
zample time field, this block will execute the function-call subsystem(z] that it dhives
for the specified number of terations.

Dernux the block's autput to execute multiple function-call subsystemns in a prescribed
arder. The spztemn connected ta firzt demus port iz executed first, the system
connected bo second demus port is executed second, and so on.

— Parameter

Sample time:
[1
Fumber of iterationz:

[1

] Cancel Help

Sample time

The time interval between samples. See “Specifying Sample
Time”in the online documentation for more information.

Number of iterations

Number of times to execute the block per time step. The value of
this parameter may be a vector where each element of the vector
specifies a number of times to execute a function-call subsystem.
The total number of times that a function-call subsystem executes
per time step equals the sum of the values of the elements of the
generator signal entering its control port. For example, suppose
you specify the number of iterations to be [2 2] and connect

the output of this block to the control port of a function-call
subsystem. In this case, the function-call subsystem executes four
times at each time step.

Function-Call Generator

Characteristics pirect Feedthrough No
Sample Time Specified in the Sample time
parameter
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No

2-319

Function-Call Subsystem

Purpose

Library

Description

Inl

famctionl)

LG

2-320

Represent subsystem that can be invoked as function by another block
Ports & Subsystems

The Function-Call Subsystem block is a Subsystem block that is
preconfigured to serve as a starting point for creating a function-call
subsystem. For more information, see “Function-Call Subsystems” in
the “Creating a Model” chapter of the Simulink® documentation.

Gain

Purpose
Library

Description

Data Type
Support

Multiply input by constant
Math Operations

The Gain block multiplies the input by a constant value (gain). The
input and the gain can each be a scalar, vector, or matrix.

You specify the value of the gain in the Gain parameter. The
Multiplication parameter lets you specify element-wise or matrix
multiplication. For matrix multiplication, this parameter also lets you
indicate the order of the multiplicands.

The gain is converted from doubles to the data specified in the block
mask offline using round-to-nearest and saturation. The input and gain
are then multiplied, and the result is converted to the output data type
using the specified rounding and overflow modes.

The Gain block accepts a real or complex scalar, vector, or matrix of any
data type supported by Simulink® software. The Gain block supports
fixed-point data types. If the input of the Gain block is real and the gain
is complex, the output is complex.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-321

Gain

Parameters The Main pane of the Gain block dialog appears as follows:

and
Dialog 1 Function Block Parameters: Gain x|
Box

Gain
’V Element-wize gain [y = K. *u] or matrix gain [y = K50 or y = u#k).

M ain | Signal Attributes I F'arameter.-’-‘-.ttril:uutesl

[3 air:
[1

kultiplication: IE lement-wizelf.#u) LI

Sample time [-1 for inkernted]:
-1

(] 4 Cancel Help Apply

Gain
Specify the value by which to multiply the input. The gain may be
a scalar, vector, or matrix. The gain may not be Boolean.
Multiplication

Specify the multiplication mode:

® Element-wise (K.*u) — Each element of the input is multiplied
by each element of the gain. The block performs expansions, if
necessary, so that the input and gain have the same dimensions.

® Matrix(K*u) — The input and gain are matrix multiplied with
the input as the second operand.

® Matrix(u*K) — The input and gain are matrix multiplied with
the input as the first operand.

2-322

Gain

® Matrix(K*u) (u vector) — The input and gain are matrix
multiplied with the input as the second operand. The input
and the output are required to be vectors and their lengths are

determined by the dimensions of the gain.

Sample time (-1 for inherited):

Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in

the online documentation for more information.

The Signal Attributes pane of the Gain block dialog appears as follows:

=1 Function Block Parameters: Gain

X

[3ain
’7 Element-wize gain [y = K. *u] or matrix gain [= E*uor y = u*k].

bain Signal Attributes I Parameterﬁ.ttributesl

Output minimLn:; Cutput masimm;

i i

Output data bppe: | Inhert: [nherit via internal nile

Found integer calculations toward: IFI::u:ur

[™ Saturate on integer overflow

k. Cancel

| Apply

Output minimum

Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses

this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

2-323

Gain

2-324

® Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

¢ Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to

display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

If you select Inherit: Inherit via internal rule for this
parameter, Simulink software chooses a combination of output
scaling and data type that requires the smallest amount of
memory consistent with accommodating the output range and
maintaining the output precision of the block and with the
word size of the targeted hardware implementation specified for
the model. If the Device type parameter on the Hardware
Implementation configuration parameters pane is set to

Gain

ASIC/FPGA, Simulink software chooses the output data type
without regard to hardware constraints. Otherwise, Simulink
software chooses the smallest available hardware data type
capable of meeting the range and precision constraints. For
example, if the block multiplies an input of type int8 by a gain
of int16 and ASIC/FPGA is specified as the targeted hardware
type, the output data type is sfix24. If Unspecified (assume
32-bit Generic),i.e., a generic 32-bit microprocessor, is specified
as the target hardware, the output data type is int32. If none
of the word lengths provided by the target microprocessor can
accommodate the output range, Simulink software displays an
error message in the Simulation Diagnostics Viewer.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

The Parameter Attributes pane of the Gain block dialog appears
as follows:

2-325

Gain

=] Function Block Parameters: Gain X|

[Gain
’V Element-wize gain [v = E.*u] or matris gain [= E*uor y = u*k].

S ET | Signal Attributes Parameter Attributes I

Parameter minirmm: Parameter mamimum;

i i
Parameter data tupe: | [nherit: Inherit via internal role ;I *r |

] 4 Cancel Help Apply

Parameter minimum
Specify the minimum value of the gain. The default value, [], is
equivalent to - Inf. Simulink software uses this value to perform:
e Parameter range checking (see “Checking Parameter Values”)
¢ Automatic scaling of fixed-point data types
Parameter maximum
Specify the maximum value of the gain. The default value, [], is
equivalent to Inf. Simulink software uses this value to perform:
¢ Parameter range checking (see “Checking Parameter Values”)
¢ Automatic scaling of fixed-point data types
Parameter data type
Specify the data type of the Gain parameter. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:

Same
as input

2-326

Gain

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Parameter data type parameter. (See “Using the Data Type
Assistant” in Using Simulink.)

Characteristics pjrect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes, of input and Gain parameter for
Element-wise (K. *u) multiplication
Dimensionalized Yes
Multidimensionalized Yes, only if the Multiplication

parameter specifies
Element-wise (K. *u)

Zero Crossing No

2-327

Goto

Purpose
Library

Description

2]

2-328

Pass block input to From blocks
Signal Routing

The Goto block passes its input to its corresponding From blocks. The
input can be a real- or complex-valued signal or vector of any data
type. From and Goto blocks allow you to pass a signal from one block
to another without actually connecting them.

A Goto block can pass its input signal to more than one From block,

although a From block can receive a signal from only one Goto block.
The input to that Goto block is passed to the From blocks associated
with it as though the blocks were physically connected. Goto blocks and
From blocks are matched by the use of Goto tags, defined in the Tag
parameter.

The Tag Visibility parameter determines whether the location of From
blocks that access the signal is limited:

® local, the default, means that From and Goto blocks using the same
tag must be in the same subsystem. A local tag name is enclosed
in brackets ([]).

® scoped means that From and Goto blocks using the same tag must be
in the same subsystem or at any level in the model hierarchy below
the Goto Tag Visibility block that does not entail crossing a nonvirtual
subsystem boundary, i.e., the boundary of an atomic, conditionally
executed, or function-call subsystem or a model reference. A scoped
tag name is enclosed in braces ({}).

® global means that From and Goto blocks using the same tag can
be anywhere in the model except in locations that span nonvirtual
subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual
subsystem boundaries has the following exception. A Goto block

connected to a state port in one conditionally executed subsystem is
visible to a From block inside another conditionally executed subsystem.
For more information about conditionally executed subsystems, see

Goto

“Creating Conditional Subsystems” in the “Creating a Model” chapter
of the Simulink® documentation.

Note A scoped Goto block in a masked system is visible only in that
subsystem and in the nonvirtual subsystems it contains. Simulink
software generates an error if you run or update a diagram that has a
Goto Tag Visibility block at a higher level in the block diagram than the
corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name
reside in the same subsystem. You must use global or scoped tags when
the Goto and From blocks using the same tag name reside in different
subsystems. When you define a tag as global, all uses of that tag access
the same signal. A tag defined as scoped can be used in more than one
place in the model. This example shows a model that uses two scoped
tags with the same name (A).

2-329

Goto

Subsysteml =13 Subzystem3 =13
File Edit Simulation Format File Edit Simulation Format
1 A
Goto Tag G':.'t::' .T.ag
Visibility Wisibility
=4 o o =4
Subsystemz Fram Out From Out Subsyste md
Subsystem?2 =] 3 Subsystemd - |O] =]
File Edit Simulation Faormat File Edit Simulation Format
))
H A
W W
Sine Wawve Zaoto Sine Wave Goto
Data Type The Goto block accepts real or complex signals of any data type
Supporf supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-330

Goto

Parameters
and

Dialog

Box

[1sink Block Parameters: Goto

X

— [oto

Send zignals to From blocks that have the zpecified tag. |f tag vizibility iz 'scoped',
then a Goto T ag Yizibility block must be used to define the wvizibility of the tag. The
black ican dizplays the zelected tag name [lozal tags are enclosed in brackets, [].
and zcoped bag names are enclozed in braces, 1),

— Parameter

oo Tag: |4

Tag Yisibility: {local

il

Cormrezponding From blocks:

refreszh

|zan Dizplay: ITag

]9

Cancel

Help

Apply

Tag

The Goto block identifier. This parameter identifies the Goto
block whose scope is defined in this block.

Tag Visibility

The scope of the Goto block tag: 1ocal, scoped, or global. The

default is local.

Corresponding From blocks
List of the From blocks connected to this Goto block.

Double-clicking any entry in this list displays and highlights the

corresponding From block.

2-331

Goto

Icon Display
Specifies the text to display on the block’s icon. The options are
the block’s tag, the name of the signal that the block represents,
or both the tag and the signal name.

Characteristics Sample Time Inherited from driving block
Dimensionalized Yes
Multidimensionalized Yes

2-332

Goto Tag Visibility

Purpose
Library

Description

A

Data Type
Support

Parameters
and

Dialog

Box

Define scope of Goto block tag
Signal Routing

The Goto Tag Visibility block defines the accessibility of Goto block
tags that have scoped visibility. The tag specified as the Goto tag
parameter is accessible by From blocks in the same subsystem that
contains the Goto Tag Visibility block and in subsystems below it in
the model hierarchy.

A Goto Tag Visibility block is required for Goto blocks whose Tag
Visibility parameter value is scoped. No Goto Tag Visibility block is
needed if the tag visibility is either local or global. The block shows
the tag name enclosed in braces ({}).

Not applicable.

E! Block Parameters: Goto Tag Yisibility x|

— GotaT agisibility

IJzed in conjunction with Gaoto and From blocks to define the vizsibilite of scoped
tagz. For emample, if this block resides in a subsyzstem [or roat system) called
M'S%'S, then the tag iz wizible to From block s that rezide in MYSY'S or in
subzyztemns of MYSYS.

— Parameter

[Foto tag:
B

] Cancel Help Apply

2-333

Goto Tag Visibility

Goto tag
The Goto block tag whose visibility is defined by the location of
this block.
Characteristics sample Time N/A
Dimensionalized N/A

2-334

Ground

Purpose
Library

Description

—]

Data Type
Support

Ground unconnected input port
Sources

The Ground block can be used to connect blocks whose input ports

are not connected to other blocks. If you run a simulation with blocks
having unconnected input ports, Simulink® software issues warning
messages. Using Ground blocks to ground those blocks avoids warning
messages. The Ground block outputs a signal with zero value. The data
type of the signal is the same as that of the port to which it is connected.

The Ground block outputs a signal of the same numeric type and data
type as the port to which it is connected. For example, consider the
following model.

S

G 2]

Sonstant

In this example, the output of the Constant block determines the data
type (int8) of the port to which the Ground block is connected. That port
in turn determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink
software, including fixed-point data types.

2-335

Ground

Parameters =1 source Block Parameters: Ground x|

and
. Ground
Dialog
Box IJzed to “ground” input signals. [Prevents warnings about
unconnected input portz.] Outputs Zero.

k. Cancel Help
Characteristics Sample Time Inherited from driven block
Dimensionalized Yes
Multidimensionalized Yes

2-336

Hit Crossing

Purpose
Library

Description

Data Type
Support

Detect crossing point
Discontinuities

The Hit Crossing block detects when the input reaches the Hit crossing
offset parameter value in the direction specified by the Hit crossing
direction property.

The block accepts one input of type double. If you select the Show
output port check box, the block output indicates when the crossing
occurs. If the input signal is exactly the value of the offset value after
the hit crossing is detected, the block continues to output a value of 1. If
the input signals at two adjacent points bracket the offset value (but
neither value is exactly equal to the offset), the block outputs a value
of 1 at the second time step. If the Show output port check box is
not selected, the block ensures that the simulation finds the crossing
point but does not generate output. If the input signal is constant and
equal to the offset value, the block outputs 1 only if the Hit crossing
direction property is set to either.

When the block’s Hit crossing direction property is set to either,
the block serves as an "Almost Equal" block, useful in working around
limitations in finite mathematics and computer precision. Used for
these reasons, this block might be more convenient than adding logic to
your model to detect this condition.

The hardstop and sldemo_clutch demos illustrate the use of the
Hit Crossing block. In the hardstop demo, the Hit Crossing block
is in the Friction Model subsystem. In the sldemo_clutch demo, the
Hit Crossing block is in the Friction Mode Logic/Lockup Detection
subsystem.

The Hit Crossing block outputs a signal of type Boolean if Boolean logic
signals are enabled (see “Implement logic signals as boolean data (vs.
double)”). Otherwise, the block outputs a signal of type double.

2-337

Hit Crossing

Parameters
and

Dialog

Box

2-338

=1 Function Block Parameters: Hit Crossing x|

— Hit Crogzing

Detects when the input gignal reaches the Hit crozzing offset parameter value in the
direction zpecified by the Hit crossing direction parameter. If the input signal crozses
the affzet value in the specified direchian, the block outputs 1 at the crazsing bme. [f
the input zignal reaches the offzet value in the specified direction and then remainz
at the offzet value, the block outputs 1 from the kit time Gll the time when zignal
leaves the offzet value. IF the input signal iz constant and equal to the offzet value,
the block outputs 1 anlw if the direction iz either. Far variable-step zolverz, Simulink,
takes a time step before and after the hit crozzing time.

— Parameter

Hit croszing affset:
|0

Hit croszing direction: |either j
¥ Show output port

¥ Enable zero croszing detection

Sample time [-1 For inkerited];

[

k. Cancel Help Amply

Hit crossing offset

The value whose crossing is to be detected.

Hit crossing direction

The direction from which the input signal approaches the hit
crossing offset for a crossing to be detected.

Show output port

If selected, draw an output port.

Hit Crossing
|

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink® documentation.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing Yes, if enabled.

2-339

IC

Purpose

Library

Description

[1]

>

Data Type
Support

2-340

Set initial value of signal
Signal Attributes

The IC block sets the initial condition of the signal at its input port,
e.g., the value of the signal at the simulation start time (t,,,.,). The
block does this by outputting the specified initial condition when you
start the simulation, regardless of the actual value of the input signal.
Thereafter, the block outputs the actual value of the input signal.

Note If an IC block inherits or specifies a nonzero sample time offset
(t), the IC block outputs its initial value at time t,

offset

t=n*t + t

period offset

where n is the smallest integer such that t = t_,, .

That is, the IC block outputs its initial value the first time blocks with

sample time [t t,¢ret] €Xecute, which can be after t

period’ start’

The IC block is useful for providing an initial guess for the algebraic
state variables in a loop. For more information, see “Algebraic Loops” in
the “How Simulink Works” chapter of Using Simulink®.

The IC block accepts and outputs signals of any Simulink built-in and
fixed-point data type. The Initial value parameter accepts any built-in
data type supported by Simulink software.

IC

Parameters
and

Dialog

Box

Examples

1 Function Block Parameters: IC x|

— Iritial Condition

Imitial condition for zignal.

— Parameter

[ritial walue:

[1

Sample tirme [-1 far inkherited]:

|-

] Cancel Help Apply

Initial value

Specify the initial value for the input signal.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The following diagram illustrates how the IC block initializes a signal
labeled “test signal.”

[E]]

[5] >

Canstant

IC

test signal >®

Out

At t = 0, the signal value is 3. Afterward, the signal value is 6.

2-341

IC

Characteristics pirect Feedthrough

2-342

Yes

Sample Time

Specified in the Sample time
parameter

Scalar Expansion

Yes, of parameter only

Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

If

Purpose
Library

Description

iflul > 0) |
ul

dze b

Model if-else control flow
Ports & Subsystems

The If block, along with If Action subsystems containing Action Port
blocks, implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

Achian signals

e

if(ut = o ¢

lsaifiuz =)

E ; “ it}

sze EE—
body_1

EECEN

body_2

biody_3
Action subsystems with
Action Fortblocks inside

In this example, the inputs to the If block determine the values of
conditions represented as output ports. Each output port is attached to
an If Action subsystem. The conditions are evaluated top down starting
with the if condition. If a condition is true, its If Action subsystem is
executed and the If block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by
the following pseudocode.

if (u1t > 0) {
body_1;
}

2-343

If

2-344

else if (u2 > 0){

body 2;

else {

body_3;

You construct a Simulink® if-else control flow statement like the
preceding example as follows:

1 Place an If block in the current system.

2 Open the Block Parameters dialog of the If block and enter as
follows:

* Enter the Number of inputs field with the required number of

inputs necessary to define conditions for the if-else control flow
statement.

Elements of vector inputs can be accessed for conditions using (row,
column) arguments. For example, you can specify the fifth element
of the vector u2 in the condition u2(5) > 0 in an If expression or
Elseif expressions field.

Enter the expression for the if condition of the if-else control
flow statement in the If expression field.

This creates an if output port for the If block with a label of the
form if (condition). This is the only required If Action signal
output for an If block.

Enter expressions for any elseif conditions of the if-else control
flow statement in the Elseif expressions field.

Use a comma to separate one condition from another. Entering
these conditions creates an output port for the If block for each
condition, with a label of the form elseif (condition). elseif ports
are optional and not required for operation of the If block.

If

® Check the Show else condition check box to create an else
output port.

The else port is optional and not required for the operation of the
If block.

Create If Action subsystems to connect to each of the if, else, and
elseif ports.

These consist of a subsystem with an Action Port block. When you
place an Action Port block inside each subsystem, an input port
named Action is added to the subsystem.

Connect each if, else, and elseif port of the If block to the Action port
of an If Action subsystem.

When you make the connection, the icon for the If Action block is
renamed to the type of the condition that it attaches to.

Note During simulation of an if-else control flow statement, the
Action signal lines from the If block to the If Action subsystems turn
from solid to dashed.

In each If Action subsystem, enter the Simulink blocks appropriate
to the body to be executed for the condition it handles.

Note All blocks in an If Action Subsystem must run at the same
rate as the driving If block. You can achieve this by setting each
block’s sample time parameter to be either inherited (-1) or the same
value as the If block’s sample time.

In the preceding example, the If Action subsystems are named
body 1, body 2, and body_3.

2-345

If

Data Type
Support

2-346

Inputs u1,u2,...,un can be scalar or vector of any built-in Simulink
data type and must be all of the same data type. For a discussion on the
data types supported by Simulink software, see “Data Types Supported
by Simulink” in the Simulink documentation.

Outputs from the if, else, and elseif ports are Action signals to If Action
subsystems that are created with Action Port blocks and subsystems.
See Action Port.

If

Parameters
and

Dialog

Box

1 Function Block Parameters: If

—If Block

IF expression

Fiun the &ction Subspstem connected to st output port
ELSEIF expreszion

Fun the Actioh Subspstem connected to 2nd output pork
ELSE

Furn the Action Subzpztem connected to last output port
EMD

The number of Elzeif output ports in the block iz equal to the

The If and Elzeif expreszions can uze these MATLAB operators:
< 4= ==, 7= e b | 7L)L unan-minus
an the input part signals named wl, w2, u3, efc.

number of comma-zeparated Elzeif expreszions entered in the dialog.

—Parameters

MHumber of inpuks:

E

If expreszzion [e.g. ul ~=0]:

[l > 0] [u2 > 0.5)

Elzeif exprezsions [comma-zeparated list, 2.9, u2 ~= 0, u3[2] < u2]:

v Show elze condition
[¥ Enable zero crossing detection

Sample time [-1 far inkerited]:

[

ak. Cancel Help

Apply

2-347

If

2-348

Number of inputs

The number of inputs to the If block. These appear as data
input ports labeled with a 'u' character followed by a number,
1,2,...,n, where n equals the number of inputs that you specify.

If expression

The condition for the if output port. This condition appears on
the If block adjacent to the if output port. The if expression can
use any of the following operators: <. <=, ==, ~=, > >=,

&, |, ~, (), unary-minus. The If Action subsystem attached
to the if port executes if its condition is true. The expression
must not contain data type expressions, e.g., int8(6), and must
not reference workspace variables whose data type is other than
double or single.

Note You cannot tune the If expression during accelerated-mode
simulation (see “Accelerating Models”), in referenced models
executing in Accelerator mode, or in code generated from the
model. The If block also does not support custom storage classes.

Elseif expressions

A string list of elseif conditions delimited by commas. These
conditions appear below the if port and above the else port if you
select the Show else condition check box. elseif expressions
can use any of the following operators: <, <=, ==, ~=, >/ >=,
&, |, ~, (), unary-minus. The If Action subsystem attached to
an elseif port executes if its condition is true and all of the if and
elseif conditions are false. The expression must not contain data
type expressions, e.g., int8(6), and must not reference workspace
variables whose data type is other than double or single.

If

Examples

Note You cannot tune the Elseif expression during
accelerated-mode simulation (see “Accelerating Models”), in
referenced models executing in Accelerator mode, or in code
generated from the model. The If block also does not support
custom storage classes.

Show else condition
If you select this check box, an else port is created. The If Action
subsystem attached to the else port executes if the if port and
all the elseif ports are false.

Enable zero crossing detection
Select to enable zero crossing detection. For more information, see
“Zero-Crossing Detection” in the “How Simulink Works” chapter
of the Simulink documentation.

Sample time
Specify the sample time of the input signal. See “Specifying
Sample Time” in the online documentation for more information.

The If block does not directly support fixed-point data types. However,
you can use the Compare To Constant block to work around this
limitation.

For example, consider the following floating-point model.

2-349

If

2-350

| ¥
' it{}
4 double —» Ini ot double
| double] - action = °netantt | If Action
Pl Wy === m e Subsystemnd
action
Repaating — Uz glge — - — - — - — - = — - — - —
Sequence If +
Stair elze {}
4 double plini ot double
double
Constant I¥ Action
Repeating Subsystem
Sequence
Stair

double

herge

vey
[

I
=ras Scope

In this model, the If Action subsystems use their default configurations.
The block and simulation parameters for the model are set to their
default values except as follows:

Block or Dialog Parameter Setting
Configuration Start time 0.0
Parameters Dialog
— Solver pane
Stop time 1.0
Type Fixed-step
Solver discrete (no

continuous states)

Fixed-step size

.1

Repeating Sequence
Stair

Vector of output
values

[-2 -1 1 2]."

Repeating Sequence
Stairl

Vector of output
values

[00OO0OO0 111
1]."

If

Number of inputs

2

If

Block or Dialog Parameter Setting

If expression (ut > 0) | (u2 >
0.5)

Show else selected
condition

Constant Constant value -4

Constantl Constant value 4

Scope Number of axes 3

Time range

1

For this model, if input u1 is greater than 0 or input u2 is greater than
0.5, the output is 4. Otherwise, the output is -4. The Scope block shows
the output, u1, and u2 as depicted here:

2-351

If

o x|

) Scope

&8 LLL ABE O AT -

oLtput

Titme: offset: 0O

2-352

If

The same model can be implemented using fixed-point data types:

Stairt

. it LT
|}|£ =fimg_End | » g [Boclean g [outle il dug | ouble
Ll [
Constantt i
" . | It Action >
2:?;‘:;2 TE"C’::;:M Lfut it luz) i“f-“'“— ------- Subsystem Merge [22ubl i J
Stair — -z T »
It * Merge Scope
ufixd_End Bl 05 boalean P
L 4 double o Dt double
Repeating Compare
Sequence Ta Constantd Constant If Action
Subsystem

The Repeating Sequence stair blocks are now outputting fixed-point
data types.

The Compare To Constant blocks implement two parts of the If
expression that is used in the If block in the floating-point version
of the model, (u1 > 0) and (u2 > 0.5). The OR operation, (ul]|u2),
can still be implemented inside the If block. For a fixed-point model,
the expression must be partially implemented outside of the If block
as it is here.

The block and simulation parameters for the fixed-point model are
the same as for the floating-point model with the following exceptions
and additions:

Block Parameter Setting
Compare To Operator >
Constant
Constant value 0
Output data type Boolean
mode

2-353

If

Block Parameter Setting
Enable zero crossing | unselected
detection

Compare To Operator >

Constantl
Constant value 0.5
Output data type Boolean
mode
Enable zero crossing | unselected
detection

If Number of inputs 2
If expression utju2

Characteristics Direct Feedthrough Yes

Sample Time Inherited from driving block

Scalar Expansion No

Dimensionalized Yes

Zero Crossing Yes, if enabled

2-354

If Action Subsystem

Purpose

Library

Description

Inl

Actiom

Chtl

Represent subsystem whose execution is triggered by If block
Ports & Subsystems
The If Action Subsystem block is a Subsystem block that is

preconfigured to serve as a starting point for creating a subsystem
whose execution is triggered by an If block.

Note All blocks in an If Action Subsystem must run at the same rate
as the driving If block. You can achieve this by setting each block’s
sample time parameter to be either inherited (- 1) or the same value as
the If block’s sample time.

For more information, see the If block and Modeling with Control
Flow Blocks in the “Creating a Model” chapter of the Simulink®
documentation.

2-355

Increment Real World

Purpose Increase real world value of signal by one

Librclry Additional Math & Discrete / Additional Math: Increment - Decrement

Description The Increment Real World block increases the real world value of the
signal by one. Overflows always wrap.

Data Type The Increment Real World block accepts signals of any data type

Support supported by Simulink® software, including fixed-point data types.

Pu;ameters E! Function Block Parameters: Increment Real W x|

GI.’I Real world Value | ncrement [mazk] [link)

Dialog

Box |ncrease the Beal YWorld W alue of Signal by 1.0
Overflows will always wrap.

] Cancel Help Apply
Characteristics pirect Feedthrough Yes
Scalar Expansion No
See Also Decrement Real World, Increment Stored Integer

2-356

Increment Stored Integer

Purpose Increase stored integer value of signal by one
Libra ry Additional Math & Discrete / Additional Math: Increment - Decrement
Description The Increment Stored Integer block increases the stored integer value

of a signal by one.

Floating-point signals are also increased by one, and overflows always

Q++ p

wrap.
Data Type The Increment Stored Integer block accepts signals of any data type
SUppOI“f supported by Simulink® software, including fixed-point data types.
Pa;ameters 51 Function Block Parameters: Increment Stored I x|
an

. Stored Integer alue Increment [mazk] [link]
Dialog
Box Increaze the Stored Y alue of Signal by 1
Flaating Paint signals are increaged by 1.0
Overflows will always wrap.
(] Cancel Help Apply
Characteristics pirect Feedthrough Yes
Scalar Expansion No

See Also Decrement Stored Integer, Increment Real World

2-357

Index Vector

Purpose Switch output between different inputs based on value of first input
Librury Signal Routing
Desc ription The Index Vector block is an implementation of the Multiport Switch

block. See Multiport Switch for more information.

(o
—v |

2-358

Inport

Purpose
Library

Description

Create input port for subsystem or external input
Ports & Subsystems, Sources

Inport blocks are the links from outside a system into the system.

Simulink® software assigns Inport block port numbers according to
these rules:

¢ It automatically numbers the Inport blocks within a top-level system
or subsystem sequentially, starting with 1.

® Ifyou add an Inport block, it is assigned the next available number.

® If you delete an Inport block, other port numbers are automatically
renumbered to ensure that the Inport blocks are in sequence and that
no numbers are omitted.

® If you copy an Inport block into a system, its port number is not
renumbered unless its current number conflicts with an Inport block
already in the system. If the copied Inport block port number is not
in sequence, you must renumber the block or you will get an error
message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using
the Port dimensions parameter, or let Simulink software determine it
automatically by providing a value of -1.

The Sample time parameter is the rate at which the signal is coming
into the system. A value of -1 causes the block to inherit its sample
time from the block driving it. You might need to set this parameter
for Inport blocks in a top-level system or in models where Inport
blocks are driven by blocks whose sample times cannot be determined.
See “Specifying Sample Time” in the online documentation for more
information.

Inport Blocks in a Subsystem

Inport blocks in a subsystem represent inputs to the subsystem. A
signal arriving at an input port on a Subsystem block flows out of the

2-359

Inport

2-360

associated Inport block in that subsystem. The Inport block associated
with an input port on a Subsystem block is the block whose Port
number parameter matches the relative position of the input port

on the Subsystem block. For example, the Inport block whose Port
number parameter is 1 gets its signal from the block connected to the
topmost port on the Subsystem block.

If you renumber the Port number of an Inport block, the block becomes
connected to a different input port, although the block continues to
receive its signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To
suppress display of the label, select the Inport block and choose Hide
Name from the Format menu.

Inport Blocks in a Top-Level System

Inport blocks in a top-level system have two uses:

® To supply external inputs from the workspace, use either the
Configuration Parameters dialog (see “Importing Data from a
Workspace”) or the ut argument of the sim command (see sim) to
specify the inputs.

® To provide a means for perturbation of the model by the 1inmod and
trim analysis functions, use Inport blocks to define the points where
inputs are injected into the system.

Creating Duplicate Inports

You can create any number of duplicates of an Inport block. The
duplicates are graphical representations of the original intended
to simplify block diagrams by eliminating unnecessary lines. The
duplicate has the same port number, properties, and output as the
original. Changing a duplicate’s properties changes the original’s
properties and vice versa.

To create a duplicate of an Inport block,

1 Select the block.

Inport

Data Type
Support

2 Select Copy from the Simulink Edit menu or from the block’s
context menu.

3 Position the mouse cursor in the model’s block diagram where you
want to create the duplicate.

4 Select Paste Duplicate Inport from the Simulink Edit menu or the
block diagram’s context menu.

The Inport block accepts complex or real signals of any data type
supported by Simulink software, including fixed-point data types. For
a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink”.

The numeric and data types of the block’s output are the same as those
of its input. You can specify the signal type, data type, and sampling
mode of an external input to a root-level Inport block using the Signal
type, Data type, and Sampling mode parameters.

The elements of a signal array connected to a root-level Inport block
must be of the same numeric and data types. Signal elements connected
to a subsystem input port can be of differing numeric and data types
except in the following circumstance: If the subsystem contains an
Enable or Trigger block or is an Atomic Subsystem and the input port,
or an element of the input port, is connected directly to an output port,
the input elements must be of the same type. For example, consider the
follow enabled subsystem.

2-361

Inport

Enablz

(1)

In1 Crutd
InZ I Cut?
B

In this example, the elements of a signal vector connected to In1 must
be of the same type. The elements connected to In2, however, can be of
differing types.

2-362

Inport

Parameters The Main pane of the Inport block dialog appears as follows:
and

Dialog [=1source Block Parameters: Inl x|

Box — lnpaort

Provide an input port for a subsystem or model,

For Trggered Subsystems, ‘Latch input by delaping outzide zignal' produces the
walue of the subsystem input at the previous time step.

Faor Function-call Subsyztems, ‘'Latch input by copying inzide signal’ copies the Inport
block's output to a buffer before the contents of the subszpstem are executed.

The cther parameters can be uzed o explicitly zpecify the input zignal attributes.

T | Signal.-'—‘-.ttril:uutesl

Fart number;
[

lzan dizplay: IF"n:nrt nurnber ;I

™| Latch input by delaying outside signal
[T Latch input by copying inside signal
v |rterpolate data

k. Cancel Help

2-363

Inport

Port number
Specify the port number of the Inport block.

Icon display
Specifies the information to be displayed on the icon of this input
port. The options are:

Port number Displays port number of this port.

Signal name Displays the name of the signal
connected to this port (or signals
if the input is a bus).

Port name and signal Displays both the port number
name and the names of the signals
connected to this port.

Latch input by delaying outside signal
This option applies only to triggered subsystems and is enabled
only if the Inport block resides in a triggered subsystem. If
selected, the block outputs the value of the input signal at the
previous time step. This enables Simulink software to resolve
data dependencies among triggered subsystems that are part of a
loop. Type s1_subsys_semantics at the MATLAB® prompt for
examples using latched inputs with triggered subsystems.

The Inport block indicates that this option is selected by
displaying <Lo>.

Trigger

(l<Lo>)

Tnl Outl

2-364

Inport

Latch input by copying inside signal
This option applies only to function-call subsystems and hence
is enabled only if the Inport block resides in a function-call
subsystem. Selecting this option causes Simulink software to
copy the signal output by the block into a buffer before executing
the contents of the subsystem and to use this copy as the block’s
output during execution of the subsystem. This ensures that the
subsystem’s inputs, including those generated by the subsystem’s
context, will not change during execution of the subsystem. Type
sl _subsys_semantics at the MATLAB prompt for examples
using latched inputs with function-call subsystems.

The Inport block displays to indicate that this option is
selected.

f0
Trigger

Inl

Interpolate data
Select this parameter to cause the block to interpolate or
extrapolate output at time steps for which no corresponding
workspace data exists when loading data from the workspace. See
“Importing Data from a Workspace” for more information.

The Signal Attributes pane of the Inport block dialog appears as
follows:

2-365

Inport

2-366

=] 5ource Block Parameters: Inl x|

— lnpaort

Provide an input port for & subsystem or model.

the subszpztem input at the previous time step.

For Triggered Subsystems, 'Latch input by delaping outzide zignal’ produces the value of

For Function-call Subzpzterns, ‘Latch input by copying inzide zignal' copies the [npart
block's output to a buffer before the contents of the subzpstem are executed.
The ather parameters can be uzed bo explicitly zpecity the input zignal attribukes.

ET Signal Attributes
™ Specify properties via bus object

Bus object far walidating input bus:

IEusEI bject

[T Dutput as nomvitual bus

Part dimensions [-1 for inherited]:

[-1

Sample time [-1 for inkernited]:

[

kdinirnLarm: b amirnan;

i i

[rata type: I [Hherit: auto

Signal type: Iaut-:n

Sampling mode: Iautu:-

| »3 |
=
=

]9

Cancel | Help

Inport

Specify properties via bus object

Select this option to use a bus object to define the structure of the
bus created by this block (see “Working with Data Objects” and
Simulink.Bus class to learn how to create bus objects).

Bus object for validating input bus

This option is enabled only if you select the Specify properties
via bus object option. It specifies the name of the bus object
that defines the structure that a bus must have to be connected
to this input port. At the beginning of a simulation or when you
update the model’s diagram, Simulink software checks whether
the bus connected to this input port has the specified structure. If
not, Simulink software displays an error message.

Output as nonvirtual bus

This option is enabled only if you select the Specify properties
via bus object option. If this option is selected, this block
outputs a nonvirtual bus; otherwise, it outputs a virtual bus (see
“Virtual and Nonvirtual Buses”). Select this option if you want
code generated from this model to use a C structure to define the
structure of the bus signal output by this block.

Port dimensions

Specify the dimensions of the input signal to the Inport block.
Valid values are:

-1 Dimensions are inherited from input signal

n Vector signal of width n accepted

[m n] Matrix signal having m rows and n columns
accepted

Sample time

Specify the sample time of the input signal. See “Specifying
Sample Time”.

2-367

Inport

Minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
® Automatic scaling of fixed-point data types

Maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
® Automatic scaling of fixed-point data types

Data type
Specify the output data type of the external input. You can set
it to:

¢ A rule that inherits a data type, for example, Inherit: auto
¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the Data
type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Signal type
Specify the numeric type (real or complex) of the external input.
To accept either type, set this parameter to auto.

2-368

Inport

Sampling mode
Specify the sampling mode (Sample based or Frame based) that
the input signal must match. To accept any sampling mode, set
this parameter to auto. This parameter is intended to support
signal processing applications based on Simulink models. See
the documentation for the buffer function provided by Signal
Processing Toolbox™ software or “Frame-Based Signals” in the
Signal Processing Blockset™ documentation for information
about frame-based signals.

Characteristics Sample Time Specified in the Sample time
parameter
Dimensionalized Yes
Multidimensionalized Yes

2-369

Integer Delay

Purpose
Library

Description

_4
i

Data Type
Support

Parameters
and

Dialog

Box

2-370

Delay signal N sample periods
Discrete

The Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which
can be scalar or vector. If the input is a vector, all elements of the vector
are delayed by the same sample period.

The Integer Delay block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

=] Function Block Parameters: Integer Delay x|

— Integer Delay [mazk] [link]

Delay a gsignal M sample periods.

— Parameter

Initial condition:
0.0

Sample time:
|-

Mumber of delaysz:
[4

k. Cancel Help Spply

Integer Delay

Initial condition

The initial output of the simulation. The Initial condition
parameter is converted from a double to the input data type
offline using round-to-nearest and saturation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Number of delays

The number of periods to delay the input signal.

Characteristics pjrect Feedthrough

No

Sample Time

Specified in the Sample time
parameter

Scalar Expansion

Yes, of input or initial conditions

2-371

Integrator

Purpose Integrate signal
Librclry Continuous
Description The Integrator block outputs the integral of its input at the current
time step. The following equation represents the output of the block y
—_ as a function of its input u and an initial condition y,, where y and u are
z vector functions of the current simulation time t.

¢
yit) = L u(t)dt + y,
o

Simulink® software can use a number of different numerical integration
methods to compute the Integrator block’s output, each with advantages
in particular applications. The Solver pane of the Configuration
parameters dialog box (see “Solver Pane”) allows you to select the
technique best suited to your application.

Simulink software treats the Integrator block as a dynamic system
with one state, its output. The Integrator block’s input is the state’s
time derivative.

x = yif)
Xg = ¥
X = ()

The currently selected solver computes the output of the Integrator
block at the current time step, using the current input value and

the value of the state at the previous time step. To support this
computational model, the Integrator block saves its output at the
current time step for use by the solver to compute its output at the next
time step. The block also provides the solver with an initial condition
for use in computing the block’s initial state at the beginning of a
simulation run. The default value of the initial condition is 0. The
block’s parameter dialog box allows you to specify another value for the
initial condition or create an initial value input port on the block.

2-372

Integrator

The parameter dialog box also allows you to

® Define upper and lower limits on the integral

® Create an input that resets the block’s output (state) to its initial
value, depending on how the input changes

* Create an optional state output that allows you to use the value of
the block’s output to trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete
system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog
box or input them from an external signal:

® To define the initial conditions as a block parameter, specify the
Initial condition source parameter as internal and enter the
value in the Initial condition parameter field.

® To provide the initial conditions from an external source, specify the
Initial condition source parameter as external. An additional
input port appears under the block input, as shown in this figure.

[npuat
Output

1
=

Initial condition s,

Integratar

Note If the integrator limits its output (see “Limiting the
Integral” on page 2-374), the initial condition must fall inside the
integrator’s saturation limits. If the initial condition is outside the
block’s saturation limits, the block displays an error message.

2-373

Integrator

2-374

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the Limit
output check box and enter the limits in the appropriate parameter
fields. Doing so causes the block to function as a limited integrator.
When the output reaches the limits, the integral action is turned off to
prevent integral wind up. During a simulation, you can change the
limits but you cannot change whether the output is limited. The output
is determined as follows:

® When the integral is less than or equal to the Lower saturation
limit, the output is held at the Lower saturation limit.

® When the integral is between the Lower saturation limit and the
Upper saturation limit, the output is the integral.

® When the integral is greater than or equal to the Upper saturation
limit, the output is held at the Upper saturation limit.

To generate a signal that indicates when the state is being limited,
select the Show saturation port check box. A saturation port appears
below the block output port, as shown on this figure.

Output
1
Input _
> f Saturation

=

Integratar
The signal has one of three values:
¢ 1 indicates that the upper limit is being applied.

¢ (O indicates that the integral is not limited.

¢ -1 indicates that the lower limit is being applied.

When you select this option, the block has three zero crossings: one to
detect when it enters the upper saturation limit, one to detect when

Integrator

it enters the lower saturation limit, and one to detect when it leaves
saturation.

Resetting the State

The block can reset its state to the specified initial condition based on
an external signal. To cause the block to reset its state, select one of the
External reset choices. A trigger port appears below the block’s input
port and indicates the trigger type, as shown in this figure.

Input

——W Qutput
Reset -
—f =

Integratar

® Select rising to reset the state when the reset signal rises from a
zero to a positive value or from a negative to a positive value.

® Select falling to reset the state when the reset signal falls from a
positive value to zero or from a positive to a negative value.

® Select either to reset the state when the reset signal changes from a
zero to a nonzero value or changes sign.

® Select 1level to reset the state when the reset signal is nonzero at the
current time step or changes from nonzero at the previous time step
to zero at the current time step.

® Select 1level hold to reset the state when the reset signal is nonzero
at the current time step.

The reset port has direct feedthrough. If the block output is fed back
into this port, either directly or through a series of blocks with direct
feedthrough, an algebraic loop results (see “Algebraic Loops”). The
Integrator block’s state port allows you to feed back the block’s output
without creating an algebraic loop.

2-375

Integrator

2-376

Note To be compliant with the Motor Industry Software Reliability
Association (MISRA®) software standard, your model must use Boolean
signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the Show state port option on the Integrator block’s
parameter dialog box causes an additional output port, the state port, to
appear atop the Integrator block.

e

Iriput 1 Dutput
LU R e
s
Integrator

The output of the state port is the same as the output of the block’s
standard output port except for the following case. If the block is reset
in the current time step, the output of the state port is the value that
would have appeared at the block’s standard output if the block had not
been reset. The state port’s output appears earlier in the time step than
the output of the Integrator block’s output port. This allows you to avoid
creating algebraic loops in the following modeling scenarios:

® Self-resetting integrators (see “Creating Self-Resetting Integrators”
on page 2-377)

* Handing off a state from one enabled subsystem to another (see
“Handing Off States Between Enabled Subsystems” on page 2-378)

Integrator

Note When updating a model, Simulink software checks to ensure
that the state port is being used in one of these two scenarios. If not,
Simulink software signals an error. Also, Simulink software does
not allow you to log the output of this port in a referenced model
that executes in Accelerator mode. If logging is enabled for the port,
Simulink software generates a "signal not found" warning during
execution of the referenced model.

Creating Self-Resetting Integrators

The Integrator block’s state port allows you to avoid creating algebraic
loops when creating an integrator that resets itself based on the value
of its output. Consider, for example, the following model.

E—
Clock ply * 1]

Integratar Seope

1

Caonstant

This model tries to create a self-resetting integrator by feeding the
integrator’s output, subtracted from 1, back into the integrator’s reset
port. In so doing, however, the model creates an algebraic loop. To
compute the integrator block’s output, Simulink software needs to know
the value of the block’s reset signal, and vice versa. Because the two
values are mutually dependent, Simulink software cannot determine
either. It therefore signals an error if you try to simulate or update
this model.

2-377

Integrator

Clock

1

Constant

2-378

(O—»]

The following model uses the integrator’s state port to avoid the
algebraic loop.

State T -
@R, PY AEB|EE R

1
z

_|—>=t

Integrator

\

Reset on crossing '

Iero.

v UGRIEC

In this version, the value of the reset signal depends on the value of the
state port. The value of the state port is available earlier in the current
time step than the value of the integrator block’s output port. Thus,
Simulink software can determine whether the block needs to be reset
before computing the block’s output, thereby avoiding the algebraic loop.

Handing Off States Between Enabled Subsystems

The state port allows you to avoid an algebraic loop when passing a
state between two enabled subsystems. Consider, for example, the
following model.

Integrator

k]
1
L}
*

i e Enable
— e In1 B
Tut1 1
{inz n I o T
Ot
+ T Integrator
NOT I—I |—| el In2
ry]
Fulse .
| Generator L -
-
47 Enable
. J .t
L e]in n R
O NS
—{InZ In

=
ain "o Outi
B - Integratar

oA InZ

In this model, a constant input signal drives two enabled subsystems
that integrate the signal. A pulse generator generates an enabling
signal that causes execution to alternate between the two subsystems.
The enable port of each subsystem is set to reset. This causes the
subsystem to reset its integrator when it becomes active. Resetting the
integrator causes the integrator to read the value of its initial condition
port. The initial condition port of the integrator in each subsystem is
connected to the output port of the integrator in the other subsystem.

This connection is intended to enable continuous integration of the
input signal as execution alternates between the two subsystems.
However, the connection creates an algebraic loop. To compute the
output of A, Simulink software needs to know the output of B, and vice
versa. Because the outputs are mutually dependent, Simulink software
cannot compute them. It therefore generates an error if you attempt
to update or simulate this model.

2-379

Integrator

The following version of the same model uses the integrator state port
to avoid creating an algebraic loop when handing off the state.

1
—{Int Out1
Outd
Il ntegratar
NOT
1 [:1 T
: TUL
Fulse Enable
n
——]In1 Cirt1 1
z
5
5 "o Out1
Integratar

In this model, the initial condition of the integrator in A depends on
the value of the state port of the integrator in B, and vice versa. The
values of the state ports are updated earlier in the simulation time step
than the values of the integrator output ports. Thus, Simulink software
can compute the initial condition of either integrator without knowing
the final output value of the other integrator. For another example of
using the state port to hand off states between conditionally executed
subsystems, see the sldemo_clutch model.

2-380

Integrator

Data Type
Support

Note Simulink software does not permit three or more enabled
subsystems to hand off a model state. If Simulink software detects
that a model is handing off a state among more than two enabled
subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block’s Outputs

By default Simulink software uses the absolute tolerance value
specified in the Configuration Parameters dialog box (see “Specifying
Variable-Step Solver Error Tolerances”) to compute the output of the
Integrator block. If this value does not provide sufficient error control,
specify a more appropriate value in the Absolute tolerance field of
the Integrator block’s dialog box. The value that you specify is used to
compute all of the block’s outputs.

Choosing All Options

When all options are selected, the icon looks like this.

| State

Input

Output
Reszet 1_
Initial condition) = Saturation

Integrator

The Integrator block accepts and outputs signals of type double on
its data ports. Its external reset port accepts signals of type double
or Boolean.

2-381

Integrator

Parameters
and

Dialog

Box

2-382

51 Function Block Parameters: Integrator

— Integrator

Continuaus-time integration of the input gignal.

— Parameter

Esternal reset: Inu:une

L] L

Irnitial condition sounce; Iinternal

Iritial condition:

|0
[Limit autput

|dpper saturatian lirit:

fin
Lanwer saturatian limit:
[-in

[~ Show saturation port
[~ Show state port

Abzalute tolerance:

Iautu:u

[lgnore limit and reset when linearizing
W Enable zero crossing detection

State Mame: [e.q., position’]

(] Cancel Help Apply

External reset

Resets the states to their initial conditions when a trigger event
(rising, falling, either, level, or level hold) occurs in the

Integrator

reset signal. For more information, see “Resetting the State” on
page 2-375.

Initial condition source
Gets the states’ initial conditions from the Initial condition
parameter (if set to internal) or from an external block (if set
to external).

Initial condition
The states’ initial conditions. Set the Initial condition source
parameter value to internal. Simulink software does not allow
the initial condition of this block to be inf or NaN.

Limit output
If selected, limits the states to a value between the Lower
saturation limit and Upper saturation limit parameters.

Upper saturation limit
The upper limit for the integral. The default is inf.

Lower saturation limit
The lower limit for the integral. The default is -inf.

Show saturation port
If selected, adds a saturation output port to the block.

Show state port
If selected, adds an output port to the block for the block’s state.

Absolute tolerance
Absolute tolerance used to compute the block’s outputs. You
can enter auto or a numeric value. If you enter auto, Simulink
software determines the absolute tolerance (see “Specifying
Variable-Step Solver Error Tolerances”). If you enter a numeric
value, Simulink software uses the specified value to compute the
block’s outputs. Note that a numeric value overrides the setting
for the absolute tolerance in the Configuration Parameters
dialog box.

2-383

Integrator

Ignore limit and reset when linearizing
Select this option to cause Simulink linearization commands to
treat this block as unresettable and as having no limits on its
output, regardless of the settings of the block’s reset and output
limitation options. This allows you to linearize a model around an
operating point that causes the integrator to reset or saturate.

Enable zero crossing detection
If this option, Limit output, and zero-crossing detection for
the model as a whole are selected, the Integrator block uses
zero-crossings to detect and take a time step at any of the
following events: reset, entering or leaving an upper saturation
state, entering or leaving a lower saturation state. For more
information, see “Zero-Crossing Detection” in the “How Simulink
Works” chapter of the Simulink documentation.

State Name
Use this to assign a unique name to each state. The state names
apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes,
for example, 'velocity' .

To assign names to multiple states, enter a comma-delimited list
surrounded by braces. For example, {'a', 'b', 'c'} . Each
name must be unique.

The number of states must be evenly divided by the number of
state names. There can be fewer names than states, but there
cannot be more names than states.

For example, you can specify two names in a system with four
states. Simulink software will assign the first name to the first
two states and the second name to the last two.

To assign state names with a variable that has been defined in

the MATLAB® workspace, enter the variable without quotes. A
variable can be a string, cell, or structure.

2-384

Integrator

Characteristics pjrcct Feedthrough

Yes, of the reset and external initial
condition source ports

Sample Time

Continuous

Scalar Expansion

Yes, of parameters

States Inherited from driving block or
parameter
Dimensionalized Yes

Zero Crossing

Yes, if enabled and you select

the Limit output option, one for
detecting reset, one each to detect
upper and lower saturation limits,
one when leaving saturation

2-385

Interpolation Using Prelookup

Purpose

Library

Description

2-386

k1
1
2

20 Thef)

Use output of Prelookup block to accelerate approximation of
N-dimensional function

Lookup Tables

The Interpolation Using Prelookup block is intended for use with the
Prelookup block. The Prelookup block calculates the index and interval
fraction that specifies how its input value relates to the breakpoint
data set. You feed the resulting index and fraction values into an
Interpolation Using Prelookup block to interpolate an n-dimensional
table. This combination of blocks performs the equivalent operation that
a single instance of the Lookup Table (n-D) block performs. However,
the Prelookup and Interpolation Using Prelookup blocks offer greater
flexibility that can result in more efficient simulation performance.

To use this block, you must define a set of output values as the Table
data parameter. In normal use, these table values correspond to the
breakpoint data sets specified in Prelookup blocks. The Interpolation
Using Prelookup block generates its output by looking up or estimating
table values based on the index and interval fraction values (denoted on
the block as k and f, respectively) fed into the block by each Prelookup
block:

e If the inputs match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block outputs the table
value at the intersection of the row, column, and higher dimension
breakpoints.

¢ Ifthe inputs do not match the values of indices specified in breakpoint
data sets, the Interpolation Using Prelookup block generates output
by interpolating appropriate table values. If the inputs are beyond
the range of breakpoint data sets, the Interpolation Using Prelookup
block can extrapolate its output value.

The Interpolation Using Prelookup block can perform interpolation on a
portion of its table. The Number of sub-table selection dimensions
parameter lets you specify that interpolation occur only on a subset of its
Table data parameter. For example, if your 3-D table data constitutes

Interpolation Using Prelookup

a stack of 2-D tables to be interpolated, set the Number of sub-table
selection dimensions parameter to 1. The block displays an input
port (labeled as sel) used to select and interpolate the 2-D tables.

Data Type The Interpolation Using Prelookup block accepts real signals of any
Suppori‘ data type supported by Simulink® software, except Boolean. The
Interpolation Using Prelookup block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-387

Interpolation Using Prelookup

Parameters The Main pane of the Interpolation Using Prelookup block dialog
and appears as follows:

Dialog
Box 1 Function Block Parameters: Interpolation Usi x|

— Interpalation_n-0

Perfarm interpalation [or extrapolation) on an n-dimenzional table uzing precalculated
indices and fraction values.

IJze "Wumber of table dimenzions' and T able data' to specity an n-dimensional table
that reprezents a function of 'n' variables.

‘Mumber of zubtable zelection dimensions' letz pou zpecity that the block interpolates
only a subset of table data. If you zpecify 'k' az itz value, the block dizplays 'n-k' pairz
of index and fraction inputz and 'k’ subtable zelection inputs. Itz default value i= 0,
I.2.. interpalate the entire table. | ze the selection inputs to specify the indices of the
zubtable to be interpolated.

You may use Prelookup blocks to compute the index, fraction, and zelection inputs.

L ET | Signal.-'—"-.ttril:uutesl

MHumber of table dimensions: I 2 LI

T able data:lsqrt[[1:11]' N1 Edit... |

Interpolation method: ILinear

E strapolation method: ILinear

Lol L] L

Action far out af range inpt; INDHE

W Check index in generated code

MHurnber of sub-table zelection dimenzions: IEI

Sample time [-1 far inhented): I-'I

] Cancel | Help Apply

2-388

Interpolation Using Prelookup

Number of table dimensions
The number of dimensions that the Table data parameter must
have. This determines the number of independent variables for
the table and hence the number of inputs to the block. Enter an
integer between 1 and 30 into this field.

Table data
The table of output values. During simulation, the matrix size
must match the dimensions defined by the Number of table
dimensions parameter. But note that during block diagram
editing, you can enter either an empty matrix (specified as
[1) or an undefined workspace variable as the Table data
parameter. This allows you to postpone specifying a correctly
dimensioned matrix for the Table data parameter and
continue editing the block diagram. For information about
how to construct multidimensional arrays in MATLAB®, see
“Multidimensional Arrays” in the MATLAB Programming
Fundamentals documentation.

Note At runtime, the Interpolation Using Prelookup block
converts the data type of its Table data parameter to that of its
output.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the Simulink documentation).

Interpolation method
None - Flat or Linear. See “Interpolation Methods” in the
Simulink documentation for more information.

Extrapolation method
None - Clip or Linear. See “Extrapolation Methods” in
the Simulink documentation for more information. The
Extrapolation method parameter is visible only if you select
Linear as the Interpolation method parameter.

2-389

Interpolation Using Prelookup

2-390

Note The Interpolation Using Prelookup block does not support
Linear extrapolation if its input or output signals specify integer
or fixed-point data types.

Action for out of range input
Specifies whether to produce a warning or error message if the
input is out of range. The options are

® None — the default, no warning or error message

® Warning — display a warning message in the MATLAB
Command Window and continue the simulation

® Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Check index in generated code (Real-Time Workshop® license
required)
Specifies whether Real-Time Workshop software generates code
that checks the validity of the index values fed to this block.

Valid index input may reach last index
Specifies how the index and interval fraction inputs to the block
(labeled respectively as k and f on the block) access the last
elements of the n-dimensional table specified by the Table data
parameter. If enabled, the block returns the value of the last
element in a particular dimension of its table when k indexes
the last table element in the corresponding dimension and f is 0.
If disabled, the block returns the value of the last element in a
particular dimension of its table when k indexes the next-to-last
table element in the corresponding dimension and f is 1. Note
that index values are zero-based.

This parameter is visible only if the Interpolation method
specifies Linear and the Extrapolation method is None - Clip.

Interpolation Using Prelookup

Note If you enable the Valid index input may reach last
index parameter for an Interpolation Using Prelookup block,
you must also enable the Use last breakpoint for input at or
above upper limit parameter for all Prelookup blocks that feed
it. This allows the blocks to use the same indexing convention
when accessing the last elements of their Breakpoint data and
Table data parameters.

Number of sub-table selection dimensions
Specifies the number of dimensions of the subtable used to
compute this block’s output. Specify 0 (the default) to interpolate
the entire table, effectively disabling subtable selection.

Sample time
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the Simulink documentation for more information.

The Signal Attributes pane of the Interpolation Using Prelookup
block dialog appears as follows:

2-391

Interpolation Using Prelookup

2-392

=1 Function Block Parameters: Interpolation Using x|

— Interpalation_n-0

Perfarm interpalation [or extrapolation] on an n-dimenzional table using precalculated
indices and fraction values,

IJze 'Murmber of table dimengsions' and 'Table data’ to zpecify an n-dimensional table that
reprezents a function of 'n' vanables.

‘Mumber of subtable selection dimensions' letz you specify that the block interpolates
anly a subset of table data. [F you specify k' ag itz value, the block dizplays 'n-k' pairs of
index and fraction inputz and 'k’ subtable selection inputs. |tz default value iz 0, e,
interpolate the entire table. Use the selection inputs to zpecify the indices of the subtable
to be interpolated.

'ou may uze Prelookup blocks bo compute the indesx, fraction, and zelection inputs.

b airy Signal Attributes |

Clatpat mirirL: I[] Output masimnm; I[]

Output data bype: I [nherit: Inkerit fram table data ;I b |

Found integer calculatiohs toward: |Floor ;I
] 4 Cancel Help Apply

Interpolation Using Prelookup

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-393

Interpolation Using Prelookup

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Block parameters such as Table data are always rounded to
the nearest representable value. To control the rounding of a
block parameter, enter an expression using a MATLAB rounding
function into the mask field.

Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing No
See Also Prelookup

2-394

Interval Test

Purpose
Library

Description
b I‘l >

Data Type
Support

Parameters
and

Dialog

Box

Determine if signal is in specified interval
Logic and Bit Operations

The Interval Test block outputs TRUE if the input is between the values
specified by the Lower limit and Upper limit parameters. The block
outputs FALSE if the input is outside those values. The output of the
block when the input is equal to the Lower limit or the Upper limit is
determined by whether the boxes next to Interval closed on left and
Interval closed on right are selected in the dialog box.

The Interval Test block accepts signals of any data type supported by
Simulink® software, including fixed-point data types.

=] Function Block Parameters: Interyal Tesk x|

— Interval Test [mazk] [link]

[f the input iz in the interval between the lower limit and the upper limit, then the
autput iz TRUE, athemwize it 1z FALSE.

— Parameter

¥ Interval clozed on right
IIpper limit:
05

¥ Intereal clozed on left

Lawwer limit;
[-0.5

Clutput data type mode: |boolean ;I

k. Cancel Help | Spply

2-395

Interval Test

Interval closed on right
When you select this check box, the Upper limit is included in
the interval for which the block outputs TRUE.

Upper limit
The upper limit of the interval for which the block outputs TRUE.

Interval closed on left
When you select this check box, the Lower limit is included in
the interval for which the block outputs TRUE.

Lower limit
The lower limit of the interval for which the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics pjrect Feedthrough Yes
Scalar Expansion Yes
See Also Interval Test Dynamic

2-396

Interval Test Dynamic

Purpose
Library

Description
up
u _1]_ >
lo

Data Type
Support

Parameters
and

Dialog

Box

Determine if signal is in specified interval
Logic and Bit Operations

The Interval Test Dynamic block outputs TRUE if the input is between
the values of the external signals up and lo. The block outputs FALSE
if the input is outside those values. The output of the block when the
input is equal to the signal up or the signal lo is determined by whether
the boxes next to Interval closed on left and Interval closed on
right are selected in the dialog box.

The Interval Test Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

E! Function Block Parameters: Interyal Test D x|

— Interval Teszt Dynamic [maszk] [link]

IF the input iz in the interval between the lower imit and the upper limit, then the
autput iz TRUE, athemwize it iz FALSE.

— Parameter

¥ Interval clozed on right

¥ Interval clozed an left

Clutput data type mode: |boolean ;I

] Cancel Help | Apply

Interval closed on right
When you select this check box, the value of the signal connected
to the block’s “up” input port is included in the interval for which
the block outputs TRUE.

2-397

Interval Test Dynamic

Interval closed on left
When you select this check box, the value of the signal connected
to the block’s “lo” input port is included in the interval for which
the block outputs TRUE.

Output data type mode
Select the output data type; boolean or uint8.

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes
See Also Interval Test

2-398

Level-2 M-File S-Function

Purpose
Library
Description
mifle p
Data Type
Support

Use Level-2 M-file S-function in model
User-Defined Functions

This block allows you to use a Level-2 M-file S-function (see “Writing
Level-2 M-File S-Functions”) in a model. To do this, create an instance
of this block in the model. Then enter the name of the Level-2 M-File
S-function in the M-file name field of the block’s parameter dialog box.

Note Use the S-Function block to include a Level-1 M-file S-function
in a block.

If the Level-2 M-file S-function defines any additional parameters, you
can enter them in the Parameters field of the block’s parameter dialog
box. Enter them as MATLAB® expressions that evaluate to their values
in the order defined by the M-file S-function. Use commas to separate
each expression.

If a model includes a Level-2 M-File S-Function block, and an error
occurs in the S-function, the Level-2 M-File S-Function block displays
M-file stack trace information for the error in a dialog box. Click OK
to remove the dialog box.

Depends on the M-file that defines the behavior of a particular instance
of this block.

2-399

Level-2 M-File S-Function

Parameters
and

E! Block Parameters: M-file {level-2} S-Funckion

— hd-file-5-Function

Dialog

B Ilzer-definable block written uzing the MATLAE 5-Function AF. Specify the name of
ox an M-File containing a MATLAE S-Funchion belov. Uze the Parameters field to specify
a comma-zeparated lizk of parameters for thiz block.

—Parameters

bd-file name:

| mfile

Parameters:

LCancel Help Apply

M-file name

Name of an M-file that defines the behavior of this block. The
M-file must follow the Level-2 standard for writing M-file
S-functions (see “Writing Level-2 M-File S-Functions”).

Parameters

Values of the parameters of this block.

Characteristics pjrect Feedthrough

Depends on the M-file S-function

Sample Time

Depends on the M-file S-function

Scalar Expansion

Depends on contents M-file
S-function

Dimensionalized

Depends on the M-file S-function

2-400

Level-2 M-File S-Function

Multidimensionalized Yes

Zero Crossing No

2-401

Logical Operator

Purpose Perform specified logical operation on input
Librclry Logic and Bit Operations
Description The Logical Operator block performs the specified logical operation

on its inputs. An input value is TRUE (1) if it is nonzero and FALSE
(0) if it is zero.

AND |,

You select the Boolean operation connecting the inputs with the
Operator parameter list. If you select rectangular as the Icon shape
property, the block updates to display the name of the selected operator.
The supported operations are given below.

Operation Description

AND TRUE if all inputs are TRUE

OR TRUE if at least one input is TRUE

NAND TRUE if at least one input is FALSE

NOR TRUE when no inputs are TRUE

XOR TRUE if an odd number of inputs are TRUE
NOT TRUE if the input is FALSE

If you select distinctive as the Icon shape, the block’s appearance
indicates its function. Simulink® software displays a distinctive shape
for the selected operator, conforming to the IEEE® Standard Graphic
Symbols for Logic Functions:

2-402

Logical Operator

DN PV

NAND

e b

NOR Z0R NOT

The number of input ports is specified with the Number of input
ports parameter. The output type is specified with the Output data
type parameter. An output value is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types
that satisfy this condition include signed and unsigned integers, and
any floating-point data type.

The size of the output depends on input vector size and the selected
operator:

¢ Ifthe block has more than one input, any nonscalar inputs must have
the same dimensions. For example, if any input is a 2-by-2 array, all
other nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the
nonscalar inputs.

If the block has more than one input, the output has the same
dimensions as the inputs (after scalar expansion) and each output
element is the result of applying the specified logical operation to the
corresponding input elements. For example, if the specified operation
is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2 array
whose top left element is the result of applying AND to the top left
elements of the inputs, etc.

2-403

Logical Operator

Data Type
Support

2-404

* For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. The output is always a
scalar.

¢ The NOT operator accepts only one input, which can be a scalar or a
vector. If the input is a vector, the output is a vector of the same size
containing the logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an
addition- modulo-two operation as mandated by the IEEE Standard
for Logic Elements.

The Logical Operator block accepts real or complex signals of any data
type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Logical Operator

Parameters
and

Dialog

Box

The Main pane of the Logical Operator block dialog appears as follows:

m Function Block Parameters: Logical Operator x|

Logizal Operator

Logizal operatarz. For a single input, operators are applied across the input vectar. For multiple
inputz, operators are applied acrozs the inputs.,

t ain | Signal Attributes

Dperator; I.-“-‘-.ND j
Mumber of input ports:

|2

lcon shape: Irectangular j

Sample time [-1 far inherited):

[

k. Cancel Help Apply

Operator

The logical operator to be applied to the block inputs. Valid
choices are the operators listed previously.

Number of input ports

The number of block inputs. The value must be appropriate for
the selected operator.

Icon shape
The shape of the block icon. Specifying rectangular (the default)
results in a rectangular block that displays the name of the
selected operator. The distinctive option uses the graphic
symbol for the selected operator as specified by the IEEE
standard.

2-405

Logical Operator

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Logical Operator block dialog
appears as follows:

=1 Function Block Parameters: Logical Operator x|

Logizal Operator

Logizal operatarz. Far a gingle input, operators are applied acrozs the input vectar, For multiple
inputs, operators are applied across the inputs.

kain Signal Attributes I

[~ Require all inputs and output to have the same data bpe

Clutput data type: I boolean LI Fr |

k. Cancel Help Apply

Require all inputs and output to have the same data type
Select to require all inputs and the output to have the same data

type.

Output data type
Specify the output data type. You can set it to:

2-406

Logical Operator

Option Description

boolean Specifies the output data type as boolean.
Inherit: Use the Implement logic signals as
Logical boolean data model configuration parameter

(see “Implement logic signals as boolean data
(vs. double)”) to specify the output data type.

Note This option is intended to support
models created before the boolean option
became available. Use one of the other options,
preferably boolean, for new models.

Click the Show data type assistant button ;l to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Note You should use data types that represent zero exactly. Data
types that satisfy this condition include signed and unsigned integers
and any floating-point data type.

Characteristics Direct Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes, of inputs
Dimensionalized Yes

2-407

Logical Operator

Multidimensionalized Yes

Zero Crossing No

2-408

Lookup Table

Purpose Approximate one-dimensional function
Librclry Lookup Tables
Description The Lookup Table block computes an approximation to some function y

= f(x) given data vectors x and vy.

—

—— [

—’j Note To map two inputs to an output, use the Lookup Table (2-D) block.

The length of the x and y data vectors provided to this block must
match. Also, the x data vector must be strictly monotonically increasing
(i.e., the value of the next element in the vector is greater than the value
of the preceding element) after conversion to the input’s fixed-point data
type. However, the x data vector may be monotonically increasing (i.e.,
the value of the next element in the vector is greater than or equal to
the value of the preceding element) if all of the following apply:

® The input and output signals are both either single or double.

® The lookup method is Interpolation-Extrapolation.

For more information about size and monotonicity requirements, see
“Characteristics of Lookup Table Data” in Using Simulink®. To learn
how to model a discontinuous function using a Lookup Table block,
see “Representing Discontinuities”.

You define the table by specifying the Vector of input values
parameter as a 1-by-n vector and the Table data parameter as a 1-by-n
vector. The block generates output based on the input values using one
of these methods selected from the Lookup method parameter list:

® Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

= Ifavalue matches the block’s input, the output is the corresponding
element in the output vector.

2-409

Lookup Table

2-410

= If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note If the Lookup method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop® can generate
code for this block only if its input and output signals have the same
floating-point data type.

Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.

If there is no element in x below the current input, then the nearest
element is found.

Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.

If there is no element in x above the current input, then the nearest
element is found.

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

Lookup Table

Data Type
Support

The Lookup Table icon displays a graph of the input vector versus the
output vector. If you change a parameter on the block’s dialog box, the
graph is automatically redrawn when you click the OK or Apply button.

To avoid parameter saturation errors, the Simulink® Fixed Point™
software’s automatic scaling script employs a special rule for the Lookup
Table block. autofixexp modifies the scaling by using the output lookup
values in addition to the logged minimum and maximum simulation
values. This prevents the data from being saturated to different values.
The lookup values are given by the Table data parameter.

The Lookup Table block supports all data types supported by Simulink
software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-411

Lookup Table

Parameters
and

Dialog

Box

2-412

Perform 1-0 linear interpolation of input walues uzsing the specified table.
Estrapolation iz perfarmed outzide the table boundaries.

The Main pane of the Lookup Table block dialog appears as follows:

=] Function Block Parameters: Lookup Table x|

Lookup

b ain | Signal.-’-‘-.ttril:uutesl

YWector of input values: I[-E:E] Edit... |

Table data: |tanhi[-5:5]]
Laokup methad: IInterpn:nIatin:nn-E wtrapalation ;I

Sample time [-1 far inhented): I-'I

] Cancel Help Apply

Vector of input values

Specify the vector of input values. The input values vector must
be the same size as the Table data. Also, the input values vector
must be strictly monotonically increasing after conversion to the
input’s fixed-point data type. However, the input values vector
may be monotonically increasing if the input and output signals
are both either single or double, and if the lookup method is
Interpolation-Extrapolation. Note that due to quantization,
the input values vector may be strictly monotonic in doubles
format, but not so after conversion to a fixed-point data type.

The Vector of input values parameter is converted offline to the
input signal’s data type using round-to-nearest and saturation.

Lookup Table

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

Table data
Specify the vector of output values. The table data must be the
same size as the Vector of input values.

The Table data parameter is converted offline to the Qutput
data type using the specified rounding and saturation.

Lookup method
Specify the lookup method. See Description for a discussion of the
options for this parameter. For an example that demonstrates
values that the Lookup Table block returns based on different
lookup methods, see “Example Output” in Using Simulink.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Lookup Table block dialog appears
as follows:

2-413

Lookup Table

=] Function Block Parameters: Lookup Table X|

Lookup

Perform 1-0 linear interpolation of input values uzing the specified table. Estrapolation
iz perfarmed outzide the table baundaries.

b ain Signal Attributes I

Cutput mirirmLn: I[] Output maximunm; I[]
Cutput data type: I Inhent: Same as input j ¥ |
Found integer calculations taward: | Floor j

[T Saturate on integer overflow

k. Cancel Help Apply

Output minimum

Specify the minimum value that the block should output. The

default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

e Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The

default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

e Parameter range checking (see “Checking Parameter Values”)

¢ Simulation range checking (see “Checking Signal Ranges”)

2-414

Lookup Table

¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point lookup table calculations
that occur during simulation or execution of code generated from
the model. For more information, see “Rounding” in the Simulink
Fixed Point User’s Guide.

Note that this option does not affect rounding of block parameters
values, such as Table data. Simulink software rounds such
values to the nearest representable integer value. To control

the rounding of a block parameter, enter an expression using

a MATLAB® rounding function into the parameter’s edit field

on the block dialog box.

2-415

Lookup Table

Saturate on integer overflow
Select to have overflows saturate.

Example See “Example of a Logarithm Lookup Table” in Using Simulink for a
demonstration of the Lookup Table block.

Characteristics pjrect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No
See Also Lookup Table (2-D), Lookup Table (n-D)

2-416

Lookup Table (2-D)

Purpose
Library

Description

a

Approximate two-dimensional function
Lookup Tables

The Lookup Table (2-D) block computes an approximation to some
function z = f(x,y) given X, y, z data points. The first input port
corresponds to the first table dimension, x. (See “Changing the
Orientation of a Block” in the Simulink® documentation for a description
of the port order for various block orientations.)

The Row index input values parameter is a 1-by-m vector of x data
points, the Column index input values parameter is a 1-by-n vector
of y data points, and the Table data parameter is an m-by-n matrix of
z data points. Both the row and column vectors must be monotonically
increasing (i.e., the value of the next element in the vector is greater
than or equal to the value of the preceding element). However, these
vectors must be strictly monotonically increasing (i.e., the value of the
next element in the vector is greater than the value of the preceding
element) in the following cases:

® The input and output data types are both fixed-point.

® The input and output data types are different.

® The lookup method is not Interpolation-Extrapolation.
® The matrix of output values is complex.

® Minimum, maximum, and overflow logging is on.

The block generates output based on the input values using one of these
methods selected from the Lookup method parameter list:

® Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

= Ifthe inputs match row and column parameter values, the output
is the value at the intersection of the row and column.

2-417

Lookup Table (2-D)

2-418

= If the inputs do not match row and column parameter values, then
the block generates output by linearly interpolating between the
appropriate row and column values. If either or both block inputs
are less than the first or greater than the last row or column
values, the block extrapolates using the first two or last two points.

Note If the Lookup method parameter specifies
Interpolation-Extrapolation, Real-Time Workshop® can generate
code for this block only if its input and output signals have the same
floating-point data type.

Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of x and y. Instead, the end-point values are used.

Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the elements in x and y nearest the current
inputs are found. The corresponding element in z is then used as
the output.

Use Input Below — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and below the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y below the current inputs,
then the nearest elements are found.

Use Input Above — This method does not interpolate or extrapolate.
Instead, the elements in x and y nearest and above the current
inputs are found. The corresponding element in z is then used as the
output. If there are no elements in x or y above the current inputs,
then the nearest elements are found.

Lookup Table (2-D)

Data Type
Support

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

For information about creating a table with step transitions, see
“Representing Discontinuities” in Using Simulink.

To avoid parameter saturation errors, the Simulink® Fixed Point™
software’s automatic scaling script employs a special rule for the
Lookup Table (2-D) block. autofixexp modifies the scaling by using the
output lookup values in addition to the logged minimum and maximum
simulation values. The output lookup values are converted to the
specified output data type. This prevents the data from being saturated
to different values.

The Lookup Table (2-D) block supports all data types supported by
Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-419

Lookup Table (2-D)

Parameters
and

Dialog

Box

2-420

Performz 2-00 linear interpolation of input waluez uzing the specified table.
Estrapolation ig performed outzide the table boundanies. The first dimension
comesponds to the top [ar [eft] input paort,

The Main pane of the Lookup Table (2-D) block dialog appears as
follows:

E! Function Block Parameters: Lookup Table (2-D) x|

Lookup2D

ET | Signal.-‘i‘-.ttril:uutesl

Row index input walues: |[1 23]

Column index input values: |[1 3] Edi... |

Table data: |[4 GE1E13201018 23]
Lookup method: IInterpu:ulatiu:un-E:-:trapu:ulatiu:un ;I

Sample time [-1 for inkernited]: |-1

] Cancel Help Apply

Row index input values

The row values for the table, entered as a vector. The vector
values must increase monotonically.

The Row index input values parameter is converted offline to
the corresponding input signal’s data type using round-to-nearest
and saturation.

Column index input values

The column values for the table, entered as a vector. The vector
values must increase monotonically.

Lookup Table (2-D)

The Column index input values parameter is converted
offline to the corresponding input signal’s data type using
round-to-nearest and saturation.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in the online Simulink documentation).

Table data
The table of output values. The matrix size must match the
dimensions defined by the Row and Column parameters.

The Table data parameter is converted offline to the Qutput
data type using the specified rounding and saturation.

Lookup method
Specify the lookup method. See Description for a discussion of
the options for this parameter.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Lookup Table (2-D) block dialog
appears as follows:

2-421

Lookup Table (2-D)

E Function Block Parameters: Lookup Table (Z-D})

Lookup2D

Performz 201 linear interpolation of input values using the specified table.
E strapolation iz perfarmed outzide the table boundanies. The first dimenzsion
cormespondz to the top [or left] input part.

b ain Signal Attributes I

Clutput mirirnm; I[]

Clutput masirmunm; I[]

[Fequire all inputs to have the zame data twpe

Qutput data tppe:; I |nherit; Sarme 3= firgt input

Round integer calculations taward: | Floor

[~ Saturate on integer overflow

| b5 |

=l

Ok

Cancel

Help

Apply

Output minimum

Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses

this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)

¢ Simulation range checking (see “Checking Signal Ranges”)

¢ Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses

this value to perform:

2-422

Lookup Table (2-D)

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
* Automatic scaling of fixed-point data types

Require all inputs to have the same data type
Select to require all inputs to have the same data type.

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink Fixed Point User’s
Guide.

Note that block parameters such as Table data are always
rounded to the nearest representable value. To control the

2-423

Lookup Table (2-D)

Examples

2-424

rounding of a block parameter, enter an expression using a
MATLAB® rounding function into the mask field.

Saturate on integer overflow
Select to have overflows saturate.

In this example, the block parameters are defined as

Row index input values: [1 2]
Column index input values: [3 4]
Table data: [10 20; 30 40]

The first figure shows the block outputting a value at the intersection
of block inputs that match row and column values. The first input is

1 and the second input is 4. These values select the table value at the
intersection of the first row (row parameter value 1) and second column
(column parameter value 4).

4

10

20 = ﬁ’/ N [—

30

Di=pl
2 Lookup SER
40 Takle (2-D)

Coluamrm

In the second figure, the first input is 1.7 and the second is 3.4. These
values cause the block to interpolate between row and column values,
as shown in the table at the left. The value at the intersection (28)

is the output value.

Lookup Table (2-D)

3 (34| 4
111011420

1.7 _____L'.

17|24 | 28 34 / g —
2.4 A — Di=play
2 [30(34]40 T D
Characteristics pjrect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes, of one input if the other is a
vector
Dimensionalized Yes
Zero Crossing No
See Also Lookup Table, Lookup Table (n-D)

2-425

Lookup Table (n-D)

Purpose

Library

Description

2-426

uq 2-0 Tiu)

uzZ

Approximate N-dimensional function
Lookup Tables

The Lookup Table (n-D) block evaluates a sampled representation of a
function in N variables, ¥ = F(x1,x2,x3,xn) where the function F
might be known only empirically. The block efficiently maps its inputs
to an output value by looking up or interpolating a table of values as
defined by the block’s parameters. The block supports flat (constant),
linear, and cubic spline interpolation methods. You can apply any of
these methods to 1-D, 2-D, 3-D, or higher dimensional tables.

To use this block, specify the number of dimensions of your lookup
table using the Number of table dimensions parameter. In the
Breakpoints for dimension parameter, enter a breakpoint vector
that corresponds to each dimension of your lookup table. Define the
associated set of output values as the Table data parameter. You can
customize the block’s lookup and estimation behaviors by specifying,
for example, values for its Index search method, Interpolation
method, and Extrapolation method parameters.

The first block input identifies the first dimension (row) breakpoints,
the next block input identifies the second dimension (column)
breakpoints, and so on. See “Changing the Orientation of a Block” in
Using Simulink® for a description of the port order for various block
orientations.

I e p— U1 s T
2
calumn table walue ot
u
w
page
Laakup

Table {n-L

Lookup Table (n-D)

Data Type
Support

During simulation, the Lookup Table (n-D) block generates its output
by looking up or estimating table values based on its input values:

e [f the inputs match the values of indices specified in breakpoint
vectors, the Lookup Table (n-D) block outputs the table value at the
intersection of the row, column, and higher dimension breakpoints.

e If the inputs do not match the values of indices specified in
breakpoint vectors, the Lookup Table (n-D) block generates output
by interpolating appropriate table values. If the inputs are beyond
the range of breakpoint vectors, the block can extrapolate its output
values.

Alternatively, you can use the Interpolation Using Prelookup block with
the Prelookup block to perform the equivalent operation of a Lookup
Table (n-D) block. This combination of blocks offers greater flexibility
that can result in more efficient simulation performance for linear
interpolations in certain circumstances.

For noninterpolated table lookups, use the Direct Lookup Table (n-D)
block when the lookup operation is a simple array access, for example, if
you have an integer value k and you want the kth element of a table,

y = table(k).

The Lookup Table (n-D) block supports all data types supported by
Simulink software, including fixed-point data types. For a discussion
on the data types supported by Simulink software, see “Data Types
Supported by Simulink” in the Simulink documentation.

Inputs for indexing must be real; table data can be complex.

2-427

Lookup Table (n-D)

Parameters
and

Dialog

Box

2-428

The Main pane of the Lookup Table (n-D) block dialog appears as

follows:

E! Function Block Parameters: Lookup Table (n-D)

X

Lookup Table [n-01

Perfarm n-dimenszional interpolated table lookup including index searches. The table iz a

zampled reprezentation of a function in M wanables. Breakpoint zetz relate the input

values to positions in the table. The firgt dimension coresponds to the top [or [Eft] input

park.
Main | Signal Attributes I Irternal dttributes
Mumber of table dimenzions: IE ;I

Breakpoints for dimenzion:

Breakpoints

1 [10.22.31]
2 |[0.22.31)
|ndex search method: IBinar}l zearch

[~ Begin index search using previous index result

[™ Use one input port for all input data

Proceszs out-of-range input; INl:une

T able data: |[4 BEIE1320:1018 23]
Interpolation method: ILinear

E strapolation method: INDHE - Clip

[™ Use last table walue for inputs at or above last break point

Sample time [-1 for inhented]: I-'I

k. Cancel

Apply

Lookup Table (n-D)

Number of table dimensions
Enter the number of dimensions of the Table data parameter by
specifying an integer from 1 to 30. This determines the number of
independent variables for the table and hence the number of block
inputs. It also determines the number of dimensions that appear
in the Breakpoints for dimension parameter.

Breakpoints for dimension
Define breakpoint sets that correspond to the dimensions of the
Table data parameter. For each dimension, specify breakpoints
as a vector whose values are strictly monotonically increasing.

The breakpoint sets are converted offline to their corresponding
input signal’s data type using round-to-nearest and saturation.

Index search method
Select Evenly spaced points, Linear search, or Binary
search (the default). Each search method has speed advantages
in different circumstances:

¢ Ifthe breakpoint data is evenly spaced, e.g., 10, 20, 30, ..., you
can achieve the greatest speed by selecting Evenly spaced
points to calculate the table indices.

¢ For irregularly spaced breakpoint sets, if the input signals do
not vary much from one time step to the next, selecting Linear
search in combination with Begin index search using
previous index result produces the best performance.

¢ For irregularly spaced breakpoint sets with rapidly varying
input signals that jump more than one or two table intervals
per time step, selecting Binary search produces the best
performance.

A suboptimal choice of index search method can lead to slow
performance of models that rely heavily on lookup tables.

2-429

Lookup Table (n-D)

2-430

Note The Evenly spaced points algorithm uses only the
first two breakpoints to determine the offset and spacing of the
remaining points.

Begin index search using previous index result

Select this option if you want the block to start its search using
the index that was found at the previous time step. For inputs
that change slowly with respect to the interval size, enabling this
option can improve performance. Otherwise, the linear search and
binary search methods might take significantly longer, especially
for large breakpoint sets.

Use one input port for all input data

Instead of having one input port per independent variable, the
block is configured with just one input port that expects a signal
that is N elements wide for an N-dimensional table. This might
be useful in removing line clutter on a block diagram with many
lookup tables.

Process out-of-range input

Specifies whether to produce a warning or error message if the
input is out of range. The options are:

® None — the default, no warning or error message

e Warning — display a warning message in the MATLAB®
Command Window and continue the simulation

® Error — halt the simulation and display an error message in
the Simulation Diagnostics Viewer

Table data

The table of output values. During simulation, the matrix size
must match the dimensions defined by the Number of table
dimensions parameter. However, during block diagram editing,
you can enter either an empty matrix (specified as []) or an
undefined workspace variable as the Table data parameter.
This technique allows you to postpone specifying a correctly

Lookup Table (n-D)

dimensioned matrix for the Table data parameter and continue
editing the block diagram. For information about how to construct
multidimensional arrays in MATLAB, see “Multidimensional
Arrays” in the MATLAB documentation.

The Table data parameter is converted offline to the Qutput
data type using the specified rounding and saturation.

Click the Edit button to open the Lookup Table Editor (see
“Lookup Table Editor” in Using Simulink for more information).

Interpolation method
Select None - Flat, Linear (the default), or Cubic spline. See
“Interpolation Methods” in Using Simulink for more information.

Extrapolation method
Select None - Clip, Linear (the default), or Cubic spline. See
“Extrapolation Methods” in Using Simulink for more information.

Use last table value for inputs at or above last breakpoint
Specify the indexing convention that the block uses internally
to address the last element of a breakpoint vector and its
corresponding table value. If selected, the block addresses the end
of a breakpoint vector and its table value using the last element’s
index and 0 for the interval fraction. Otherwise, the block
addresses those same values using the index of the next-to-last
breakpoint and 1 for the interval fraction.

This parameter is visible only if the Interpolation method
specifies Linear and the Extrapolation method is None - Clip.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
Using Simulink for more information.

The Signal Attributes pane of the Lookup Table (n-D) block dialog
appears as follows:

2-431

Lookup Table (n-D)

2-432

=] Function Block Parameters: Lookup Table {n-D) x|

Lookup Table [n-01

Perfarm n-dimenszional interpolated table lookup including index searches. The table iz a
zampled reprezentation of a function in M wanables. Breakpoint zetz relate the input
values to positions in the table. The firgt dimension coresponds to the top [or [Eft] input
park.
b air Signal Attributes | Irternal Attributes

v PRequire all inputs to have the zame data type

Clatpuat miirL; I[] Cukput masimum: I[]

Cutput data type: I Inhert; Same as firgt input j Fr |

Round integer calculations toward: Floar ;I

k. Cancel Help Spply

Require all inputs to have the same data type

Select to require all inputs to have the same data type.

Lookup Table (n-D)

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Parameter range checking (see “Checking Parameter Values”)
¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

2-433

Lookup Table (n-D)

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point lookup table calculations
that occur during simulation or execution of code generated from
the model. For more information, see “Rounding” in the Simulink®
Fixed Point™ User’s Guide.

Note that this option does not affect rounding of values of block
parameters, such as Table data. Simulink software rounds such
values to the nearest representable integer value. To control
the rounding of a block parameter, enter an expression using a
MATLAB rounding function into the parameter’s edit field on
the block dialog box.

The Internal Attributes pane of the Lookup Table (n-D) block dialog
appears as follows:

2-434

Lookup Table (n-D)

=] Function Block Parameters: Lookup Table {n-D) x|

Lookup Table [n-01

Perfarm n-dimenszional interpolated table lookup including index searches. The table iz a
zampled reprezentation of a function in M wanables. Breakpoint zetz relate the input
values to positions in the table. The firgt dimension coresponds to the top [or [Eft] input
park.

bain I Signal Attributes Internal Attributes

Fraction data twpe: I [rherit: Inkerit wia inkernal rule j Fr |

k. Cancel Help Spply

Fraction data type
Specify the fraction data type. You can set it to:

2-435

Lookup Table (n-D)

Characteristics pirect Feedthrough

See Also

2-436

¢ A rule that inherits a data type, for example, Inherit:
Inherit via internal rule

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,

float('single')

Click the Show data type assistant button ;I to

display the Data Type Assistant, which helps you set the
Fraction data type parameter.

See “Using the Data Type Assistant” in Using Simulink for more

information.

Yes

Sample Time

Specified in the Sample time
parameter

Scalar Expansion Yes
Dimensionalized Yes
Zero Crossing No

Lookup Table, Lookup Table (2-D), Lookup Table Dynamic

Lookup Table Dynamic

Purpose

Library

Description

AX

b

b

ydat

xdat y

Approximate one-dimensional function using dynamically specified
table

Lookup Tables

The Lookup Table Dynamic block computes an approximation to some
function y=f (x) given x, y data vectors. The lookup method can use
interpolation, extrapolation, or the original values of the input.

The x data vector must be strictly monotonically increasing (i.e., the
value of the next element in the vector is greater than the value of the
preceding element) after conversion to the input’s fixed-point data
type. Note that due to quantization, the x data vector may be strictly
monotonic in doubles format, but not so after conversion to a fixed-point
data type.

Note Unlike the Lookup Table block, the Lookup Table Dynamic block
allows you to change the table data without stopping the simulation.
For example, you may want to automatically incorporate new table data
if the physical system you are simulating changes.

You define the lookup table by inputting the x and y table data to the
block as 1-by-n vectors. To help reduce the ROM used by the code
generated for this block, you can use different data types for the x table
data and the y table data. However, these restrictions apply:

® The y table data and the output vector must have the same sign, the
same bias, and the same fractional slope.

® The x table data and the x data vector must have the same sign, the
same bias, and the same fractional slope. Additionally, the precision
and range for the x data vector must be greater than or equal to the
precision and range for the x table data.

The block generates output based on the input values using one of these
methods selected from the Lookup Method parameter list:

2-437

Lookup Table Dynamic

2-438

Interpolation-Extrapolation — This is the default method; it
performs linear interpolation and extrapolation of the inputs.

= Ifavalue matches the block’s input, the output is the corresponding
element in the output vector.

= If no value matches the block’s input, then the block performs
linear interpolation between the two appropriate elements of the
table to determine an output value. If the block input is less than
the first or greater than the last input vector element, then the
block extrapolates using the first two or last two points.

Note Real-Time Workshop® software cannot generate code
for this block if its Lookup Method parameter specifies
Interpolation-Extrapolation.

Interpolation-Use End Values — This method performs linear
interpolation as described above but does not extrapolate outside the
end points of the input vector. Instead, the end-point values are used.

Use Input Nearest — This method does not interpolate or
extrapolate. Instead, the element in x nearest the current input is
found. The corresponding element in y is then used as the output.

Use Input Below — This method does not interpolate or extrapolate.
Instead, the element in x nearest and below the current input is
found. The corresponding element in y is then used as the output.

If there is no element in x below the current input, then the nearest
element is found.

Use Input Above — This method does not interpolate or extrapolate.
Instead, the element in x nearest and above the current input is
found. The corresponding element in y is then used as the output.

If there is no element in x above the current input, then the nearest
element is found.

Lookup Table Dynamic

Data Type
Support

Parameters
and

Dialog

Box

Note Note that there is no difference among the Use Input Nearest,
Use Input Below, and Use Input Above methods when the input
x corresponds exactly to table breakpoints.

The Lookup Table Dynamic block accepts signals of any data type
supported by Simulink® software, including fixed-point data types.

The Main pane of the Lookup Table Dynamic block dialog appears as
follows:

E! Function Block Parameters: Lookup Table D¥na x|

Lookup Table Denamic [maszk] [link]
’Vhppru:-:imate a one-dimensional function using a selected lookup method.
ET | Signal Attributes I
Lookup kethod: IInterpu:uIatiu:un-Ll ze EndValues LI
] Cancel Help Apply

Lookup Method
Specify the lookup method.

The Signal Attributes pane of the Lookup Table Dynamic block dialog
appears as follows:

2-439

Lookup Table Dynamic

2-440

EJ Function Block Parameters: Lookup Table Dynani

" Laokup T able Dynarmic [mazk] [link]

Approximate a ohe-dimensional function uging a zelected lookup method.

Main Signal Attibutes |

Output data bppe: I float('double']

| ¥ |

Fiound toward: IFIl:u:ur

™ Saturate to max or min when overflows oecur

=l

OF.

Cancel

Help

| Apply

Output data type

Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

® The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,

float('single')

Click the Show data type assistant button #I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for

more information.

Lookup Table Dynamic

Examples

Characteristics

See Also

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round toward
Rounding mode for the fixed-point output. For more information,
see “Rounding” in the Simulink® Fixed Point™ User’s Guide.

Saturate to max or min when overflows occur
If selected, fixed-point overflows saturate.

For an example that illustrates the lookup methods supported by this
block, see the example included in the Lookup Table block reference

pages.

Direct Feedthrough Yes

Scalar Expansion No

Lookup Table, Lookup Table (2-D), Lookup Table (n-D)

2-441

Magnitude-Angle to Complex

Purpose
Library

Description

Data Type
Support

2-442

L=
v

Convert magnitude and/or a phase angle signal to complex signal
Math Operations

The Magnitude-Angle to Complex block converts magnitude and/or
phase angle inputs to a complex-valued output signal. The inputs must
be real-valued signals of type double or single. The angle input is
assumed to be in radians. The complex output signal has the same data
type as the block inputs.

The inputs can both be signals of equal dimensions, or one input can
be an array and the other a scalar. If the block has an array input, the
output is an array of complex signals. The elements of a magnitude
input vector are mapped to magnitudes of the corresponding complex
output elements. An angle input vector is similarly mapped to the
angles of the complex output signals. If one input is a scalar, it is
mapped to the corresponding component (magnitude or angle) of all
the complex output signals.

See the preceding block description.

Magnitude-Angle to Complex

Parameters
and

Dialog

Box

1 Function Block Parameters: Magnitude-Angle ta x|

— k agnitude-dngle to Comples

Congtruct a comples output from magnitude anddor radian phaze angle input.

— Parameter

[nput: IMagnitude ;l
Anigle;

|0

Sample time [-1 for inhented]:

[

] Cancel Help Apply
Input
Specifies the kind of input: a magnitude input, an angle input,
or both.

Angle (Magnitude)
If the input is an angle signal, specifies the constant magnitude
of the output signal. If the input is a magnitude, specifies the
constant phase angle in radians of the output signal.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

2-443

Magnitude-Angle to Complex

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion Yes, of the input when the function
requires two inputs
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-444

Manual Switch

Purpose Switch between two inputs
Librury Signal Routing
Description The Manual Switch block is a toggle switch that selects one of its
two inputs to pass through to the output. To toggle between inputs,
double-click the block (there is no dialog box). The selected input is
>-Q\°_} propagated to the output, while the unselected input is discarded. You
>0 can set the switch before the simulation is started or throw it while the
simulation is executing to interactively control the signal flow. The
Manual Switch block retains its current state when the model is saved.
Data Type The Manual Switch block accepts real or complex signals of any data
Support type supported by Simulink® software, including fixed-point data types.
For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.
Parameters None
and
Dialog
Box
Characteristics pjrect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion N/A
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-445

Math Function

Purpose Perform mathematical function
Librclry Math Operations
Description The Math Function block performs numerous common mathematical
functions.
You can select one of the following functions from the Function
parameter list.
Function Description Mathematical MATLAB®
Expression Equivalent
exp Exponential e’ exp
log Natural logarithm In u log
10™u Array power of base | 10“ 10."u
10 (see power)
log10 Common (base 10) log u log10
logarithm
magnitude~?2 Complex modulus |u|? (abs(u))."2
(see abs and power)
square Array power 2 u? u."2
(see power)
sqrt Square root o€ sqrt
pow Array power u’ power
conj Complex conjugate a conj
reciprocal Array reciprocal 1/u 1./u
(see rdivide)
hypot Square root of sum | (u?+v?2)°-° hypot
squares
rem Remainder after — rem

division

2-446

Math Function

Function Description Mathematical MATLAB®
Expression Equivalent
mod Modulus after — mod
division
transpose Array transpose u’ u.'
(see arithmetic
operators)
hermitian Complex conjugate | u" u'
transpose (see arithmetic
operators)
The block output is the result of the operation of the function on the
input or inputs.
The name of the function appears on the block. Simulink® software
automatically draws the appropriate number of input ports.
Use the Math Function block instead of the Fen block when you want
vector or matrix output, because the Fcn block produces only scalar
output.
Data Type The following table shows which input data types are supported by each
Suppori‘ of the functions of the Math Function block.
Function single double built-in fixed point
integer
exp yes yes — —
log yes yes — —
10*u yes yes — —
log10 yes yes — —
magnitude~2 yes yes yes yes
square yes yes yes yes
sqrt yes yes yes yes

2-447

Math Function

Function single double built-in fixed point
integer

pow yes yes — —

conj yes yes yes yes
reciprocal yes yes yes yes

hypot yes yes — —

rem yes yes yes —

mod yes yes yes —
transpose yes yes yes yes
hermitian yes yes yes yes

All supported modes accept both real and complex inputs, except for
reciprocal and sqrt, which do not accept complex fixed-point inputs.
Also, sqrt does not accept fixed-point inputs that are negative or that
have nontrivial slope and nonzero bias. The output signal type of the
block is real or complex, depending on the setting of the Qutput signal
type parameter.

2-448

Math Function

Parameters
and

Dialog

Box

The Main pane of the Math Function block dialog appears as follows:

[=1Function Block Parameters: Math Function x|

b athy

b athematical functions including logarithmic, exponential, power, and moduluz
functionz. “when the function haz maore than one argument, the firzt argument
cormespondsz ko the top [or left] input port.

b ain | Signal.-’-‘-.ttrihutesl

Function: Imagnitude’?

L] L]

Cutput signal bype: Iautu:-

Sample time [-1 far inhernted):

[

] 4 Cancel Help Apply

Function
Specify the mathematical function. See Description for more
information about the options for this parameter.

Output signal type
Select the output signal type of the Math Function block as real,
complex, or auto.

2-449

Math Function

2-450

Input Output Signal Type

Function Signal Auto Real Complex
exp, log, real real real complex
10u, log10,

complex complex error complex
square,
sqrt, pow,
reciprocal,
conjugate,
transpose,
hermitian
magnitude | real real real complex
squared complex real real complex
hypot, rem, | real real real complex
mod

complex error error error

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the Math Function block dialog appears
as follows:

Math Function

=1 Function Block Parameters: Math Function x|

b athy

b athematical functions including logarithmic, exponential, power, and moduluz
functionz. “when the function haz maore than one argument, the firzt argument
cormespondsz ko the top [or left] input port.

kain Signal Attributes I

Clutput rinirmum: Clutput masimunm;

i i

Cutput data tppe: | Inhent: Same as firgt input j £ |
Round integer caloulations toward: IFIn:u:nr ;I

¥ Saturate on integer averflow

] 4 Cancel Help Apply

Note Some of the parameters on this pane are available only when
the function chosen in the Function parameter supports fixed-point
data types.

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

® Automatic scaling of fixed-point data types

2-451

Math Function

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

® An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the

Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
If selected, fixed-point overflows saturate.

2-452

Math Function

Characteristics pjrect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes, of the input when the function
requires two inputs
Dimensionalized Yes
Multidimensionalized Yes, for all functions except

hermitian and transpose

Zero Crossing No

2-453

MATLAB Fcn

Purpose
Library

Description

MATLAB
Functian

Data Type
Support

2-454

Apply MATLAB® function or expression to input
User-Defined Functions

The MATLAB Fecn block applies the specified MATLAB function or
expression to the input. The output of the function must match the
output dimensions of the block or an error occurs.

Here are some sample valid expressions for this block.
sin
atan2(u(1), u(2))
u(t1)"u(2)

Note This block is slower than the Fen block because it calls the
MATLAB parser during each integration step. Consider using built-in
blocks (such as the Fen block or the Math Function block) instead, or
writing the function as an M-file or MEX-file S-function, then accessing
it using the S-Function block.

The MATLAB Fcn block accepts one complex or real input of type
double and generates real or complex output of type double, depending
on the setting of the Output signal type parameter.

MATLAB Fcn

Parameters
and

Dialog

Box

1 Function Block Parameters: MATLAE Fen x|

— MATLAR Fen

Pazz the input values ta a MATLAR function far evaluation. The funchion must returs
a zingle walue having the dimensions specified by ‘Output dimenzions' and 'Collapse
2-0 results to 1-D

Examples: zin, sinfu), foolu[1], u(2]]

— Parameter

MATLAR function;

Isin

Clutput dimenzions:
[
Output zignal bpe: Iautn:n ;I
v Collapse 2D results ta 1-D

Sample time [-1 for inherited]:

[

2k, Cancel Help Apply

MATLAB function

The function or expression. If you specify a function only, it is not
necessary to include the input argument in parentheses.

Output dimensions

Dimensions of the signal output by this block. If the output
dimensions are to be the same as the dimensions of the input
signal, specify -1. Otherwise, enter the dimensions of the output
signal, e.g., 2 for a two-element vector. In either case, the output
dimensions must match the dimensions of the value returned by
the function or expression in the MATLAB function field.

2-455

MATLAB Fcn

Output signal type
The dialog allows you to select the output signal type of the
MATLAB Fecn as real, complex, or auto. A value of auto sets the
block’s output type to be the same as the type of the input signal.

Collapse 2-D results to 1-D
Outputs a 2-D array as a 1-D array containing the 2-D array’s
elements in column-major order.

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion N/A
Dimensionalized Yes
Zero Crossing No

2-456

Matrix Concatenate, Vector Concatenate

Purpose

Library

Description

i

-

Concatenate input signals of same data type to create contiguous
output signal

Math Operations

The Concatenate block concatenates the signals at its inputs to create
an output signal whose elements reside in contiguous locations in
memory. This block operates in either vector or multidimensional array
concatenation mode, depending on the setting of its Mode parameter.
In either case, the inputs are concatenated from the top to bottom, or
left to right, input ports.

Vector Mode

In vector mode, all input signals must be either vectors or row vectors
[1xM matrices] or column vectors [Mx1 matrices] or a combination of
vectors and either row or column vectors. The output is a vector if all
inputs are vectors.

The output is a row or column vector if any of the inputs are row or
column vectors, respectively.

Multidimensional Array Mode

Multidimensional array mode accepts vectors and arrays of any size.

It assumes that the trailing dimensions are all ones for input signals
with lower dimensionality. For example, if the output is 4-D and the
input is [2x3] (2-D) this block treats the input as [2x3x1x1]. The
output is always an array. The block’s Concatenate dimension
parameter allows you to specify the output dimension along which

the block concatenates its input arrays. If you set the Concatenate
dimension parameter to 2 and inputs are 2-D matrices, the block
performs horizontal matrix concatenation and places the input matrices
side-by-side to create the output matrix, e.g.,

2-457

Matrix Concatenate, Vector Concatenate

[E=E]

[Ex1]

I 1] 2] |

5]

[EKE]. @ [Ex2]
[y ? <

Harizontal hatrix

Concatenate

2-458

™| 7| 3] |

5]

Lisplay

If you set the Concatenate dimension parameter to 1 and inputs are
2-D matrices, the block performs vertical matrix concatenation and
stacks the input matrices on top of each other to create the output

matrix, e.g.,

1 & [imk]
]

|] 2]
A el ? @&FI 3 4
[1x=z£] 1 | 5' | El
Wertical b atrix
(5 & [1=2] Concatenate Display
B

For horizontal concatenation, the input matrices must have the same
column dimension; for vertical concatenation, the same row dimension.
All input signals must have the same dimension for all dimensions
other than the concatenation dimensions.

If you set the Mode parameter to Multidimensional array, the
Concatenate dimension parameter to 3, and the inputs are 2-D
matrices, the block performs multidimensional matrix concatenation,

e.g.,

Matrix Concatenate, Vector Concatenate

Data Type
Support

1z Outt
- <]

Canstant
= '
simout
— 3
b atrive To Wodspace

5 B Concatenate

78
Constanti

Accepts signals of any data type supported by Simulink® software. All
inputs must be of the same data type. Outputs the same data type
as the input.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-459

Matrix Concatenate, Vector Concatenate

Parameters E! Function Block Parameters: Matrix Concatena El

and
. — Concatenate
Dialog
Box Concatenate input zignals of the zame data type to create a contiguous output signal,

Select wector or multidimensional array mode.

I wector mode, all input signals must be either vectors or one-row [1x6] matrices or
one-colurn [M=1] matrices or a combination of vectars and either one-row matrices or
one-column matricez. The output iz a vector if all inputs are vectors. The output iz a
ane-ro of one-colurmn matrix if any of the inputs are one-row or one-column matnces,
rezpectivel.

| multidirmensional mode, uze ‘Concatenate dimension' to specify the output
dimenzion along which to concatenate the input arrays. For example, to concatenate
the input arrayz vertically or honzontally, specify 1 or 2, respechively, az the
concatenate dimensions.

— Parameter

Murnber af inputs:
|2

Mode: IM ultidirnensional array j

Concatenate dimension;
E

Cancel Help Apply

Number of inputs
Number of inputs on this block.

Mode
Specifies the type of concatenation performed by this block.
Options are:

2-460

Matrix Concatenate, Vector Concatenate

® Vector (see “Vector Mode” on page 2-457)

® Multidimensional array (see “Multidimensional Array Mode”
on page 2-457)

Concatenate dimension
Specifies the output dimension along which to concatenate the
input arrays. For example, to concatenate the input arrays
vertically or horizontally, specify 1 or 2, respectively. This option
appears only if you select Multidimensional array for the Mode

parameter.
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No
See Also cat in the MATLAB® reference documentation

2-461

Memory

Purpose
Library
Description

D}

hemory

Data Type
Support

2-462

Output input from previous time step
Discrete

The Memory block outputs its input from the previous time step,
applying a one integration step sample-and-hold to its input signal.

This sample model demonstrates how to display the step size used in
a simulation. The Sum block subtracts the time at the previous step,
generated by the Memory block, from the current time, generated by
the clock.

< <]
Clock] —— ™

Scope

Note Avoid using the Memory block when integrating with ode15s or
ode113, unless the input to the block does not change.

The Memory block accepts real or complex signals of any data type
supported by Simulink® software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

Memory

Parameters
and

Dialog

Box

=] Function Block Parameters: Memory x|

b emary
’Vﬁppl_l,l a one integration step delay. The output iz the previous input value,

kd ain | State Attributes

| nitial conditior;
|0

™ Inkerit zample time
[Direct feedthrough of input during linearization

[~ Treat az a unit delay when linearizing with dizcrete sample timne

k. Cancel Help Apply

Initial condition
The output at the initial integration step. This must be set to 0 if
the input data type is user-defined. Simulink software does not
allow the initial output of this block to be inf or NaN.

Inherit sample time
Check this check box to cause the sample time to be inherited
from the driving block. If this option is not selected, the block’s
sample time depends on the type of solver used to simulate the
model. If the solver is a variable-step solver, the sample time is
continuous but fixed in minor time step ([0, 1]). If the solver is
a fixed-step solver, this [0, 1] sample time is converted to the
solver’s step size after sample time propagation.

Direct feedthrough of input during linearization
Causes the block to output its input during linearization and trim.
This sets the block’s mode to direct feedthrough.

2-463

Memory

Bus
Support

2-464

Enabling this check box can cause a change in the ordering of
states in the model when using the functions 1inmod, d1inmod,
or trim. To extract this new state ordering, use the following
commands.

First compile the model using the following command, where
model is the name of the Simulink model.

[sizes, x0, x_str] = model([],[],[],'lincompile');

Next, terminate the compilation with the following command.

model([],[],[], term");

The output argument, x_str, which is a cell array of the states
in the Simulink model, contains the new state ordering. When
passing a vector of states as input to the 1inmod, dlinmod, or trim
functions, the state vector must use this new state ordering.

Treat as a unit delay when linearizing with discrete sample time
Select this check box to linearize the Memory block to a unit delay
when the Memory block is driven by a signal with a discrete
sample time.

The State Attributes pane of this block pertains to code generation
and has no effect on model simulation. See “Block State Storage and
Interfacing” in the Real-Time Workshop® Workshop documentation
for more information.

The Memory block is a bus-capable block. The input can be a virtual or
nonvirtual bus signal subject to the following restrictions:

e Initial condition must be zero or a nonzero scalar.

¢ IfInitial condition is zero and a State name is specified, the input
cannot be a virtual bus.

e If Initial condition is a nonzero scalar, no State name can be
specified.

Memory

Characteristics pys-capable

Yes, with restrictions as noted above

Direct Feedthrough

No, except when Direct
feedthrough of input during
linearization is enabled

Sample Time

Continuous, but inherited from
the driving block if you select the
Inherit sample time check box

Scalar Expansion

Yes, of the Initial condition

parameter
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-465

Merge

Purpose
Library

Description

b
Merge p

b

2-466

Combine multiple signals into single signal
Signal Routing

The Merge block combines its inputs into a single output line whose
value at any time is equal to the most recently computed output of its
driving blocks. You can specify any number of inputs by setting the
block’s Number of inputs parameter.

Note Merge blocks assume that all driving signals share the same
signal memory. The shared signal memory should be accessed only in
mutually exclusive fashion. Therefore, always use alternately executing
subsystems to drive Merge blocks. See “Creating Alternately Executing
Subsystems” for an application example.

A Merge block does not accept signals whose elements have been
reordered or partially selected. For example, in the following diagram,
the Merge block does not accept the output of the first Selector block
because the Selector block interchanges the first and last elements of
the vector signal. It does not accept the output of the second Selector
block because the Selector block selects only the first three elements.

Merge

JUT

L ol 0-0.5

Fulze
Genearator

Bias

Unany Minus

Invalid connection - Selector block interchanges first

and last elements

/

herge

Il
Out 1 —f —
-u Enabled Selectar
Subsystem
n "“-hq.—_h-
Ot —f —
o .
Enabled Salactor]
Subsystemz

\

herge

Scope

Invalid connection - Selector block selects
only first three elements

If the Allow unequal port widths parameter is not selected, the block
accepts only inputs of equal dimensions and outputs a signal of the
same dimensions as the inputs. If you select the Allow unequal port
widths option, the block accepts scalars and vectors (but not matrices)
having differing numbers of elements. Further, the block allows you to
specify an offset for each input signal relative to the beginning of the

output signal. The width of the output signal is

max(w,+0,, Ww,+0,,

. w o)

2-467

Merge

wherew;, ... w_ arethe widths of the input signalsand o;, ... o
are the offsets for the input signals. For example, the Merge block in
the following diagram has a Merge block width of

n

max (2+0,2+1)=3

While enabled, Output = [1 2]

/ Initial output = [0 0 0]
Input port offsets = [0 1]

n Dun—"|1’ /

scope TP
SELro ABEB(E A F ~

w05

m

Fulse
Generator

Biaz

Enabled
Subsystam Merge \;SF F: l:l

n
Outl

Unan Minus

wi

Enable
Subsystern:

While enabled,
Output = [3 4]

Time offset: 0

In this example, the offset of v1 is 0 and the offset of v2 is 1. The Merge
block maps the elements of v1 to the first two elements of v3 and the
elements of v2 to the last two elements of v3. Only the second element
of v3 is effectively merged, as seen from the scopes output.

You can specify an initial output value by setting the block’s Initial
output parameter. If you do not specify an initial output and one or
more of the driving blocks do, the Merge block’s initial output equals
the most recently evaluated initial output of the driving blocks.

2-468

Merge

Data Type
Support

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if
the memory used to store the S-Function block’s output is reusable.
Simulink® software displays an error message if you attempt to update
or simulate a model that connects a nonreusable port of an S-Function
block to a Merge block. See ssSetOutputPortOptimOpts for more
information.

Guidelines for Using Merge Block

When using the Merge block, consider the following:

® Do not connect an input of a Merge block to any other block. Doing
SO causes an error.

® Always use conditionally executed subsystems to drive Merge blocks.

* Always set the Initial output parameter of the Merge block.

®* Write your control logic to ensure that at most one of the driving
conditionally executed subsystems executes at any time step.

Note Where possible, use the If or Switch Case block to provide
control logic.

® For all conditionally executed subsystem Outport blocks that drive
Merge blocks:

= Set the Initial output parameter to empty matrix ([]).

= Set the Output when disabled parameter to held.

The Merge block accepts real or complex signals of any data type
supported by Simulink software, including fixed-point data types. All
inputs must be of the same data type and numeric type.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-469

Merge

Parameters
and

Dialog

Box

2-470

51 Function Block Parameters: Merge

x|

— Merge

terge the input signals into a single output zsignal whose initial value iz zpecified
by the 'Initial output' parameter. |f 'nitial output’ iz empty, the Merge block outputs
the initial output of ane af itz driving blacks.

— Parameter

Humber of inputs;

|2

[ritial output;

i
[T allow unequal port widths

Input port offzets:

i

] Cancel Help Apply

Number of inputs

The number of input ports to merge.

Initial output

Initial value of output. If unspecified, the initial output equals
the initial output, if any, of one of the driving blocks. Simulink
software does not allow you to set the initial output of this block

to inf or NaN.

Allow unequal port widths

Allows the block to accept inputs having different numbers
elements.

of

Merge

Input port offsets

Vector specifying the offset of each input signal relative to the

beginning of the output signal.

Bus The Merge block is a bus-capable block. The inputs can be virtual or
Suppori‘ nonvirtual bus signals subject to the following restrictions:

¢ The number of inputs must be greater than one.

¢ Initial output must be zero or a nonzero scalar.

¢ Allow unequal port widths must be disabled.

e All inputs to the merge must be buses and must be equivalent (same
hierarchy with identical names and attributes for all elements).

Characteristics By capable

Yes, with restrictions as noted

above
Direct Feedthrough Yes
Sample Time Inherited from the driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-471

MinMax

Purpose
Library

Description

A min p

Data Type
Support

2-472

Output minimum or maximum input value
Math Operations

The MinMax block outputs either the minimum or the maximum
element or elements of the inputs. You can choose the function to apply
by selecting one of the choices from the Function parameter list.

If the block has one input port, the input must be a scalar or a vector.
The block outputs a scalar equal to the minimum or maximum element
of the input vector.

If the block has multiple input ports, the nonscalar inputs must all have
the same dimensions. The block expands any scalar inputs to have the
same dimensions as the nonscalar inputs. The block outputs a signal
having the same dimensions as the input. Each output element equals
the minimum or maximum of the corresponding input elements.

The MinMax block accepts and outputs real signals of any data type
supported by Simulink® software, except Boolean. The MinMax block
supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

MinMax

Parameters
and

Dialog

Box

The Main pane of the MinMax block dialog appears as follows:

1 Function Block Parameters: MinMax x|

Firihd 2

DOukput mir ar max of input. Faor a zingle input, operators are applied acrozz the
input vectar. For multiple inputs, operatars are applied across the inputs.

ET | Signal Attributes
Function: Imin LI

MHumber af input parts:
[1

¥ Enable zero crozzing detection

Sample time [-1 for inkernted]:

[-1

(] Cancel Help Apply

Function
Specify whether to apply the function min or max to the input.

Number of input ports
Specify the number of inputs to the block.

Enable zero crossing detection
Select to enable zero crossing detection to detect minimum and
maximum values. For more information, see “Zero-Crossing
Detection” in the “How Simulink Works” chapter of the Simulink
documentation.

2-473

MinMax

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “Specifying Sample Time” in
the online documentation for more information.

The Signal Attributes pane of the MinMax block dialog appears as
follows:

E Function Block Parameters: MinMax X|

Fdiribd 2

Dutput min or mas of input. Faor a single input, operators are applied across the input
wector. For multiple inputs, operators are applied across the inputs.

b ain Signal Attributes

[~ Require all inputs to have the zame data type

Clutput rinirmum: Clutput masimunm;

i i

Cutput data tpe: | Inhent; Inhent via internal nile j rr |
Round integer calculations toward: IFI::u:ur LI

[T Saturate on integer overflow

k. Cancel Help Apply

Require all inputs to have the same data type
Select this parameter to require that all inputs must have the

same data type.

2-474

MinMax

Output minimum
Specify the minimum value that the block should output. The
default value, [], is equivalent to - Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
¢ Automatic scaling of fixed-point data types

Output maximum
Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)
® Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

* An expression that evaluates to a data type, for example,
float('single')

Click the Show data type assistant button ;I to
display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Using Simulink for
more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the Qutput data type parameter.

2-475

MinMax

Round integer calculations toward
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™ User’s
Guide.

Saturate on integer overflow
Select to have overflows saturate.

Characteristics pirect Feedthrough Yes
Sample Time Specified in the Sample time
parameter
Scalar Expansion Yes, of the inputs
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing Yes, if enabled.

2-476

MinMax Running Resettable

Purpose
Library

Description

Determine minimum or maximum of signal over time
Math Operations

The MinMax Running Resettable block outputs the minimum or
maximum of all past inputs u. You specify whether the block outputs

L

min{uy) y
R

the minimum or the maximum with the Function parameter.

> The block can reset its state based on an external reset signal R. When
the reset signal R is TRUE, the block resets the output to the value of

Data Type
Support

the Initial condition parameter.

The input can be a scalar, vector, or matrix signal. If you specify a
scalar Initial condition parameter, the block expands the parameter
to have the same dimensions as a nonscalar input. The block outputs a
signal having the same dimensions as the input. Each output element
equals the running minimum or maximum of the corresponding input
elements.

The MinMax Running Resettable block accepts and outputs real signals
of any data type supported by Simulink® software, except Boolean. The
MinMax Running Resettable block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see
“Data Types Supported by Simulink” in the Simulink documentation.

2-477

MinMax Running Resettable

Parameters x
an
Dialog — Minkdax Funning Resettable [maszk] (link]
Box Output the max ar min of all past inputz u. The output iz reset to the initial
condition when the Reset input signal B iz TRUE. Thiz reset action is vectorized
and supparts scalar expansian.
— Parameter
Function: Imin ;I
Initial condition:
[
] Cancel Help Apply
Function
Specify whether the block outputs the minimum or the maximum.
Initial condition
Initial condition.
Characteristics pjrect Feedthrough Yes

Scalar Expansion Yes

2-478

Model

Purpose Include model as block in another model
Librclry Ports & Subsystems
Description The Model block allows you to include a model as a block in another

model. The Model block displays input ports and output ports

Mode! Nams corresponding to the included model’s top-level input and output ports.
i This allows you to connect the included model to other blocks in the

containing model. See “Referencing a Model” for more information.

i -level inpu utpu
Data Type Determined by the root-level inputs and outputs of the model referenced
Support by the Model block.
PO ra mete rs E! Block Parameters: Model x|
a nd r Model Fieference
Dia Iog Specify the name of a Simulink model. During update diagram, simulation, and code
generation, Simulink generates code for the referenced model and uses the
Box generated code. These operations alzo refresh Model blocks to reflect graphical

changes, such as number of ports, in the referenced model. To refresh without
performing theze operations, select Edit-» Refresh Model Blocks.

— Parameter

todel name [without the .md| extenzion):

<E nter Maodel Mame:

Model arguments:

Model argument values [for this instance]:

Simulation mode: IAccelerator ;I

Open kodel |

0K I LCancel | Help | Apply |

Model Name
Name of the model referenced by this block. This name must be a
valid MATLAB® identifier. The model must exist on the MATLAB

2-479

Model

path an